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NONLINEAR INSTABILITY IN DISSIPATIVE FINITE DIFFERENCE
SCHEMES*

ANDREW STUART

Abstract. A unified analysis of reaction-diffusion equations and their finite difference representations
is presented. The parallel treatment of the two problems shows clearly when and why the finite difference
approximations break down. The approach used provides a general framework for the analysis and
interpretation of numerical instability in approximations of dissipative nonlinear partial differential
equations.

Continuous and discrete problems are studied from the perspective of bifurcation theory, and
numerical instability is shown to be associated with the bifurcation of periodic orbits in discrete systems.
An asymptotic approach, due to Newell (SIAM J. Appl. Math., 33 (1977), 133-160), is used to investigate
the instability phenomenon further. In particular, equations are derived that describe the interaction of the
dynamics of the partial differential equation with the artefacts of the discretisation.
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1. Introduction. In this paper we analyse two problems: a scalar reaction-
diffusion equation and its finite difference analogue. The problems appear below.

PROBLEM (P). Find u(x, t) satisfying

u,=u.,-+U(u),

u(O,t)=u(1,t)=O, u(x,O)=uo(x).

PROBLEM (PD). Find u. satisfying
’+’ n=r62,[Ou. +’u. uj. + (1 O)u.] + hAt[Of(u.+’) + (1 O)f(u.)],

o Uo(jAx

for j 1, ..., J- 1. Here 62-U U.+ 2U + U._,, JzXx 1, r At/Ax2, and
0__<0<__1.

Thus u7 approximates u(jAx, nat). By studying the two problems in parallel we
develop an understanding of the approximation of partial differential equations in
which a dissipative mechanism is balanced by nonlinearity. The two fundamental
questions we ask about the approximation of (P) by (PD) are:

Question 1. What qualitative features of the partial differential equation (P)
cannot be adequately represented by the discretisation (PD)?

Question 2. What qualitative features of the discretisation (PD) are not present
in the partial differential equation (P)?

We analyse the behaviour of (P) by means of the elements of local bifurcation,
linear stability, and weakly nonlinear stability theories. Such local theories cannot
completely explain the global behaviour of the reaction-diffusion equation. Nonethe-
less, analyses based on these local theories form the cornerstone of many global
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192 ANDREW STUART

theories, and the local results themselves yield direct insight into the behaviour of (P)
in the vicinity of hyperbolic stationary points.

We apply similar local analyses to (PD). The framework within which we study
the finite difference equations is that of practical numerical stability (P-stability),
rather than convergence. That is, we examine the behaviour of (P) for fixed, but small,
mesh-spacings. As for the continuous case, the local analyses do not explain
the behaviour of (P) in its entirety; they do, however, illuminate the answers to
Questions and 2.

The pioneering paper in the analysis of numerical instability in discrete para-
bolic problems, by means of the methods from bifurcation and stability theory, is
that of Newell [38]. By generalising the method of multiple scales to difference
equations, Newell extended weakly nonlinear analyses, developed in the context of
hydrodynamic stability theory [53], [56], to discrete equations. He used this asymp-
totic method to analyse numerical instability in representative dissipative and
dispersive discretisations.

The study of the qualitative behaviour of discretisations of differential equations
has benefited considerably in recent years from the use of concepts and analytical
tools originally developed for continuous problems. This has led to a deeper under-
standing of the approximation process, and at the same time to simple interpretations
of discretisation error in terms readily understood by those applying numerical
methods to real problems. For example, a wide class of numerical instabilities can be
interpreted as spurious triad wave interactions [10] generated by discretisation. The
phenomenon of sideband instability in numerical methods was observed experimen-
tally in [6] and has been analysed further in [48], where it is described in terms of the
Benjamin-Feir instability from wave motion [2]. Also relevant in this context is the
work of Moore [37], who identified a spurious triad interaction in a numerical model
for wave propagation and analysed it by means of the Stokes expansion and multiple
scaling arguments. This approach is applicable to a wide class of dispersive difference
schemes and has been used to analyse discretisations of the Korteweg-deVries (KdV)
equation (Herbst and Cloot [22])and the inviscid Burger’s equation (Cloot and Herbst
[9]). Moore’s analysis hinges on a comparison of the discrete dispersion relation
with the continuous problem. The study of dispersion relations is useful both as a
diagnostic and as the basis for analysis. For a survey of such results for linear
problems see [54], [55].

The majority of the analyses described here are scattered throughout a broad
body of literature in applied mathematics and numerical analysis. Thus it seems
appropriate to present the study of both the reaction-diffusion equation and its
discretisation in a unified way. The new work presented in this paper is an analytical
description of the nonlinear interaction of a high wavenumber mode, which is a
product of the discretisation, and a low wavenumber mode present in the governing
differential equation. This is of interest since it shows how nonlinear numerical
instability can be triggered by a mechanism inherent in the underlying partial
differential equation--something that cannot happen in linear problems. The phe-
nomenon ofhigh/low wavenumber interaction has been identified in problems similar
to (P), but with homogeneous Neumann or periodic boundary conditions, using a
closed subsystem generated by aliasing as the basis for analysis (see [51]).

Aliasing [50, p. 463] has formed the basis for many studies ofnonlinear numerical
instability, the foundational paper being [40]. However, the approach suffers from
a major disadvantage: it generally applies only to the analysis of the interaction of a
(relatively small) number of high wavenumber modes (the example in [51 is atypical
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INSTABILITY IN DIFFERENCE SCHEMES 193

in this respect since the special structure of the problem allows the inclusion of a
nontrivial low wavenumber mode). Thus the instabilites predicted by these analyses
[6], [9], [13], [16], [22], [48] are based on the assumption that initially a significant
amount of energy is found in the high wavenumbers. For problems with smooth
initial data this is not the case, and the instability predicted via the aliasing analysis
may or may not appear in practice.

In Burgers’ equation there is a rapid cascade of energy to high wavenumbers
through the formation of shocks, and the aliasing analysis of Fornberg 16] is relevant
to a large class of problems with smooth initial data. However, for many other
problems there remains the open question of how the energy distributes itself among
Fourier modes as the timestepping proceeds. Nonetheless, Moore [37] shows that
considerable insight into this question can be obtained by using asymptotic analysis
to identify the interactions of the Fourier modes that dominate. Moore’s method
works well for dispersive equations; in these problems wave interactions determine
the departure from a given initial state, and multiple scales arguments can be used to
study the interactions. For dissipative problems like (P) and (PD), multiple scaling
methods also form the basis for the analysis of departures from a given state. We use
the method of Newell [38] to show that there is a direct interaction between the low
and high wavenumber modes in (PD). This has an important consequence, since it
means that the time scale on which the potentially destabilising high wavenumber
modes are stimulated is not governed by the usual cascade of energy through higher
and higher wavenumber modes, but by the direct transfer between low and high
wavenumbers.

The interaction of the two modes is associated with the interaction of the
dynamics of the partial differential equation (represented by the low wavenumber
mode) and the artefacts of the discretisation (represented by the high wavenumber
mode). The crucial parameter in (P) is X; the crucial parameters in (PD) are X and r.
These parameters define the structure of the bifurcation diagram for (P) and (PD).
The parameter X controls the bifurcation of steady solutions in both (P) and
(PD). Determining the set of critical values of ), for (P) and (PD) forms the basis of
the answer to Question 1. The parameter r controls the bifurcation of time-periodic
orbits in (PD), a phenomenon that cannot occur in (P). Determining the smallest
critical value of r for (PD) forms the basis of the answer to Question 2. In general we
will consider problems of arbitrary, but fixed, dimensionmthat is, J, and hence Ax,
will be fixed. Thus the critical value for r implicitly determines a critical value for At.

Let ), denote the smallest critical value of X and r,. the smallest critical value of
r. The following table summarises the previous local studies of(P) and (PD); numerical
methods valid for X ),. are described in [29]. An asterisk denotes a piece of work for
which a standard text or review is cited. Note that r plays no part in (P).

X )k. r
(P) Linear [49]*
(P) Nonlinear [35]
(PD) Linear This work* [41 ]* This work
(PD) Nonlinear [58] [38] This work

This paper contains two main components: in 2 we describe known results
about (P), and in 3 we derive analogous results for (PD). Section 2 is divided into
four subsections concerned with, respectively, the properties of the eigenvalues of the
linearisation of the partial differential equation, a local bifurcation analysis for the
steady solutions, a weakly nonlinear analysis of the time-dependent problem, and
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194 ANDREW STUART

bifurcation from a parameter value at infinity. Section 3 contains analyses similar to
those in 2 but is longer, since the range of behaviour of the discretisation is far richer
than that ofthe underlying partial differential equation. Section 4 contains a summary
and various concluding remarks.

