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We derive the system of equations describing the nonlinear interaction, associated with the optical Kerr effect,
among the four forward- and backward-propagating modes in a straight single-mode fiber. This allows us, in
particular, to obtain the set of equations governing nonlinear evolution in a highly twisted fiber of the corresponding
copropagating and counterpropagating right and left circularly polarized modes.

1. INTRODUCTION

There has been recently a great deal of interest in nonlinear
propagation in single-mode optical fibers. In particular, the
propagation effects associated with the presence of a nonlin-
ear contribution to the refractive index n proportional to the
instantaneous intensity of the field E (n = n; + nglEl2,
optical Kerr effect) may become important at relatively low
optical powers over the diffraction-free interaction length
provided by the fiber. In general, there exist two regimes of
propagation, according to whether chromatic dispersion can
be assumed to be negligible or not. While the second situa-
tion (large fiber lengths) concerns mainly telecommunica-
tions since the interplay between nonlinearity and chromat-
ic dispersion can lead to a substantial reshaping of a propa-
gating optical pulse (e.g., envelope solitons?), the first situa-
tion (short fiber lengths) is more relevant to all-optical sig-
nal-processing devices, which exploit the nonlinear evolu-
tion of the state of polarization of the field that is due to the
coupling induced by the Kerr effect between the two or-
thogonal linearly polarized modes propagating along the
fiber.2-5

Obviously, central to these investigations is the knowledge
of the set of equations describing the evolution of the field
propagating inside the fiber in the presence of the nonlinear
coupling mechanism induced by the optical Kerr effect.
This problem can be attacked either by looking directly for a
solution of the field wave equation in the presence of the
pertinent nonlinear polarization density® or by relying on
coupled-mode theory and letting the role of the coupling
perturbation be played by the nonlinear contribution to the
refractive index.” Although the formalism developed in
Ref. 7 is quite general and capable in principle of dealing
with the case of a generic fiber supporting an arbitrary num-
ber of copropagating and counterpropagating guided modes,
in practice it has been specialized to isotropic waveguides.
The influence of birefringence on nonlinear codirectional
propagation in a striaght single-mode fiber has indeed been
taken into account in a number of papers scattered through-
out the literature,%%8-10 hut a general compact expression of
the equations of nonlinear evolution, accounting for the si-
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multaneous presence of the four possible forward- and back-
ward-traveling modes, is not available.

We hope to provide a partial remedy by deriving in this
paper the relevant equations for a straight fiber. Once in
possession of this information, we address the problem of
nonlinear propagation in highly twisted single-mode fibers
(spun fibers). The interest in this kind of waveguide arises
mostly from the fact that these waveguides have been shown,
in the linear regime, to support two copropagating circularly
polarized modes, exhibiting negligible mode coupling (a pro-
cess particularly severe for low- and moderate-birefringence
straight fibers and that tends to conceal nonlinear effects)
and polarization dispersion.!! In Section 3 we derive the set
of nonlinear equations obeyed by the four linearly polarized
modes copropagating and counterpropagating in an arbi-
trary twisted fiber. We then introduce the corresponding
four circularly polarized states and explicitly show that, in
the limit of a high twist rate, mode coupling that is due to
fiber imperfections does not play any role on their nonlinear
evolution, which turns out to be governed by the same equa-
tions as those pertaining to an isotropic medium.

2. NONLINEAR PROPAGATION IN A
STRAIGHT FIBER

In the presence of imperfections, the electromagnetic field in
a waveguide is expressed as the superposition of all the
modes of the ideal waveguide. The field propagation is then
described in terms of the space-time evolution of the mode
amplitudes that obey a coupled set of equations, the cou-
pling coefficients depending on the nature of the waveguide
imperfections (coupled-mode theory). This can be done
either by starting directly from Maxwell’s equation!? (which
contain first-order derivatives in space and time) or from the
wave equation,3 the two approaches being equivalent when
the radiation modes and the slowly varying field approxima-
tion, respectively, are neglected.

The nonlinear part of the refractive index associated with
the optical Kerr effect can be considered a perturbation of
the linear-waveguide structure, and the evolution of the
electromagnetic field can accordingly be investigated by
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means of coupled-mode theory. This has already been
done, in the case of linearly polarized light, for a multimode
isotropic waveguide (see, for example, Ref. 7), and here we
wish to generalize the linear coupled-mode theory to a sin-
gle-mode birefringent fiber by including the nonlinear-prop-
agation effects.

