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ABSTRACT 

We evaluate the rates at which nonlinear interactions transfer energy among the normal modes of a plane
parallel, stratified atmosphere. The atmosphere resembles the outer part of the Sun including the convection 
zone and the optically thin region above the photosphere up to the temperature minimum. The acoustic 
modes are assigned energies such that their photospheric velocities match those of the Sun's p-modes. The 
nonlinearity parameter is the acoustic Mach number, M, the ratio of the total acoustic velocity due to all of 
the modes to the sound speed. For M 2 ~ 1 the leading nonlinear interactions are those which couple three
modes. We show that every p-mode in the 5 minute band is involved in many near-resonant triplets. As a 
consequence, the energy transfer rates are independent of the mode line widths. Because M increases with 
height, the dominant contributions to the three-mode coupling coefficients occur in the upper part of the con
vection zone and in the optically thin isothermal layer. Moreover, the coupling coefficients tend to increase 
with co and kh. 

Nonlinear interactions which couple two trapped modes and one propagating mode drain energy from the 
trapped modes. They are far more effective than interactions among three trapped modes which drive the 
modes toward equipartition of energy. Thus, every trapped mode suffers a net loss of energy due to its nonlin
ear interactions. Estimates of the nonlinear energy transfer rates are plagued by two uncertainties. Some of the 
coefficients which couple two trapped modes to a propagating mode formally diverge as the thickness of the 
isothermal layer is increased to infinity; physically, this reflects the exponential growth of the acoustic Mach 
number with height in the isothermal layer. Also, the energy transfer rates are sensitive to the unknown ener
gies of the high-degree trapped modes. Plausible assumptions lead to energy transfer rates which are some
what smaller than the products of the mode energies and line widths. Thus, nonlinear mode coupling is 
probably not the dominant damping process for the solar p-modes, at least for those with small l. However, 
this cannot be regarded as a secure conclusion. The observational signature of damping due to nonlinear 
mode coupling would be a decrease in the energy per mode with increasing l at fixed ro. In addition, it might 
be responsible, at least in part, for the steep decline in the energy per mode at frequencies above 3 mHz which 
is usually attributed to radiative damping. 

Our investigation indirectly bears on the question of the stability of the p-modes. We find that nonlinear 
mode couplings cannot limit the growth of overstable p-modes. This favors the hypothesis that the Sun's 
p-modes are stochastically excited by turbulent convection. 

Subject headings: convection- Sun: atmosphere- Sun: atmospheric motions- Sun: oscillations 

I. INTRODUCTION 

In this paper we develop a method for evaluating nonlinear interactions among acoustic modes. We apply our method to 
calculate the rates of energy transfer among the normal modes of a plane-parallel model atmosphere. The properties of the 
atmosphere and the energies of the modes are chosen to resemble those of the Sun. These rates are then compared to the mode 
lifetimes to assess whether nonlinear interactions play a significant role in establishing the mode energies. The investigation is 
motivated by our desire to identify the mechanism by which the solar p-modes are excited. 

The total velocity associated with solar oscillations is subsonic; the acoustic Mach number M ~ 0.1 everywhere below the 
photosphere. Since the nonlinearity parameter, M, is small, we treat the mode interactions via perturbation theory and retain only 
the lowest order terms. These couple triplets of modes. 

We assume that the modes have random phases. The initial justification for this assumption is that each mode is coupled to many 
pairs of modes and no single coupling dominates its total interaction. A stronger case for random phases follows a conclusion of our 
study which is that nonlinear interactions make only a small contribution to the mode line widths. Other damping mechanisms, 
presumably some mix of radiative and turbulent dissipation, dominate the phase fluctuations of the modes. Since these forms of line 
broadening act independently on different modes they maintain random phases. 

Our investigation is aimed at calculating the nonlinear interactions among all of the solar modes and evaluating their effects on 
limiting the amplitudes of overstable modes. In this respect it differs from previous work on nonlinear mode coupling in stars which 
focused on the interactions among only a few modes (e.g., Dziembowski 1982; Wentzel1987). 