We emphasise again that all the work contained in this paper is of a purely local
nature. There is a great deal of current interest in questions concerning the global
nonlinear stability of numerical approximations to partial differential equations. Most
of that research is concerned with defining numerical stability for nonlinear problems
’in such a way that the Lax equivalence theorem [41 ], which concerns the relationships
between consistency, stability, and convergence in linear problems, can be generalised
[11], [30], [31]. The results in [30] provide a unifying framework for the analysis of
discretisations in the limit as the mesh-spacing shrinks to zero. However, here we take
the view that, in many practical large-scale computations, it is at least as important
to understand how the qualitative behaviour of the discretisations compares with that
of the underlying differential equation as it is to develop a convergence proof, since
the limit "mesh-spacing shrinks to zero" is unattainable in practice. In particular, the
asymptotic behaviour of discretisations of time-dependent problems for fixed values
ofthe mesh-spacing is of fundamental importance in many applications. This stand-
point is taken, for example, by Sanz-Serna [44], who studies the computation of
periodic orbits by means of symplectic difference schemes (which mimic the area-
preserving properties in Hamiltonian systems), and by Iserles [24], who analyses the
asymptotics of Runge-Kutta and multistep methods applied to scalar ordinary
differential equations.

We hope that, by analysing in detail the local behaviour of a scalar reaction-
diffusion equation and its discretisation, we can shed light on the approximation
process for the wide class of equations in which a dissipative mechanism is balanced
by nonlinearity. Our analysis concerns the behaviour of the partial differential
equation and its discretisation near a trivial solution (zero). The ideas, however, apply
more generally in the neighbourhood of any steady solution. We show this in 3.3 by
means of secondary bifurcation analysis, and also in [52], where numerical methods
for a generalisation of (P) (to allow for convection) are studied using singularity
theory.

Problem (P) has a long history and finds application in the modeling of many
biological and chemical phenomena. In the case f (u)c e it arises in the theory
of combustion, where u represents departure of the temperature from an initial
profile. Blowup can occur; this has an interpretation in ignition theory [25]. For
f(u) u(1 u) the equation arises in population genetics, where u is the frequency
of a favourable gene; various generalisations of this nonlinearity are also relevant to
this application 14]. Similar nonlinearities also arise in studies ofthe spatial patterning
of the spruce budworm [32]. We will study particular classes of nonlinearity which
make the exposition simpler without changing the central ideas. Arbitrary nonlinear-
ities are analysed in [52]. Problem (P) is also important, since it represents the
enormous class of real-world problems in which a dissipative mechanism competes
with nonlinear effects.

2. The continuous problem. In this section we describe the behaviour of (P). We
consider two classes of nonlinearity f(u), namely

(i) f(u): f(O) O, f’(O) 1, f"(O) O, f"(O) O;
(ii) f(u): f(O) =f’(O) O, f"(O) - O.
In general it is important to define appropriate function spaces for (P). However,

since our analysis is a local one, we refrain from detailing the nature of the space and

D
o
w

n
lo

ad
ed

 0
6
/0

9
/1

7
 t

o
 1

3
1
.2

1
5
.2

2
5
.1

8
5
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



INSTABILITY IN DIFFERENCE SCHEMES 195

assume that the solution of (P) possesses properties sufficient for our analysis to hold.
We concentrate on an analysis of (P) for ull << 1; however, the global behaviour is
fairly well understood and described in detail in [7], [21], [34], [49]. In practical terms
(P) behaves like a scalar ordinary differential equationtime-oscillatory solutions do
not exist and solutions either converge to a steady state or diverge to infinity in finite
or infinite time.

2.1. The linearised problem. In this subsection we consider both cases (i) and
(ii). Since f(0)- 0, the trivial solution u(x, t)=-0 solves (P). The linearisation of (P)
about this trivial solution is given by

(2.1.1) v,=v:j,.+hf’(O)v,

(2.1.2) v(O, t) v( t) O, v(x, O) Uo(X).

This problem is readily solved by separation of variables. We seek solutions
v(x, t) O(x)p(t ). Then

(2.1.3) (t) exp (at),

and (x) satisfies

(2.1.4) 4:,+ Xf’(0)4 4,

(2.1.5) 4(0) 4(1) 0.

The eigenvalue problem (2.1.4), (2.1.5) is fundamental to (P). First, to solve the
linearised equations (2.1.1), (2.1.2) we require the eigenvalues and eigenfunctions
and (x) of (2.1.4), (2.1.5) for fixed ?. Second, (2.1.4), (2.1.5) determines the
eigenvalues of the Fr6chet derivative of (P) with respect to the trivial solution.
Hence, by the implicit function theorem, the eigenvalues , of (2.1.4), (2.1.5) for a

satisfying Re (a) 0 define the bifurcation points from the steady solution u(x, t) 0
of (P); these are the values of X at which nontrivial solutions to (P) branch off from
u(x, t) =- O. Thus bifurcation occurs at those values of X for which the growth rate of
one of the modes in the linearised solution is neutral (neither decaying nor growing)
in time. This is a loose definition which suffices for the simple problem (P). The
reader interested in precise conditions in the more general setting ofnonlinear operator
equations posed in a Banach space is referred to [8].

If Im (a)= 0 the bifurcation corresponds to a branching of steady solutions,
whereas Im (r) 0 corresponds to the branching of periodic solutions, known as
Hopf bifurcation [33]. However, (2.1.4) and (2.1.5) are in Sturm-Liouville form so
that, necessarily, Im (a) 0 [28]. We prove this well-known result for the purposes of
comparison with the discrete case considered in 3; this proof can be found in [12].

THEOREM 2.1.1. The eigenvalues ofthe problem (2.1.4), (2.1.5) are real.
Proof Multiply (2.1.4) by 4*(x), the complex conjugate of (x), and integrate

by parts. This yields

[a- ,f’(0)] 00 " dx + 4.,.4 * dx O

Thus

[-Xf’(0)] [l dx+ 4,-12 dx=O.
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196 ANDREW STUART

Taking the imaginary part gives

Im() 112 dx-O,

since X e R; thus Im () 0 as required.
Applying the same method to the linearisation of (P) about any steady solution

shows that Hopf bifurcation cannot occur; this fact may be deduced directly from the
more general result about the behaviour of (P) described above: (P) behaves like a
scalar ordinary differential equation and cannot exhibit oscillatory behaviour.

2.2. Bifurcation analysis; steady solutions. As described in the previous sub-
section, the bifurcation of steady solutions of (P) from u(x, t)=-0 occurs at the
eigenvalues X of the problem

(2.2.1) .,..,+ Xf’ (0)) 0, 4)(0) b( 0.

Clearly, ifj"(0)= 0 then (2.2.1) possesses no eigenfunctions; thus we consider the
casef’(0) 0 in this and the next subsection. Without loss of generality we may scale
X so thatf’(O)= (case (i)).

For a detailed analytic discussion of the necessary and sufficient conditions for
bifurcation of steady solutions the reader is referred to [8]; for a more geometrical
viewpoint see 17]. For motivation, it is sufficient to consider the following argument
for the derivation of(2.2.1). We seek steady solutions U(x) of(P) with small supremum
norm and set U(x) ec/)(x), where << 1. Substituting this into (P) and equating
powers of e yields the O(e) approximation (2.2.1). Thus, for small-norm solutions of
the required form to exist, we require that nontrivial solutions of (2.2.1) exist. This
occurs for

(2.2.2) X (kr), (x)= sin (krx).

Hence U(x) may be approximated by ea< sin (krx), for ), (kr). The a are, as yet,
undetermined.

Let us continue the expansion to the next order in , for X r. Since f"(O) 0
there are no O(e 2) terms in the expansion for U(x). Setting

U(x), ea, sin (rrx)+ e3X(X),
we obtain

X(2.2.3) X.,:,.+rr -Xoa, sin (rrx) rr2f"(0)a sin (Trx)/6 X(0)=X(1)=0.