The transverse part of the analytic signal of the electric
field E propagating inside a straight lossless fiber can be
written, in term of the guided modes, as

2
E(r,zt) = Z Z E, (r)é fexpliwgt — iB,, ,(w)2]®r, (2, t)

m o=1
+ expliwgt + iB,, (00)2] P;, (2, 1)), (1)

where r = (x, ¥) and wp is the midfrequency of the field,
E,%(r) is the transverse modal distribution, é; = &, & = §,
and the other symbols have the usual meaning (see, for
example, Ref. 7). The coupled system of equations describ-
ing the evolution of the modal amplitudes ® , can be ob-
tained as a direct generalization of that pertaining to an
isotropic waveguide.* After we recall that, at optical fre-
quencies, the fast-responding electronic processes that are
responsible for the nonlinear response of silica give rise to a
third-order polarization density of the form!5

P® = exs(E - E)E, (2)

the set of nonlinear equations reads as
Lye®ho= D" K (expli(Br,, = B )2) ¥y
n
+ expli(By,, + 81,)2]9; 4,
Lro®no == > Kpp™ 1exp[~i(Bp,, + B,0)21 8%y
n

+ exp[_i(ﬁm,g - ﬂn,o’)z]@'—{,a’}! (3)

where

+o o
K, " = —i(2/3)kn, ] [ E,°(NE,” (r")é,- T - &, dxdy,

- ©

()

k = wy/c, ng = (3/8)xa/ny (n; being the linear refractive
index), T is a two-by-two matrix:

_ [IEI2 + (1/2)E, 2

(1/2)E,*E, -
(1/2)E,E,* 2|’

|E? + (1/2)|E,|

and L% _ is the differential operator:

L%, = 8/0z £ (1/V,, )0/ot = (i/2!A,, )o*/ot* = ..., (6)
Vo = @B /do)t,,  An,=(@%8,,/do?) L, (1)

Eqgs. (6) and (7) being, respectively, the group velocity and
the group-velocity dispersion of the (m, o) mode.

The case of a single-mode fiber can be obtained by setting
m = n = 1, the fiber birefringence in this case being associat-
ed with the quantity 68 = 8;; — B12. By neglecting on the
right-hand sides of Egs. (3) the fast-oscillating terms con-
taining factors of the kind exp(2i8z), which is equivalent to
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the slowly varying approximation, one gets, after consider-
able algebra, the following set of four nonlinear equations:

L{dt = = iRy, (19F1% + 2187 @F = (2/3)iR,(10512 + |#512)
X &F = (2/3)iR, 87+ ®} 7  (2/3)iRy,
X exp(£2i60z) T &5 *®5 F (1/3)iR,,
X exp(£2i6pz) df* dF2, (8a)
L§®F = 7 iRy(1051 + 219512 F = (2/3)iRy, (19312 + 8712
X &5 ¥ (2/3)iR,®5*®}F T  (2/3)iR,
X exp(¥2i6p2)®; BT*®F F (1/8)iR,
X exp(F2i68z) DF* dE2, (8b)

where the convention has been made to take either the
superior or the inferior sign throughout the equations and
we have set, for the sake of notational simplicity, P11 = &,
<1)1,2 = ‘1’2, L1,1 = L1, and Ll,g = L2, and

4o 4o
R,,= knzf ] E°(r)2E," (r')2dxdy. ©)
The transverse modal configurations are normalized to one,
that is,

Fo it
j j E,(r)dxdy = 1. (10)
The set of Eqgs. (8) describes the nonlinear evolution of the
four copropagating and counterpropagating modes that a
single-mode fiber is in general able to support.

The particular case of two copropagating modes is imme-
diately found by putting 7 = ®; = 0, which yields

Li®f = —iR, |®}1°®} — (2/3)iR 5|03 %0} — (1/3)iR,,
X exp(2i68z) ®F* 32,
L3®; = —iRy|®31°} — (2/3)iR 5|0} 1%} — (1/3)iR,,
X exp(—2i6Bz) 3 * ;2. (11)

The system of coupled differential equations relevant to
four-wave mixing in a waveguide can also be obtained by
assuming that ®; and ®; are the two counterpropagating
pump waves and that &} and &7, respectively, are the probe
and the phase-conjugate signal. In the limit [®7], |®;] >
|®}], |#7] (undepleted pump) and for a high-birefringence
fiber (such that 1/68 is small with respect to the length L, =
1/R1;|®,]|®;| over which a nearly circularly polarized beam
significantly rotates the major axis of its polarization el-
lipse!%), it reads as

LF®3 = FiRy(1051% + 2183|232,
LE®F = 7(2/3)iR, (105 + |®;12) % = (2/3)iR,,®7*3; B}
(12)

