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Abstract. The influence of the Earth’s rotation on the
resonant interaction of atmospheric waves is investigated.
The explicit expressions for the coupling coefficients are
presented. They are derived by means of two different
techniques; first, by a direct expansion derivation from a
set of reduced equations, and second, by a Hamiltonian
method.

1 Introduction

The nonlinear interaction between the acoustic-gravity
waves in the atmosphere of the Earth {Gill, 1982) leads to
energy transfer, resonantly as well as non-resonantly,
between the high- and low-frequency modes, or from the
gravity modes to the vortical modes {Dong and Yeh, 1991)
with subsequent gravity wave saturation. In the linearly
unstable regions, a turbulent state consisting of acoustic-
gravity vortices (Stenflo and Stepanyants, 1995) may be
the final result. The diffusion properties of the atmosphere
will then be significantly changed (Pavlenko and Stenflo,
1992). It is however also possible that a chaotic
development (Lorenz, 1963) takes place. Such situations
have been investigated by Stenflo (1996) and Yu and Yang
(1996} for atmospheric disturbances where the rotation of
the Earth plays an essential role.

In a previous paper (Axelsson et al., 1996) we considered
the resonant interaction between three acoustic-gravity
waves (o;,k;) for arbitrary directions of the wave vectors
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k T The resonance conditions were writtent as 3 i=0
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and 2k, = 0. Particular attention was paid to the low-
=i

frequency limit. An explicit and symmetric three-

dimensional coupling coefficient was derived. In the

present paper we are going to generalize that result in
order to take the rotation of the Earth into account. Also in
this case it will turn out that we can derive the explicit
formulas for the coupling coefficients. Due to the
complexity of the calculations we shall use two different
approaches, Firstly, in section 2, we start from a set of
reduced equations for the low-frequency, short-wavelength
acoustic-gravity perturbations in the atmosphere, adopting
a direct perturbation method to the derive the result,
Secondly, in section 3, we use results obtained by
generalizing a Hamiltonian method (Larsson, 1996) and
then evaluate them in the low-frequency limit. After much
algebra, it turns out that the results of section 2 and 3 are
identical. This confirms the correctness of both methods.

2 Direct expansion derivation from a set of reduced
equations

Let us here consider low-frequency, short-wavelength
oscillations in an atmosphere with exponentially
decreasing equilibrium density py ~ exp(-z/H) where z
represents the vertical direction and H is the density scale
height. We thus assume that the frequencies ® and the
wavelengths 2r/|l are much smaller than the Brunt-
Viisiild frequency o, and H, respectively. The evolution of
the wave amplitudes can then be described by a reduced set
of equations that was recently deduced by Stenflo (1991). It
is written as
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and
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where v is the fluid velocity, ¥ represents the density
perturbation p, (normalized by the gravitational

acceleration divided by py), £ is the angular velocity of
the Earth, and R is a new variabel (Stenflo, 1991) that has
been introduced in order to account for the rotation of the
Earth. For simplicity we shall here consider the high-
latitude atmosphere where Q =~ QZ, assuming that £ is
constant. For p,/p, << 1, i.e. for not too large

amplitude disturbances, the fluid motion is almost
incompresssible {V-v =0) and according to Eq. (2) in the
paper by Stenflo (1991) we therefore replace v in the
nonlinear terms by

v=v,i - V20,(V, +2Q03zxV )v, @)

z

In the small amplitude limit the linearised system of
equations (1), (2) and (3) yields

o*=wik] /k* + 407 /K (5)

where ki = ki +k§ and k2 = ki +k3 . The eguations
can also have large amplitude modon solutions (Stenflo,
1991; Stenflo and Stepanyants, 1995).

We shall now use equations (1), (2) and (3) to considet
the resonant interaction between three weakly nonlinear
waves ((),.k|), (@,,k,) and {w,k,) where each wave
satisfies Eq. (5) and where the resonance conditions
®; +w, +0; =0 and k, +k, +k,; =0 are supposed to be
satisfied. Keeping only resonant nonlinear terms of second
order we then study the excitation of wave 3" due to the
interaction of waves 1" and "2”. We¢ thus directly obtain
from (1}, (2} and (3)