The homogeneous version of (2.2.3) is singular (since it is precisely (2.2.1) with
r 2) so we must apply the Fredholm alternative for boundary value problems [20]

to obtain the existence of a solution x(x). This orthogonality condition yields

--6Xo f) sin (rrX) dx
(2.2.4) a,=0 or a21

rr (O) f g sin4 (rrx) dx

Equation (2.2.4) has two nontrivial solutions, which differ only in sign, whenever
sgn (Xof’(0))=-1. This is an example of a 1)ilchfork bifurcation. This particular
bifurcation structure arises because of the conditions on flu) listed in case (i). In the
language of singularity theory the choice of case (i) leads to a particular normalform
[1 7]; other classes ofj(u) can be considered leading to different normal forms. The
case f"(0) 0 is studied in the numerical context in 8], [52].
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INSTABILITY IN DIFFERENCE SCHEMES 197

Similar pitchfork bifurcations are found for X (krc) + oe The coefficients
are then given by (2.2.4) with kr replacing r throughout:

(2.2.5) al, 0 or
-6Xof sin (krrx) dx

a/;=k2rr2f’(O) f sin4 (krcx) dx

Piecing the information together, we obtain a local description of the steady solutions
of (P) as shown in Figs. and 2 for the two casesf" (0) < 0 andf" (0) > 0. The global
structure of these bifurcation diagrams is determined by the global properties off(u).

4r 9re

FIG. 1. Bfurcation diagram for (P). The casef"(O) < O.

rc 4,a-2 9re

FG. 2. B/hrcation diagram for (P). The casef’(O) > O.
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198 ANDREW STUART

2.3. Weakly nonlinear analysis. In this subsection we employ the notion of the
stability of steady solutions of partial differential equations. A steady solution U(x)
of (P) is said to be stable in a given norm II" if, for any e > 0, there exists a 6 > 0
such that Ilu(x, O) U(x)ll <= 6 implies that Ilu(x, t) U(x)ll <- e for all t. In addition,
we say that the solution is asymptotically stable if u(x, t) U(x)ll 0 as -- . For
problem (P) the principle oflinearised stability holds [21], [27], [49]. This means that
the stability properties of a steady solution to the nonlinear problem (P) can be
inferred from the spectrum of the Frchet derivative of (P) evaluated at the steady
solution.

As in 2.2 we assume thatf’(0)= 1. Solving (2.1.4), (2.1.5) for and 4(x), we
obtain the linearised solution of (P):

(2.3.1) v(x,t)= Y a/ exp [(X-k27r2)t] sin (krx),
k=O

where the a/ are determined by the initial conditions. For ), < r 2 we obtain
v(x, t) 0 as -- . For X > r 2, o(x, t) -- as --* . Thus u(x, t) =- 0 is a linearly
stable (unstable) solution of(P) for ), < r2(> r2). By the principle oflinearised stability
we deduce the following about (P). For ), < r 2, u(x,t) =- 0 is a stable solution of (P),
whereas for ), > r 2 it is not. The value ), r is the first bifurcation point from
u(x, t)=-0 (where Re(a)=0; see {}2.2) and hence the first bifurcation point from
u(x, t) =- 0 is a point of change in stability for the trivial solution.

Thus a purely linear analysis determines the stability of the solution u(x, t) =- 0
to infinitesimally small disturbances. However, to say more about the dynamics
of (P)in particular, to answer questions about finite amplitude disturbances of
u(x, t) =- 0we must take into account the form of nonlinearity f(u). We do this by
performing a weakly nonlinear analysis of (P) for X r. This method is, in fact, a
reduction of the dynamics of (P) onto a center manifold [19]. The work in this
subsection follows closely the exposition of Matkowsky [35].

The essence of weakly nonlinear analyses is to consider a modulation of the
linearised solution for ), a-2; the modulation is chosen on a slow time scale on which
the effect of the nonlinearity in f(u) plays a part. This is achieved by the method of
multiple scales. Formally we set

(2.3.2) X r + Xoe 2,

and seek an expansion for u(x, t) in the form

(2.3.3) u(x, t; e) Y v,n(x,t, r)e ’,

where r ezt. In keeping with the method of multiple scales we treat and r as
independent variables. The extra choice arising from the introduction of r enables us
to eliminate terms in the expansion which are secular in t. Abusing notation we set

0_0 zO(2.3.4) Or- Ot
+ e 0--

in (P). We also assume that the initial data is of small amplitude so that

(2.3.5) u(x,O)=eh(x).
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INSTABILITY IN DIFFERENCE SCHEMES 199

(2.3.6)

(2.3.7)

where

Substituting (2.3.2)-(2.3.4) into (P) and equating powers of e, we obtain

Lo1 =- vii Vlxx- 7r2Vl -0
Lo2 O, Lo3 r3,

r3 --Vl -- xoV +r:f"(O)v31/6.
Here v;(0)= v;(1)= 0. Equation (2.3.5) gives the initial conditions vl(x, 0)= h(x),
and Vm(X, 0)= 0 for m > 1. Equation (2.3.6), together with the initial and boundary
conditions, has its solution given by (2.3.1) with ) 7r and the ak functions of r (as
yet undetermined). Thus

(2.3.8) v,(x,t,r)=a(r)sin(rx)+ Y a/(r)exp[(1-ke)r2t]sin(k7rx),
k=2

where the second (summation) term decays with t. The solution for v: is zero since L
is linear and the initial and boundary conditions are homogeneous.

Since the same differential operator L occurs at successive orders, secular solutions
v3 may arise. We solve (2.3.7) for v3 by Fourier decomposition, using the complete
set of eigenfunctions sin (krx). This gives an infinite set of coupled ordinary differ-
ential equations in t. To avoid secularity we remove terms constant in from the
equation corresponding to k- (the mode constant in time in v). This condition
can be written succinctly [35] as

(2.3.9) lim- exp[(1-ke)7r2t]sin(kTrx)r3dxdt=O fork= 1,
T----,

The only contribution to (2.3.9) occurs with k and comes from the first (non-
decaying) term in (2.3.8) when substituted into r3; we obtain

da
)oa, + ba3,(2.3.10)

d

where

b 7rzf’(O)f sin4 (7rx) dy
6 f) sin (Tr.x:) dx

The critical points of (2.3.10), a =0 and a +/-)o/b, are precisely the
amplitudes of the steady solutions given by (2.2.4). Equation (2.3.10) is explicitly
solvable and a full description of its behaviour can be found in [12] and [35].
Combining (2.3.3) and (2.3.8) gives

u(x,t),ea,(r) sin (rrx)

at --, o. Using this we summarise the behaviour of u(x, t) as follows:
(a)),0 > 0, b > 0. In this case a (r) ---, oo for finite r for all initial data. Thus the

zero solution is unstable, as predicted by linear theory (see Fig. 4 with ) > 7r2).
(b)),o < 0, b >0. In this case a(r)---O as r--,o for all initial data satis-

fying la(0)l < /-)o/b. For initial values of a(0) lying outside this range, a(r)
increases without bound (see Fig. 4, ) < r2). This is an example of a finite amplitude
instability: the zero solution of (P) is unstable to initial disturbances satisfying
la(0)l > /-)o/b, even though the zero solution is linearly stable.
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Steady Solution
Branch

FG. 3. Diagram showing evolution of data under (P). The case f"(0)< 0.
The arrows indicate evolution in time.

Steady Solution
Branch

Jr2 X

FIG. 4. Diagram showing evolution of data under (P). The case f"(O) > O.
The arrows indicate evolution in time.

(c) X0 > 0, b < 0. In this case a(r)-- /-Xo/b for all initial data. Thus the zero
solution is unstable as predicted by linear theory. Furthermore, we obtain the
additional information that u(x, l) evolves towards the nonzero steady state con-
structed in {}2.2 (see Fig. 3, ), > rr2).

(d) Xo < 0, b < 0. In this case al (r)-- 0 for all initial data, confirming that the
zero solution is stable for Xo < 0 (see Fig. 3, X < re2).