3. NONLINEAR PROPAGATION IN A HIGHLY
TWISTED FIBER

Linear propagation inside a single-mode twisted fiber can be
described by expanding the field in terms of local normal
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modes.’2 More precisely, the electric field propagating
along the z axis is written as

E(r, 2, t) = E(r)x[exp(—iB;z + iwyt) o] (2, )
+ exp(+iB,z + iwgt) o7 (2, 1)] + E(r)ylexp(—iByz

+ iwgt)py (2, t) + exp(+iByz + iwgt) b3 (2, t)],
(13)

where x and y are the local birefringence axes, E(r)x and
E(r)y are the linearly polarized local eigenmodes (that is, ina
coordinate system that rotates with the twist), and 8; and Sa
are the relative propagation constants. The mode ampli-
tudes ¢F (i = 1, 2) can then be easily shown, by means of
coupled-mode theory, to obey, if -chromatic dispersion is
neglected, the set of equations

[8/0z & (1/V)a/dt]¢F = £(K + 7)exp(£idBz) ¢,
[0/02 + (1/V,)a/ot]6F = £(K — Dexp(vidf2)e¥,  (14)
where

V= dﬂi/dw|;°1 (i=1,2) (18)

is the group velocity of the ith mode, 68 = B1(wp) — Balwo) is
the intrinsic birefringence of the untwisted fiber, 7 is the
twist rate, and K(2) is a (real) coupling coefficient resulting
from fiber random imperfections.

In the same way, it is possible to show that the set of
nonlinear equations describing the nonlinear propagation of
the ¢#'s can be obtained simply by adding, on the right-hand
sides of Eqs. (14), the same nonlinear terms (NLT’s) present
on the right-hand sides of Egs. (8) (provided that one per-
forms the substitution ®F — ¢7); thus one gets

[6/6z + 1/(V,)d/0t]¢F = £(K + 7)exp(+idpz)dE + NLT
' [as in Eq. (8a)], (16a)

[0/0z + 1/(V,)d/ot)¢% = £(GK — r)exp(idBz)¢f + NLT
[as in Eq. (8b)]. (16Db)

It is convenient at this point to introduce the right and left
circularly polarized eigenmodes E(r)e, and E(r)e;, where

e, = (IN2)(x +iy), e=1(2)x~iy), (17)
and rewrite the electric field in the form
E(r, 2, t) = E(r){[exp(—iB,z + iwgt) ¢y (z, t) + exp(+if;z
+ iwgt)d;y (2, t)]e, + [exp(—ifz + iwyt)
X o7 (2, t) + exp(+if.z + iwgt)¢y (2, )]e,  (18)

where the propagation constants 3, and 8, are a priori un-
known. By comparing Eqgs. (13) and (18) we can write

¢t = (1/y2)exp(iBz)[exp(—iB,z)d; + exp(—iBi2)¢]],

o3 = (i/V2)exp(iByz) lexp(—iB,2)¢; — exp(—iBi2)¢[],

o7 = (1/V2)exp(—iB2)[exp(iBi2)¢; + exp(if,2)7 ],

o3 = (i/V2)exp(—ifyz)[exp(iBz)d; — exp(iB,2)¢;].  (19)
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We now substitute the expression of ¢{ and ¢3 into the
pertinent equations (16a) and (16b). After some tedious if
straightforward algebra we obtain

{=(8, — B,) +id/6z + (i/V})8/3t}p} + exp(iABz){—(B, — B)
+i8/0z + (i/V)d/otl¢f = — GK + 7)[¢;] —exp(iABz) ]
+ @/3)Ro7 2 + 2lof 2 + 27 |2 + 2ley 1P 8
+ (4/3)R¢; o o7* + (2/3)R exp(iapz) (o7 1? + 2l¢; 12
+ 216712 + 207 o] + (4/3)R exp(iAB2)e; *¢7 ¢r,  (20a)
—exp(iABz){— (B, — B) + i0/3z + (i/V)d/dtip} + {—(By = B,)
+i0/0z + (i/V,)d/dt}pt = (iK — 7)[exp(iAB2)d} + 6}']
— (2/3)R exp(iAz) (7 1? + 2lg} 12 + 2oy > + 2oy 1) of
— (4/3)R exp(iAB2)¢7 676, + (2/3)R (1¢]1* + 2o 1?
+ 207 2 + 2197 1) ¢} + (4/3)Rér* o 67, (20b)

where we have set AB = 8, — ;and R = Rj; = Rgg = Ry, If
we now assume that Afz > 1, a hypothesis whose validity
has to be checked a posteriori since A is still an unknown
quantity, we can, thanks to the different scales of spatial
variation, equate separately in Egs. (20a) and (20b) the
terms that contain the factor exp(iABz) and those that do
not. This procedure allows us to write two equations for ¢,
and two equations for ;. Those for ¢; read as