(afvz+mgvi+4nza§)v;3 =
3V, [0, (v, Vv )~V (v Vv, ]}
—[01 V2 +4Q- V] (v, - Vfv,, &)
+20-V(val-Vv2); +.(1e2)
®

where (1 €3 2) mecans permutation of indices 1 and 2.
According to (4) we then insert

vi=12 - (kg /K7 (ky; +21Q¢K; x2)/ 0;)] vy

(7)
where j =1 and 2, in the right hand side of Eq. {(6) and
write v; =v;, exp(—iw; t+ik;-r) with slowly varying
amplitudes v;a. Dropping for simplicity the subscript A,
and passing the straightforward algebra, we write Eq. (6)
in the form
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at Va3 =Cvz.1 V2 (8)
where
C = CO +C] +C2+C3 (9)
with
i 1 2 W3,
Ch=— k. .k.—k,, k+kij;——k
0 2k§k3_1|: 22 “Z3 12 12 13 13 0)2 3
ki (k k, -k, k) +(1e2)
(10)
Q k w 1
C=——2 | 3kl k k,.—k,k
1 o, k%kil |: o, 3 z2 ™zl kiz 12 13
- ki.?] (kjy xky,),
1 1  k,k 1
+ 0 am z2 ™z3 k. .xk
((1)2 (D3 ) k% kil kiz ( 12 13 )z
ki (kpk,-krky) + (1¢32)
an

. k 1
G, = 2iQ? 23 |: ky (kg k,; -k ks,

kil kiz k% 0, 0,
ku ’ (kukzz _kJ_2kzl)

1 111 2
+| — — — [—k, k., (k| Xk +(1e2
[UJZ 0)3Jm1 zl 22( 11 _LZ)Z] ( )
(12)
and
3 1 1 2 2
C,=40 [Kukookys (k1= kis)

o @03 ki, ki, k3
+ k33 (k) —kykds )] (kuxkp), + (12).
(13)

Using the dispersion relation (5) we then rewrite Cy as

Cy = _m_l_k__[

k
2 il
) =@ (wy—wy)—
2 o] 0 05 k3
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12 13
‘(ku k7_2 -kJ_z kzl)
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+ m%(wl ~-m3)kTl2 +m§ (mz—ml)—;i]
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1 and
7 1.2 12, 2..2
ki kirks wjo; 0,

[("3 of kg (k1 kys+kisky)

+2i02
3,8+v-VS=0, (18)

where @ represents the potential of some external or inertial
forces (e.g. gravitation or centripetal acceleration). The
pressure P =P (p, 8) is a given function of the local values of
the mass density p and the specific entropy 8. The Coriolis
acceleration term 2£2x v in Eq. (17} takes the rotation of the

(14) Earth into account. In order for the system of equations (16)-

2.2 12 2
— w0y ki (ki k, +kis k5)
2 7 .2 2,002 12
-0y okksk + wzf’J]kmkzsku]

'(kJ.lkZE _kJ.l kzl ) .

Next we combine the £ term in (14) with the terms in
{12} to obtain an expression that is symmetric in all wave
indices. Similarly it turns out that the terms in (13) can be
combined with those of (11), without introducing terms
proportional to mz , using the relations

4Q% (k% k3 -k5 k%) = ol ki kij- o K}k (Lj=
1,2, 3). Thus, itis possible to rewrite C in the obviously
symmetric form

i 1 k!
c=top ot Kbl
2 m]mzﬂ)3 k3

2 ki, 2
+@f (o, —0,) ==+ co3(c02—co])—k2
k.LZ 13
(kyky -k ky)

1 . i
—— ————permy { [k, ko k,, 0, (K2, ~k
1902 kilkizkg peiia {[ 21 Kz Ko (k7 —kTy)

+ (03~ Yy kip kia.] (kyyxky;),}
1 1
o} 0f w; ki ki K3
[perm6 { oy 0] ki3 kG k- (ki kg -k, kzl)}

— 3 (3 permy {sz(ku LIPRILITE SRl YPR )2}

+2iQ?

+ 6o @amy ki Ky Kpy (kyyxkyy )2]

(15)

where perm; and permg means the sum of the cyclic
permutated respectively totally permutated terms. The
coupling coefficient (15) is our main result. It has not been
derived previously.

3 The Hamiltonian method

In this section we start from the full set of equations
governing the dynamics of a perfect fluid

9 p+V-(pv)=0 (16)

8[v+v-Vv+Zva=—lVP—VCI) (1n
p

(18) to be Hamiltonian it is only required that Q(r)is
divergence free.