2.4. Bifurcation from infinity. In this subsection we consider f(u) defined by
case (ii), so thatf’(0) 0. For simplicity, we consider (P) in the specific casef(u) u 2.
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The discussion follows the work of Rosenblat and Davis [42], who consider a more
general problem that includes the case f(u)= u . To standardise notation with [42]
we rescale (P) by setting - ,t, giving

(2.4.1) u= )- u,,+ u 2,

subject to u(0, -) u(1,) 0 and some initial conditions.
Since f’(0)= 0 we deduce that there is no bifurcation from the trivial solution

because (2.2.1) has no eigensolutions. However, (2.4.1) is characterised by a form of
bifurcationfrom infinity. Ifwe linearise (2.4.1) about u(x, -) =- 0 and solve the resulting
equation by separation of variables, we obtain the linearised solution

(2.4.2) v(x, -)= Y a/ exp (-k2r2’/)) sin (kTrx).
k=O

Forf(u) defined by case (i), the bifurcation points ), k2"a"2 are defined by the
points where the growth rates of the individual modes sin (kTrx) composing the
linearised solution (2.3.1) are neutral in time (since Re (a)= 0 at such points; see
2.1 and 3). In this sense the point is a candidate for a bifurcation point of
infinite multiplicity in the current problem (case (ii)), since the growth rates of each
mode in (2.4.2) all approach zero as ),- .This heuristic discussion does not constitute a proof. However, in the case
f(u) u it can be shown that (2.4.1) possesses a nontrivial steady solution whose
supremum norm approaches zero at a rate )-1 as ), -- ; the details of the proof may
be found in [42], together with a stability analysis of the nontrivial solution. The
solution is shown to be unstable. For our purposes, it suffices to note that bifurcation
from infinity is characterised by the case where the growth rates of the linearised
solution all approach zero simultaneously. Furthermore, the bifurcation is subcritical
and the solution is unstable; thus afnite amplitude instability occurs in this problem,
even though there is no bifurcation from the trivial solution at any finite value of )

(see [42]).

3. The discrete problem. In this section we analyse the two-level approximation
(PD), known as the 0-method [41 ], by the methods described in 2. We examine (PD)
from the perspective of practical numerical stability defined in 3.3. We will show,
among other things, that nonlinear numerical instability is associated with the
bifurcation of solutions periodic in n from steady (n-independent) solutions of (PD).
A clear illustration of a related phenomenon in ordinary differential equations is
described in [5].

Unlike the continuous problem, the global behaviour of (PD) is not well under-
stood. The dynamics of discretisations (which are coupled iterated maps) are generally
far more complicated than the dynamics of their continuous counterparts (which are
differential equations); this is certainly the case for reaction-diffusion equations. For
example, if we assume that r is unrestricted, the maximum principle for linear
parabolic problems has no known general counterpart in the 0-method for 0 : (see
[41])indeed, the Crank-Nicolson method often introduces spatial oscillations not
present in the differential equation. There are, however, some scattered results of a
global nature about the behaviour of(PD). An important paper ofHoff[23] generalises
the concept of invariant regions (see [49] and the references cited there) to discrete
problems, and the method can be used to prove global results about specific discrete
reaction-diffusion equations.

The work in 3.1 is mostly well known and described in [41]; the exception is
the proof of Theorem 3.1.1, which is nonstandard and presented for the purposes of
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comparison with the continuous case. The analysis in 3.2 is also well known [41 ],
but the bifurcation theoretic presentation is new and facilitates direct comparison
with the continuous case. The methods employed in 3.3 are those of Newell [38],
who generalised the method of multiple scales to difference equations. However, we
consider some properties of (PD) not analysed by Newell: the evolution of arbitrary
initial data and the interaction of numerical instability with the underlying dynamics
of(P).

In 3.1 we consider arbitrary functions f( u). In 3.4 we consider functions from
case (ii), detailed at the start of 2. In 3.2 and 3.3 we consider case (i). These
assumptions onf(u) simplify the analysis without changing the qualitative results. In
[52] it is shown that the flip bifurcation of periodic orbits from steady solutions,
characteristic of numerical instability, is generically of pitchfork type, regardless of
the form off(u). However, the calculation of the coefficients in the normal forms is
considerably more complicated whenf’(0)# 0; the details may be found in [52].

3.1. The linearised problem. The linearisation of (PD) about u 0 is given by
n+ 2 n+(3.1.1) vj -v.=ra.tvvj +(1--O)v’]+XAtf’(O)[Ov+’ +(1--0)v],

with the boundary and initial conditions
o Uo(jAx(3.1.2) v=vj=O, Vj

As in the continuous case, this problem may be solved by separation of variables. We
seek solutions v ." 4b, Then

(3.1.3) if, [.1 + r(11-r0- 0).]",
where is an eigenvalue of the problem

(3.1.4) r.@ + XAtf’(0)@ o-@
with

(3.1.5) o=j=0.

These equations can be written succinctly in the matrix form

(3.1.6) AO (XAtf’(0)-- r)O,

where A is a positive definite tridiagonal matrix and (,, Oj_ )T.
Equations (3.1.3)-(3.1.5) are the discrete analogues of (2.1.3)-(2.1.5) and are

fundamental to (PD). In 2 we saw that bifurcations in (P) are determined by the
eigenvalues X for which the growth rate of a particular mode satisfies Re (r) 0, so
that the linearised solution if(t) of (2.1.3) is neutral in time t. Similarly we describe
bifurcation in the discrete system by the condition I1 1, where the growth rate is
given by

(3.1.7) =[1 +o-(1 -0)]
[1 -01

so that the linearised solution (3.1.3) is neutral in n. In 3.2 we discuss bifurcation in
(PD) further.

The following theorem is the discrete analogue of Theorem 2.1.1. This result can
be proved directly by noting that (3.1.6) defines a real symmetric matrix eigenvalue
problem for . However, we choose a discrete analogue of the proof ofTheorem 2.1.1.
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THEOREM 3.1.1. The eigenvalues of the problem defined by (3.1.4), (3.1.5) are
real.

Proof. Multiply (3.1.4) by b, the complex conjugate of @. Summation by parts
[41, p. 14] and boundary conditions (3.1.5) yield

Thus

J-1 J-1

[a-hA/f’(0)] E qbjq7+r 2 (qy+,-qSj)(q57+,-q7)+blqST =0.
j=l j=l

J-I J-1

[o---NAtf’(0)] E I@12/r Z I@+l-@l2+ 1q512-0.
j= j=

Taking the imaginary part and noting that X is real, we obtain
J-I

Im () E I@12---0
j=

so that Im (r)= 0 as required.
Since is real we deduce from (3.1.7) that ( is real, and that bifurcation occurs

for (=_+1 only. Equation (3.1.7) shows that if (= then =0. Hence (=
corresponds to steady bifurcation, as in the continuous case. The case ( 1, however,
has no analogy in the continuous case. In the language of dynamical systems it is
known as a flip bifurcation point [19]; it corresponds to the bifurcation of solutions
of (PD) with period 2 in n and is purely a product of the discretisationmas we
explained earlier, (P) does not have solutions that oscillate in time. Of course we have
not yet shown that ( -1 is ever achieved; in the following subsection we show that
for 0 _-< 0 < -, ( -1 occurs for J- critical values of the parameter r.

The case ( -1 is the familiar condition for the onset of (practical) numerical
instability in discretisations of linear problems [41]. In the nonlinear problem (PD),
practical numerical instability is associated with the bifurcation ofa branch of periodic
solutions of (PD) from the trivial solution. The critical parameter value at which this
bifurcation occurs is predicted by the linear theory, but, as for problem (P) in 2.3,
the behaviour of the fully nonlinear problem (PD) depends crucially on the properties
of the bifurcating solution. The situation is considerably more complicated than in
the continuous case, since we need to consider not only the bifurcation of discrete
steady solutions (associated with (= 1) but also the bifurcation of periodic solutions
(associated with ( -1), which affect the numerical stability of the scheme.

3.2. Bifurcation analysis. Here f’(0) 1. We solve the eigenvalue problem
(3.1.4), (3.1.5) which determines the bifurcation points from u 0 in (PD). We seek
solutions in the form @ exp (ikTrj/J), for integer k. Substitution into (3.1.4) yields

2r(cos (kTr/J)- 1)exp (ikTrj/J)=(a- XAt) exp (ikTrj/J).

Thus

(3.2.1) r -4r sin (kTr/2J) + XAt.

To satisfy the boundary conditions 4o ()J-- 0 we take the imaginary part of the
eigenfunction so that

(3.2.2) @= sin (kTrj/J).

For the purposes of representation on a discrete grid, we need only consider the
wavenumbers k 1, ..., J- 1. All other values of k are merely aliases of these
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values. Thus we have constructed the complete set of eigenvectors and eigenvalues of
the (J- 1)-dimensional matrix eigenvalue problem (3.1.6).