[—(8, — B,) + i8/6z + (i/V)d/atl¢} = — (K + 7)¢)

+ 2/3)R(I6;}12 + 2lof1? + 2lg7 12 + 2loy Do

+ (4/3)Re; ¢ o7 *, (21a)
[—(8, — B,) + i8/6z + (i/V)d/dtléF = (K — )¢}

+ 2/3)R(I¢;] 12 + 2lof 2 + 2 16712 + 2loy o)

+ (4/3)R¢; o] b7 *, (21b)

analogous expressions being valid for ¢;. Adding Eq. (21a)
to Eq. (21b) yields

—(1/2)(8; + By — 28,7 + i[8/0z + (1/2)(1/V, + 1/V,)d/ot] b}
= —r¢F + (2/3)R (6712 + 2o 12 + 2lor1? + 2lg; Do
+ (4/3)Ro; ¢ 1 *, (22)
which can be satisfied by choosing
B,=B tB)2—r=y—7 (23)
and
[8/6z + (1/V)a/atl¢} = — (2/3)iR(IF12 + 21917 + 2l |2

+ 2lo7 D¢ — (4/3)iRe; ¢ o7,
(24)

where 1/V = (1/2)(1/V{ + 1/V5). If we had started from the
equations for ¢] we would have found that

Bi=(B+B)2+1=y+T (25)

and
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(0/0z + (1/V)o/atlef = —(2/3)iR(I6] 12 + 216712 + 2l¢7]2

+ 2lo7 128 — (4/3)iRe7 oF b7 *.
(26)

Equations (24) and (26) show that the amplitudes ¢; and ¢}
of the two circularly polarized states travel with the same
group velocity V (no polarization dispersion) and that the
fiber imperfections associated with K(z) have no influence
on their evolution. Since, according to Eqs. (23) and (25),
AB = B, — B; = —27, one has to assume, in order to be
consistent with the hypothesis that ABz > 1, a large twist
rate 7 (highly twisted fiber). We could now proceed in a
similar way and obtain the equations describing the evolu-
tion of ¢, and ¢;. We limit ourselves to writing the final
equations, which read as

[6/8z — (1/V)o/otlp; = (2/3)iR(Ip 12 + 2y 12 + 22

+2lo712)gr + (4/3)iRe} o7 o+,
27

[0/8z = (1/V)d/tl¢y = (2/3)iR(I67 12 + 2lg71% + 2|2

+20oi Db + (4/3)iRe} o7 b,
(28)

Equations (23)-(28) completely describe propagation in-
side a highly twisted optical fiber. In particular, a general
solution of the set of Eqs. (24) and (26)—(28) can easily be
found!® whenever we assume the absence of counterpropa-
gating modes [i.e., ¢:,(z =0,t) =0or ¢, (2 = L, t) = 0, where
L is the fiber length]. In this case, no power exchange can
take place between the two copropagating modes, since
lom(z, )| = lo7,(z = 0,£ = 2/V)| and g7z, )| = lg (= = L, t +
(z — L)/V]|, respectively, so that nonlinear coupling only
modifies their phases. This circumstance excludes the pos-
sibility of spatial instability in the nonlinear evolution of the
state of polarization, in agreement with the results of Ref. 17,
where a detailed analysis of forward nonlinear propagation
inside a single-mode arbitrary twisted birefringent fiber in
the stationary regime has been presented.

Finally, it is useful to write the expression of the field in
the laboratory frame, that is, in a reference frame (x/, ')
rotating at a rate 7 in the clockwise direction:

x’ = cos(72)x — sin(72)y,

¥’ = sin(72)x + cos(rz)y, (29)

which reads as
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E(r, 2, t) = E(ri{lexp(=ivz + iwgt) ;] (2, t)
+ exp(+ivz + iwgt) 7 (2, t)]e,
+ [exp(—ivz + iwgt) ¢} (2, t)
+ exp(+iyz + iwyt) o) (2, t)]e/}, (30)

wheree,” = (x’ +iy’)/y2and e/ = (%’ + iy’)/y2. Thus the four
circularly polarized modes of a spun fiber possess, in the
limit of a high twist rate, the same propagation constant;
since the equations of evolutions of ¢, are the same as those
for an isotropic medium,8 we can conclude that spun fibers
also behave as perfectly circular isotropic waveguides from
the point of view of nonlinear propagation.
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