Consider now a static unperturbed state
(Po.¥o=0.5;) . i.e

VE +Vo=0. (19)
Po

and let

(pj,vj,Sj )cxp(—imj 1) + comp.conj. 20

denote three linear waves such that the resonance
condition w; +w, +w,="0 is satisfied. The resonant
nonlinear interaction of these waves can then be derived
from the ansatz

(p,"’ S) = (p()aoa S())
3
+ '21 [aj(t)(pj,vj ,Sj)cxp(—icuj L)
J:

+ compl. conj.] ,

(21)
where the complex-valued functions a;{t) are slowly time
dependent and satisfy the equations (Axelsson et al., 1996)

da*—caa da*—c a a, and da* c.a,2
odp =G apdy, ——dy =Chd dy T T h3didy
dt dt dt

Algebraic expressions for the coupling coefficients c; have
been presented by Axelsson et al. (1996) for the particular
case when = 0. The Hamiltonian structure of the basic
equations was then needed for the derivation method. It
can however be shown that the system (16)-(18) is
Hamiltonian also in the presence of the Coriolis term in
(17). The only conditicn for the Hamiltonian property is
that V-Q2 = 0.

The derivation of the coupling coefficient is very much the
same in this more general case with = 0. Thus we here

just present the result:
;v
(22)

=m0
1 ijovjvjdr

where the common coefficient (22) is



V = perm, [ py; v, vy dr + [Py ps Fodr

1 1

+ 2’[ Q- D23] - D312 }dr
|: 19, LURGE!

+ [(by Ggg +podg)S; S5 S5 dr

b, G
+P31'm3j(Gso‘ —

}p|8233dr
[}

iG
+ perm, | m0v3-[p2V31 - byS, VS, ]dr
2

w2
+ F,-——2 G S, d
Permsf{ 50 @, 4Py o |P1Pz=; dr
(23)
and where we have used the notations
el
- (po ’SO)
r 2
il o T e ™
'P P (pm So) P (Po,so)
I a2p
O0703s2 ]
(PosSg)

The scalar functions by(r)and d,(r) depend only on the

equilibrium quantitics and are defined by (see Axelsson et
al. 1996)

Vp,=-b, VS, and d, = EQ(M)
o; S i Po

The only new term that cxplicitly enters the coupling

coefficients due to the Coriolis acceleration involves the

vector quantity

Dyy; =v, x[ Vx(pova xv3)] - v, xv,V{pyv,). Thisis

also the only term in (23) that is not obviously symmetric

with respect (o permutations of the subscripts{ 1,2.3 } The

symmetry of this new term is however easily proved using

the vector identity

Vi{po Vi Vaxvy) = Dyyy+Dy;, +Dy);.

In the low-frequency, short-wavelength limit we insert the
appropriate linear relations for py, v and §;, ie.

i(y=1) po
YyH o, *

J

P =

and

1
- 2 2 ley
S; = —1yng6—p0 Vi
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together with (7) to directly obtain

1
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2 ki3
w3 (0, -0, )kT'(ku Koy =Kk ) p vy Ve Vas
13
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2 2 2
kj_l kJ.Z kifi

2
Wy 2 2
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2
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W) Wy

vzl VZZ Vz3
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2

————perm, § B (W0, —03)k,, k3 (K50 k
|:(D1(02m3p 3{ 1 (0 —03)kn k3 (K5 kys)
Ky (K ko -k kzl)} — 3k, Kyp ks (ky XKy )2 ]
Va1 Vz2 Va3
+ 8P, —— L

ki ki ki, of oj;
permy {[ Ky ko kps @) (@3 -03)k 5 ks
—07 Ky ks Ky (K Ky —kio Ky )]

(k, sz)z} Va1 V22 Va3 -
(24)

After much algebra it is possible to show that (24) can be
rewritten as

2

.1k
V=2i——-Cvy vV ,

W3 K7y

where C is defined by (15). Thus the results of section 3
are in complete agreement with those of section 2.

4 Conclusions

In this paper we have presented the explicit expression for
the common symmetric coupling coefficient for the
interaction of three low-frequency, short-wavelength
acoustic-gravity waves in a rotating atmosphere. This is a
basic formula within the nonlinear theory of atmospheric
waves, We have shown that the reduced set of equations
(Stenflo, 1991) for low-frequency atmospheric waves is
very useful for such calculations. In addition, we extended
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the Hamiltonian technique (Larsson, 1996; Axelsson et al.,

1996), derived results for all frequency ranges, and showed
that it is straightforward to apply them to various limiting
cases.

Our coupling coefficients agree with those of previous
works in the appropriate limits. We have also generalized
the findings of other authors in order to shed light on
previously hidden symmetry properties. The rotation of the
Earth turns out to weaken the threshold conditions and to
enhance the nonresonant interaction between nearly
vertically propagating acoustic-gravity waves (cf. Dong
and Yeh, 1991).

We also expect that the Hamiltonian approach can be
useful for other waves, e.g. Rossby waves, that have not
been studied in the present work. This will be an obvious
subject for forthcoming investigations.
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