We substitute (3.2.1) for into the growth rates ( given by (3.1.7). This yields

4r( 0 sin (kr/2J) + XAt( 0)
(3.2.3) (j=

+ 4rO sin (kTr/2J)- X&tO
for k= 1,... ,J- 1.

The condition (j defines the steady bifurcation points and / defines periodic
bifurcation points. Let us compare the steady bifurcation points of (PD) with those
of (P). Setting (,. (note that r zXt/Ax2) gives

(3.2.4) X=4 sin (kr/2J)/Ax for k= 1,... ,J- 1.

Thus the discrete model (PD) possesses only (J- 1) steady bifurcation points
whereas the continuous model (P) has a countably infinite set (see (2.2.2)). The
corresponding eigenfunctions of the two problems (compare (2.2.2) and (3.2.2)) are
identical at the discrete sampling points x =j/J=jzXx. The eigenvalues, however,
agree only when the wavenumber k of the eigenfunction is small compared with the
number of spatial meshpoints J. Expanding (3.2.4) for k << J= AX- gives

)kk27r 1--1-’
Comparing this result with the continuous result (2.2.2), we deduce that for k << J the
eigenvalues are approximated to within an error of O(Ax2). But for (J- k)/J<< 1,
(3.2.4) gives

AX 2 8J

which bears little resemblance to (2.2.2).
Figure 5 shows a graph comparing the loci of steady bifurcation points for (P)

and (PD) with Ax 0.01. The graph confirms the analysis above and indicates that
the positions of only the first few bifurcation points in (P) are well approximated
by (PD). Analogous results for spectral approximations to the differential operator
d2/dx are discussed in [57].

It is possible to construct small-amplitude nontrivial steady solutions of (PD) in
the neighbourhood of the bifurcation points (3.2.4). The analysis is the discrete
analogue of the one in 2.2. We seek expansions of the form

sin (krj/J) + e3xj,

The problem for xj arising at O(e 3) is singular, as in the continuous case (2.2.3).
Applying the Fredholm alternative for matrices yields

(3.2.5) a/; 0 or a
-6Xo y J

.--o sin (krj/J) dx
X/;f" (0) E.)Lo sin 4 (krj/J) dx"

Here the X/,. are given by (3.2.4) for k= 1, .-., J-1. These values accurately
approximate the amplitudes of the bifurcating trivial solutions in the continuous
problem only when the X/; are good approximations of the true eigenvalues k27rz-
compare (2.2.5) and (3.2.5). Convergence results for the bifurcating branches are
discussed in [58].

The inability of the discrete model (PD) to locate accurately all the bifurcation
points of (P), and hence the amplitudes of the bifurcating solutions, is very important
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Eigenvalue/10

20 20 30 40 50 60 70 80 90 ]_00

FG. 5. Comparison ofeigenvaluesfor (P) and (PD). Ax 0.01.

for the following reason. The dynamics of (P) are determined by the underlying
structure of the steady solution set (see [7], [21]). In any practical computation there
is always a lower bound on the size of the mesh-spacing &x, say AXing,, and a
corresponding upper bound on J(= Ax-), say Jma. If we solve (P) approximately
using (PD) then, for given Jm, we may always choose a value of ; above which the
underlying steady solution set of (PD) is a very poor representation of that in (P),
since the position of the steady bifurcation points, and hence the amplitude of the
solutions, are inadequately represented. Consequently the dynamics of (P) and (PD)
for sufficiently large a will differ substantially. We emphasise that this result is not a
product of numerical instability, but merely reflects the inability of the discrete system
to capture all the features of the continuous case: the steady solutions bifurcating
from ) (krc) have k- zeros and thus, for given Jm, we can always choose a ?
such that the branching steady solution cannot be resolved accurately on the grid.
However, the values of ) at which this phenomenon occurs are large and the problem
may be ripe for an asymptotic analysis. For examples of such analysis applied to the
steady version of (P), see Fife [15] and Norbury [39].

The converse of the phenomenon described above can also occur: a discretisation
can possess steady solutions which do not correspond to any steady solution in the
underlying continuous problem as the mesh is refined [4], [46]. This phenomenon is
sometimes termed ghost bifurcation (see [5]). If steady solutions alone are the goal,
there are two main ways of identifying these spurious solutions:

(i) To examine the bifurcation diagram for a sequence of mesh-spacings. Typi-
cally, as the mesh is refined, these spurious solutions will either move off to infinity
in the bifurcation diagram or coalesce with one another at turning points.

(ii) Solutions varying on a scale comparable to the grid are frequently spurious.
However, although it is relatively easy to identify spurious solutions, their presence
has two important effects on the solution of (P). First, for steady solutions, it can
mean that great care is needed to employ continuation procedures to prevent the
nonlinear algebraic solver from converging to nonphysical solutions [47]. Second, the
spurious steady solutions can affect the global dynamics of the discrete problem. (This
is related to the first point, since many algebraic solvers involve a time-like iterative
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procedure.) An example of how spurious steady solutions can affect time-dependent
computations is described in [51]; the numerical solution of (P) is considered for
functionsf(u) which lead to the development of finite-time singularities. The presence
of spurious steady solutions leads to a degradation of the time-evolving problem
which completely destroys the spatial structure of the solution close to the blowup
time. This strictly nonlinear phenomenon occurs even for time-exact numerical
methods and is caused purely by the spatial discretisation. As for the steady problem,
we emphasise the importance of simulating the problem for a sequence of mesh-
spacings to help identify phenomena that are products of the discretisation.

There is a great deal of literature concerning the numerical solution of bifurcation
problems. Standard numerical schemes become singular at bifurcation points but this
can be overcome by using the idea of extended systems. Numerical methods for
bifurcation problems have been developed by, among others, H. Keller, A. Jepson,
and A. Spence. Expository papers by these authors, and many other references, are
cited in [29].

We now turn to the ghost bifurcation of periodic solutions not present in the
continuous problem (P). The trivial solution u] 0 bifurcates into periodic solutions
when (/,-= -1. From (3.2.3) this happens for

2 + XAt(! 20)
(3.2.6) r=4(1 -20) sin (kr/2J)

for k= 1,... ,J- 1.

Since r(--At/Ax 2) is positive, (3.2.6) determines no bifurcation points for 2 < 0 _-<
(assuming that XXt is sufficiently small that the numerator in (3.2.6) is positive), and
for 0 2 there are J- bifurcation points located at r . For 0 _-< 0 < 2, however,
there are (J- 1) distinct bifurcation points, the smallest of which, r, is given by
(3.2.6) with k J- 1. This is the value of r above which numerical instability occurs
in the linearised equations (3.1.1), (3.1.2). In the following section we investigate the
bearing of the value of r. on the fully nonlinear problem (PD). For ease of exposition
we assume that 0- 0 although the analysis can be extended to deal with all
0-<_0<-.

3.3. Weakly nonlinear analysis. In this subsection we employ the notion of
practical numerical stability (P-stability): a solution of (PD) is said to be P-stable if it
admits no solutions that grow faster in n/Xt than solutions of (P) do in t. This notion
of stability is distinct from convergence stability 11 ], [30], [31 since it is concerned
with the behaviour of (PD) for fixed values of the mesh-spacing. In particular, we
shall fix c, and hence J, since the bifurcation and stability theories we employ
implicitly assume a fixed-dimensional problem. With this convention the parameters
X and Xt are the natural distinguished or bifurcation parameters; the bifurcation
parameter r is defined through At, with a: fixed.

We describe the application of weakly nonlinear stability theory to (PD), in the
case 0 0, using the method introduced in [38]. There are two lowest critical values
of the parameters and r at which bifurcation first occurs from the solution u]- 0
in (PD). The first is

4 sin (Tr/2J)
(3.3.1) X,.=

Xx2

(see (3.2.4)), the lowest value of ), at which steady bifurcation occurs. The second is

2
(3.3.2) r,.=

4 sin ((J- 1)rr/2J) XzXx 2’
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the lowest value of r at which periodic bifurcation occurs. This critical value of r is
found by solving (3.2.6) for the minimum critical value of At, which occurs for
k J- 1. Denoting this value by Ate., we define

r,.--
Ax

We emphasise that we expect this value of r to be associated with numerical instability
in (PD), since it corresponds to (j_l -1.

There are three possible parameter ranges in which we can perform weakly
nonlinear analyses in (PD):

(a) r r,., < ,., and (- ,)= O(1);
(b) X = X,., r < r,., and (r- r,.)= O(1);
(c) X= X,.and r=
Case (a) is essentially that considered by Newell [38], although he did not consider

arbitrary initial disturbances, but only initial data propoional to the most unstable
mode (sin((J-1)>j/J) in this case). Following Matkowsky’s work [35] on the
continuous problem (see 2.3), we treat arbitra initial disturbances. Case (b) is the
discrete analogue of the analysis in 2.3; as the analysis is similar, we omit the details
and present only the results. Case (c), describing the interaction ofnumerical instability
with the dynamics of the underlying paial differential equation, has not been
considered before, and we analyse it in some detail.

Case (a). We seek the solution of (PD) for r close to the critical, value defined by
(3.3.2). Since we are considering a problem of fixed dimension (that is, is fixed),
any peurbation of r necessarily induces a peurbation of t. Hence we set

(3.3.3) r= r,.+ roe, t= t,.+ roxZe .
We assume that (X- X,.)= O(1) and X < X,.. Following the analysis of Matkowsky
outlined in 2.3, we seek an expansion for u; in the form

(3.3.4) u; = Z v,,(n,j,

where v is a slowly varying n-variable, treated as independent. The extra freedom
obtained by introducing v enables us to suppress seculaHty in n. We choose small
amplitude initial data of the form u

We assume that (n, ], ) has the form of the linearised solution with coecients
varying weakly in n, so that

-1

(3.3.5) , (nj,)= sin (/),(n; ),
k=l

where A(n; ) (v). The are defined by (3.2.3) with 0, r r., and
so that

4r. sin: (k/2]) + Xt. for k 1, ]- 1.

Thus j_ -1 and I-I < or , ...,- 2. We now make the assumption of
multiple scales, namely that

(3.3.6) (n + ;)-(n;)=:[( + )- ()].

This is essentially assumption (2.12)of [38]. The precise meaning of the variable
v is not as clear as that of its continuous countea 7 in 2.3, since (PD) is only
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defined on a discrete grid (representing discrete time intervals) and fractional multiples
of the timestep have no meaning; this matter is addressed further in [45]. For our
purposes it is sufficient to consider (3.3.6) as the defining relationship for a/,(7 + 1)
and to note that the a/,.’s can be eliminated in favour of the A/,’s in the final recurrence
relation (3.3.10). Identical results are obtained by using the discrete multiple-scales
operators defined in [45].

Substituting (3.3.3)-(3.3.5) into (PD) and equating successive powers of e,
we obtain

(3.3.7) Ldvl Ld/92 0,
J--I

,,+l (a/,.(r/) a/(r + 1)) sin (kj/J)+ro. sin (kj/J)a/()]

(3.3.8) + XroX (’z sin (j/J)a()
L/,=

+ Xt,f’(O) sin (j/J)a() 6,
L/,=

wth (u,,,)o (u,,,) O.

L,t.: u ’’+

The initial conditions are (). h(jx) and (:) (). 0. Thus is identically
zero.

As in the continuous case (see ff2.3), secularity may occur since the finite
difference operator L,/ occurs at successive orders. We solve (3.3.8) by Fourier
decomposition of in terms of the eigenfunctions sin (kj/J). This gives a set of
J- coupled recurrence relations in n. To suppress secularity we remove terms
propoional to (-1)" from the recurrence relation corresponding to k J- (the
mode propoaional to (-1)" in ). This requires the discrete analogue of (2.3.9),
namely

(3.3.9) lim 2 ’ sin (j/J)r=O for k= 1,... ,J- 1.

Here r3 denotes the right-hand side of (3.3.8).
Since /1 < for J- 1, this condition yields nothing except from the mode

corresponding to J- 1. Note that

? sin (j/J)=-4 sin (/2J) sin (j/J);

condition (3.3.9) gives us

aj_( + 1)- aj_,()= [4to sin ((J- 1)/2J)- Xrox]a_()-ba_(),
where

XAt,,f" (0) JY4=o sin4 ((J- 1)rrj/J)
6 JEj:o sin ((J- 1)7rj/J)

By (3.3.2) this may be written as

(3.3.10) aj_,(+ 1) aj_,(r)
2to=aj_(r)-baj_().
r,.

This may be rewritten in terms of Aj_l(n + 1; e) by use of (3.3.6).
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Equation (3.3.10) describes the (slow) evolution of the amplitude aj-l(r/). The
modes associated with all other amplitudes are decaying (1/1 < 1); therefore (3.3.10)
determines the asymptotic behaviour of (PD) for lull << and r r. A thorough
discussion of the behaviour of (3.3.10) is in [38] and the results are summarised below
(for a(r/) aj_ (r/)), after which we describe some illustrative numerical results.

ro < 0. In this case r is below the linearised numerical instability threshold r r.
For b > 0 all solutions of (3.3.10) tend to zero as n --+ . Hence the nonlinear problem
acts in a stable fashion, as predicted by linear theory. If b < 0 then the evolution of
a(r) depends critically upon a(0): if la(0)l < "y then a()--+ 0 as r-- . Otherwise,
]a(r)l --+ as r-- o. Here -y is the nonzero critical point of (3.3.10), namely

2ro
(3.3.11) / br,.

Thus finite amplitude numerical instability is possible in the nonlinear problem for
values of r beneath the critical linearised prediction of r., provided that the initial
excitation of the unstable mode is sufficiently large.

ro > 0. In this case r is above the linearised numerical stability threshold. For
b < 0 all solutions satisfy la(r)l -+ m as r -- m, which is the natural manifestation of
numerical instability in parabolic problems, namely the unbounded growth ofa highly
oscillatory spatial mode; note, however, that the instability is far more explosive than
the linear theory (b 0) predicts. If b > 0, then the critical point , can be an attractor
and some solutions of (3.3.10) evolve so that la()l --+ 3’ as r--+ . In this case we
deduce from (3.3.4)-(3.3.6)that

u e(- )" sin [(J- )rrj/J]’y

as (and hence n)-- . Thus u.. evolves towards a solution oscillatory in n. This
stable oscillatory state is purely a product of the discretisation. It is not the standard
manifestation of a numerical instability since its growth is boundedhere the nu-
merical instability is inhibited by the nonlinearity and the two effects balance to
produce an oscillation.

In summary of case (a), we note that practical numerical instability in (PD) is
associated with the bifurcation of a periodic orbit from the trivial solution u--0.
The manifestation of the numerical instability depends crucially on the properties of
this periodic orbit. If the periodic orbit repels data starting in its vicinity, then the
numerical instability occurs in the familiar fashion as the unbounded growth of an
oscillatory spatial mode; in addition, finite amplitude numerical instability occurs
at values of r beneath those predicted by the linear theory. This is demonstrated in
Fig. 6, which shows the solution of (PD) with f(u)= u- u 3. The parameters are
chosen so thatc 0.01, ) 1.0, and r < r,.. Thus the numerical method is operating
below the linear stability limit. The initial data is proportional to the most unstable
mode sin ((J- 1)rj/J). The initial evolution of the mode is governed by (3.3.10).
Eventually other modes are stimulated and a nonlinear focusing occurs. Soon after
Fig. 6d the scheme blows up. It may be shown that the L2-norm of the true solution
of (P) is a monotonic decreasing function satisfying, for > 0,

Ilu(x,t)ll < u(x, O)lle(-/4)’.

Figure 7 was generated from the same parameter set as Fig. 6 but with a parabolic
profile as initial data. While the asymptotic behaviour is correct, the transient
behaviour is entirely spurious: the solution forms four interior zeros in one timestep.
The spatial structure shown in Fig. 7c,d is characteristic of subcritical numerical
instability and it can be explained by a modified equations analysis (see [52]).
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4O

2O

40
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-20

-40
0.5 1 0 0.5 1
(a) (b)

4O

2O

-40
0.5 1 0 0.5
(c) (d)

40

20

o

-20

FIG. 6. Solution of(PD)for r< r.. (a) 0. (b) 70zXt. (c) 140At. (d) 210At.

If the periodic orbit is an attractor for data starting in its vicinity, however, then
the numerical instability of the scheme is far more subtle since its manifestation is
bounded periodic behaviour (in n). This is demonstrated in Fig. 8, which shows the
solution of (PD) with f(u) u + u 3, Ax 0.05, X 1.0, and r> re.. For large n the
solution oscillates between the profile shown in Fig. 8d and its negative at successive
timesteps. Figure 8e shows the/2-norm of the solution plotted against time; initially
the amplitude of the solution decays, until the linear instability magnifies the unstable
high wavenumber component significantly. Thereafter, the amplitude continues to
grow until nonlinearity balances the linear instability and an equilibrium is reached.

Case (b). This case concerns the solution of (PD) for X X, + Xoe 2, on the
assumption that (r r.) O(1) and r < r.. The analysis is analogous to that considered
in case (a) and we omit the details. We seek an expansion for u in form (3.3.4),
where v(n,j, rl) is given by (3.3.6). The (/ are defined by (3.2.3) with 0 0 and X Xc
(see (3.3.1)), so that

/< -4rsin 2 (kr/2J)+

Thus 1 1, and I#/l < 1, for k 2, J- 1.
A similar analysis to that in case (a) shows that

J-I

v, (n,j, rt Y ( , sin (krj/J)a (),
k=l
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2OO
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-20O

200

i00

-i00

FG. 7. Solution of(PD)for r< r,.. (a) 0. (b) At. (c) 2At. (d) 3At.

where a (r), the amplitude of the nondecaying mode, is governed by

al (r + 1)- al (r/) Atoa/<()+ ba(),(3.3.12)

with

b:
X,,A/f (0) EjJ=-, sin4 (Trj/J)

6 J-iY.=, sin (Trj/J)

Thus (3.3.12) is the discrete analogue of (2.3.10)indeed, if we rewrite (3.3.12)
in terms of A(n; e) by using (3.3.6) and take the limits Ax--- 0 and At-- 0, (2.3.10)
is recovered--and the behaviour is essentially as in the continuous case, summarised
in Figs. 3 and 4. Thus, in the neighborhood of the steady bifurcation point ,. r in
(P), the behaviour of (PD) and (P) is similar, since , -- 7r 2. This is true for the other
steady bifurcation points except that, as we noted earlier, the approximation of the
position of the bifurcation points (kr) and the corresponding amplitudes of
the bifurcating solutions deteriorate rapidly with increasing k (for fixed J).

Case (c). We now analyse the discrete problem (PD) in the case where both
and r are close to their critical values ,. and r,.. The method is an extension of Newell’s
presented in case (a). However, the eigenvalue ofthe linearised operator (3.1.4), (3.1.5)
determining bifurcation is of multiplicity 2; the analysis is complicated by this fact.
An analysis of bifurcation from a double eigenvalue in the partial differential equation
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-5
0 0.5

(a)

-5
0.5
(b)

-5
0.5
(c)

-5
0 0.5

(d)
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’"8 i0

(e)

F. 8. Solution of (PD)for r>r,.. (a) t=0. (b) t=2500&t. (c) t= 5000At. (d) t=7500&t.

(e) Convergence to a spurious equilibrium; Ilu(x)[[ versus for > r,..

case can be found in Keener [26]. The existence of a double eigenvalue is usually
associated with secondary bifurcation [1], and we show that this is indeed the case
here. We show that the onset of numerical instability in the nonlinear problem (PD)
is associated not only with bifurcation of periodic orbits from the trivial solution (as
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in case (a)), but also with bifurcation of periodic orbits from nontrivial steady state
branches.

We seek an expansion for the solution u: of (PD) under assumptions (3.3.4)-
(3.3.6). In addition we now assume that

(3.3.13) X X,.+ )toe 2, At At,.+ roAx2e 2, r= rc + ro e 2,

so that the growth rates /,. (from (3.2.3) with 0 0) satisfy 1, 8j_ =-1, and
I/,-I < for k 2, J- 2. Here 5. is given by (3.3.2) with X X,.. Substituting
(3.3.4)-(3.3.6) and (3.3.13) into (PD) and equating successive powers of e yield

(3.3.14)

Ldv Ldv O,

J-
iz+Lv. 2 (a/(rl a/( + 1)) sin (kTrj/J)

k=l

+ ’/(X,.roAx+ XoAt,.-4ro sin (kTr/2J))a/;(,)sin (kTrj/J)]

+ X,./xt,f’(O) ’/.a/,(,) sin (kTrj/J) 6,
L/,=

where Lt is identical to the definition beneath (3.3.8), except that X. replaces X.
Denoting the right-hand side of (3.3.14) by r3 we may write

r3=[al(rl)-a,(rl+l)]sin(Trj/J)+(-1)’z+’[aj-l(rl)-aj-,(rl+l)]sin((J-1)-Jj)
+ [X.roAx= + XoAt.-4ro sin (Tr/2J)]a, (r) sin (rj/J)

+ [X,.roAx + XoAt,.- 4ro sin ((J- )r/2J)](- )"aj_, (r) sin ((J- )Trj/J)

+ X,.At,f’(O)[a(,) sin (rj/J)+(-1)"aJ_ n(r) si ((J- 1)rj/J)

+ (- )"3a2 (r)aj_, () sin (rj/J) sin ((J- )rj/J)

+ 3a, (r)a_l (r) sin (Trj/J) sin ((J- )rj/J)]/6 + r*,

where

lim Y r* 0.

Thus we have separated the terms that cause secular growth from those that do not
(contained in r*).

As in case (a), we solve (3.3.14) by Fourier decomposition, choosing the a/((r) to
suppress the occurrence of terms secular in n. Thus, in the decomposition of v
corresponding to k we remove terms constant in n (since the mode with k is
constant in n in v ), and in the decomposition corresponding to k J- we remove
terms proportional to (-1)" (since the mode with k J- is proportional to (-1)"
in vl). This yields the following pair of coupled recurrence relations for a() and
a.,_ ():

(3.3.15) a,(v+ 1)-al(r)=d,a,(r)+ b,a()+ b:a,(r)a_,(),

(3.3.16) aj_ (r/-t- l) a./_ (r/) deaj_,(rl)+b3,aj-.,(v)+b4a.-l(v)aT(rl).

D
o
w

n
lo

ad
ed

 0
6
/0

9
/1

7
 t

o
 1

3
1
.2

1
5
.2

2
5
.1

8
5
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



214 ANDREW STUART

The coefficients are given by

d X,,roZXX + XoZXt,.-4ro sin (r/2J),

& 4ro sin ((J- 1)r/2J) Xo&t,.- X,.ro&x 2to_ Xo&t,,
r.

252 sin4 (j/Y)
bl 6 2.)- sin (j/J)’

2/2, sin (j/J) sin ((J- 1)j/J),b2= X,.&t,.f"(O)
2 J-i2.=1 sin (j/J)

b -X,.&t,,f"(O)
2;G-I sin4 ((J- 1)j/J)
6 Xj-I;= sin ((J- 1)j/J)

b4 =-X,,&t,,f" (0) 2G-’ sin2 (j/J) sin ((J- 1)j/J)
2 2;-1 sin ((J- 1)j/J)

Since [(; < for k 2, J- 2, ( 1, and (J-i -1 we deduce from (3.3.4),
(3.3.5) that for large n (PD) has the approximate solution

u}’ eVl (n,j, n) ea( sin (j/J) + e(- 1)"aj_ ( sin ((J- 1)j/J).

Thus the behaviour of a(n) and aj-,(n) as described by (3.3.15), (3.3.16) governs the
evolution of u]. A complete analysis of (3.3.15), (3.3.16) is not possible in a sho
space and we confine ourselves to a brief discussion.

Equations (3.3.15) and (3.3.16) possess four critical points (solutions independent
of ,), namely

dlb4--d2b4(0,0) (0,) (-d’l,’0) (V d2b2-dlb3bl b3 b2 b4’ b3-b2b4/"
The second and third critical points occur as a bifurcation from the first (trivial)
critical point; the fouh occurs as a bifurcation from either the second or the third
critical point. In terms of the solution of (PD), the second critical point represents a
mode that oscillates in n, the third a stationary solution, and the fouh a mixture of
the two. The existence of the mixed mode is impoant, since it demonstrates that the
onset of numerical instability in (PD) is associated with the bifurcation of periodic
orbits (in n) from a nontrivial solution. Of course our analysis is restfcted to the
neighbourhood of X X,, and r r,,; but, by continuation to other parameter values,
we deduce that the secondary bifurcation of numerically destabilising periodic orbits
from steady solutions is a genetic occurrence in (PD).

The number of possible bifurcation diagrams for (3.3.15), (3.3.16) is large due to
the number of parameters. We depict two, showing the secondary bifurcation of the
mixed-mode solution from the stationary state (Fig. 9) and from the oscillatory state
(Fig. 10). Our choice of parameters has ensured that the secondaff solution is
supercritical and thus stable; this can be altered by changing the sign ofb b3 b2b4.

The numerical method (PD) will be P-unstable (that is numerically unstable in
practice) if either the mode with k J- is amplified or the mode with k is
amplified more rapidly than in (P) itself. Thus the interaction of the two modes is
crucial to the approximation of (P) by (PD). This analysis shows a direct mechanism
for the exchange and nonlinear generation of energy between the highest and lowest
wavenumbers in the discretisation (PD). This possibility, which has impoant effects
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a_, +a

oo

//

/+/+++
++

FIG. 9. Bifurcation diagram for (3.3.15), (3.3.16) Xo<0,
f"(0)>0, and bb3-b2b4>O. Key: stable stationary solution;

unstable stationary solution; + stable periodic solution (in n);
unstable periodic solution (in n).

a_, +a

//

++++
+/+/

//

++++
//

FIG. 10. Bifurcation diagram for (3.3.15), (3.3.16) r0<0,
f"(O) < O, and b b3 b2 b4 > O. See previousfigurefor key.

on the practical numerical stability of (PD), is the consequence of the interaction
between the underlying dynamics of the partial differential equation and the artefacts
of the discretisation.

Figure 11 shows the solution of (PD) with f(u)= sinh (u). The parameters are
chosen so that Ax 0.05, X 10.0(> X,.), and r > r,.. The initial data is smooth so
that the initial excitation of aj_ is much smaller than that of al. Initially the solution
evolves in a stable fashion until the high wavenumber mode aj_ is stimulated by
linear effects and through the interaction with a (see (3.3.15), (3.3.16) and Fig. lb).
For a period of time aj-1 swamps the solution as shown in Fig. c. However,
eventually there is a transfer and generation of energy in the low wavenumber mode
a and the profile in Fig. 11d emerges prior to blowup of the scheme.
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FIG. 11. Solution of(PD)for r> r,,andX> X,.. (a) t=0. (b) 500At. (c) 625At. (d) t= 760At.

3.4. Bifurcation from infinity. In this subsection we analyse (PD) in case (ii),
where f’(0)= 0. It is possible to discuss this problem from the perspective of {}2.4,
namely the bifurcation of steady solutions from X oo. We choose, however, to
consider the case 0 =5- and discuss the bifurcation of n-dependent solutions from
F oo.

(PD) reduces toWhen 0

(3.4.1) ztu. u. )=r6,,.(u./ -t- uj )+ X&t[f(u.7+’)+f(u; )],
,,+, o (jax).(3.4.2) ug+ uj 0, u Uo

"+ given byLinearising about u"= 0 we obtain the solution
J-I

n+v. 2 A/;/; sin (kj/Y),
k=l

where the A/; are determined by initial conditions and

2 r sin (k/2J)
/= + 2 r sin (k/2J)"

This expression is obtained from (3.2.3) by setting 0 =7 and X 0, since X actually
represents Xf’(0) in (3.2.3), wheref’(0) is scaled to be 1, and here, f’(0) 0.
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Thus (PD) is numerically stable, according to linear theory, for all values of r,
since I/,-I < 1. However, as r--+ , some of the modes satisfy I/,l--+ 1. This suggests
that r is a candidate for a bifurcation point in (3.4.1), (3.4.2).

We may induce r o by taking/xx =/Xt/r/2 and letting/xt -- 0. In this case

/xt- 2ro sin (krrAl/2r/2)
At + 2ro sin (krc/Xt/2r/2)

Thus for k/xt << 1, /,.--+ 1, and for all other k, /--+- 1. Since the growth rates
approach neutral values, we deduce that At 0 is a candidate for a bifurcation point.
As in the continuous case [42], a weakly nonlinear analysis along the lines of the
previous section will not be fruitful in this case, since all the modes are near neutral.
However, the discussion suggests that some form of n-dependent solution bifurcates
from r . This, in turn, suggests that some form of finite-amplitude instability is
possible, since the solution bifurcating from infinity almost certainly repels data
starting in its vicinity; see the discussion of the continuous case in [42].

Of course, in reality, no sensible computations would involve a value r >> 1.
However, if the branch of solutions bifurcating from r extends to moderate values
of r, it will affect the dynamics of (3.4.1), (3.4.2) considerably, since a finite-amplitude
instability can occur.

4. Conclusions. We have examined problems (P) and (PD) in the vicinity of the
trivial solution. The important points we have illustrated are:

(i) The growth rates in the linearised problems, a for (P) and for (PD), are
necessarily real (see Theorems 2.1.1 and 3.1.1).

(ii) Bifurcation and change in stability are associated with Re (a)= 0 for (P)
and I1 for (PD). This is clearly seen by analysing the Laplace and Z-transforms
(which are treated in parallel in [50]) for the linearisations of(P) and (PD), respectively.

(iii) The steady bifurcation points at which a 0 in (P) correspond to in
(PD). The positions of the bifurcation points and the amplitudes of the bifurcating
solutions are only well approximated by (PD) for x/rr << J, where J is the number
of spatial meshpoints (see {}3.2).

(iv) The periodic bifurcation points at which in (PD) have no analogy
in (P). They are associated with the onset of numerical instability in (PD) (see {}3.2).

(v) The manifestation of numerical instability depends crucially upon the
properties of the bifurcating periodic orbit (see {}3.3, case (a)).

(vi) The presence of spurious steady solutions caused by spatial discretisation
can seriously degrade time-dependent calculations (see {}3.2 and [51]).

(vii) The direct interaction between growing low wavenumber modes present in
both (P) and (PD), and high wavenumber modes produced by the discretisation, is
fundamental to nonlinear numerical stability (see {}3.3, case (c)). This result seems to
be generic in nonlinear parabolic equations and is demonstrated under entirely
different assumptions in [51] (see the discussion in {}3.2).

We make two observations about the relevance of the results obtained here to
more general situations. First, our analysis has relied heavily on the simplification of
problems (P) and (PD) in the vicinity of the trivial zero solution. However, the
secondary bifurcation of numerically destabilising periodic orbits demonstrated in
case (c) of {}3.3 shows that the ideas described hold in the neighbourhood of any
steady solution of (P). This assertion is proved in [52], where (P) is generalised to
include convection, and the normal form governing the bifurcation is derived. Second,
our analysis has also relied on choosing r r., whereas any sensible computation
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218 ANDREW STUART

would involve r < r.. However, it is our objective to describe the manifestations of
numerical instability in problems where a dissipative mechanism is balanced by a
nonlinearity. For problems more complicated than (P) the linearised stability threshold
may not be known explicitly, and thus it is important to be able to recognize the
many manifestations of numerical instability in nonlinear problems. The analysis of
the simple problems (P) and (PD) enables us to achieve this.

Finally, we conclude by stating our belief that the analysis of numerical methods
will benefit increasingly from an interaction with bifurcation theory and dynamical
systems theory. It is important to study the bifurcation diagram generated by a
numerical approximation and compare it with that of the underlying continuous
problem. In practice this means examining the numerical method for all ranges of
the physical parameters at once rather than looking at convergence for a fixed set of
physical parameters. This reveals critical scalings of the natural physical parameters
of the problem in terms of the discretisation parameters. In the long term, analysis
should aim toward proving convergence to a given bifurcation diagram rather than
to a solution for a fixed parameter set. Similarly, it is valuable to consider the
numerical method as a dynamical system and to compare the flow generated by
the numerical method with that generated by the underlying continuous problem.
Such analysis reveals critical scalings of the initial data in terms of the discretisation
parameters. In contrast, classical analysis focuses on convergence for fixed initial
conditions. Recent rigourous analysis of numerical methods for ordinary differential
equations considered as dynamical systems has been achieved by (among others) Beyn
[3] and Iserles [24].

Acknowledgments. am grateful to Professors L. N. Trefethen and J. M. Sanz-
Serna for a number of comments and suggestions which improved earlier versions of
this paper. The work presented here is based in part on a seminar given at the
Numerical Analysis Group, Oxford University in 1986.
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