1 The National Center for Atmospheric Research is sponsored by the National Science Foundation. 
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Parameter 

z(em) ................. . 
P(g em- 1 s- 2) •••••••• 

p(gem-3) ............ . 

g ······················· 
vcrit •.• 0 0 0 ••••••••••••••• 

r ······················· 

TABLE 1 

ATMOSPHERIC PARAMETERS 

Top of Adiabatic Atmosphere 

2.85 X 107 

6.20 X 104 

1.96 x 10- 7 

2.775 x 104 em s- 2 

5.069 mHz 

5/3 

NoTE.-v crit is the acoustic cutoff frequency for kh = 0. 

Bottom of Adiabatic Atmosphere 

3.38 X 1010 

3.0 X 1012 

8.0 X 10-3 

2.775 x 1Q4 em s- 2 

5.069 mHz 

5/3 
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The paper is organized as follows. In§ II we describe the plane-parallel atmosphere and the properties of its acoustic modes. We 
apply a Hamiltonian method, outlined in the Appendix, to derive the lowest order nonlinear interactions, the three-mode couplings, 
in § III. Section IV outlines the main features of the numerical procedure we use to calculate the rates at which three-mode 
interactions transfer energy among the normal modes. We compare these calculated rates to the observed line widths and explore 
the implications of this comparison for identifying the excitation mechanism of the solar p-modes, in § V. 

II. NORMAL MODES OF THE MODEL ATMOSPHERE 

Our computations are performed for a plane-parallel atmosphere that has horizontal cross-sectional area, A, and is enclosed 
between rigid vertical walls. Ultimately, we take the limit A-+ oo. The atmosphere sits in a uniform gravitational field and is 
composed of two layers, the lower adiabatic and the upper isothermal. The thermodynamic variables, pressure, density, and 
temperature, are continuous across the interface between the two layers. However, the density gradient is not. The adiabatic index, 
r, is set equal to 5/3 in both layers. The atmospheric parameters are listed in Table 1. They are chosen so that the atmosphere 
resembles the region of the Sun between the bottom of the convection zone and the temperature minimum. Except for its top few 
scale heights, the solar convection zone is nearly adiabatic, and the optically thin region above the solar photosphere may be 
crudely represented as isothermal. However, the upper part of the Sun's convective envelope possesses both a superadiabatic region 
and ionization zones of which our model atmosphere takes no account. 

We take the vertical coordinate, z, to increase in the direction of the gravitational acceleration, g, from z = z1 at the interface 
between the two layers to z = zb at the bottom of the adiabatic zone. Because the unperturbed atmosphere is both static and 
plane-parallel, all of the variables associated with the modes depend on x, y, and t as exp i(kh • x - wt), where kh is the horizontal 
wave vector and w is the radian frequency. 2 We adopt the Eulerian enthalpy perturbation, Q = pifp0 , where p1 is the Eulerian 
pressure perturbation and p0 is the unperturbed density, as the dependent variable in the wave equation. 

In the adiabatic atmosphere the linear wave equation reads 

d2Q 3 dQ (w2 
2) 

dz2 + 2z dz + ~ - kh Q = 0 ' 

where the adiabatic sound speed, c, satisfies c2 = 2gzf3. The displacement vector,~. is related to Q by 

1 dQ 
ez=2-d . w z 

(1) 

(2) 

The solution of equation (1) which is regular at z = 0 is a confluent hypergeometric function (Spiegel and Unno 1962; Christensen
Dalsgaard 1980). Changing the independent variable from z to x = z 112 transforms equation (1) into 

d2Q + ~ dQ + (6w2- 4k~ x2)Q = 0, (3) 
dx2 x dx g 

which reduces to the differential equation for spherical Bessel functions of zeroth order in the limit kh -+ 0. It is a classic example of a 
differential equation with two turning points. A simple WKB analysis yields the approximate analytic solution 

Q ex: ),2 exp {fdz'kz(z') + {> J, (4) 

where {> is a constant phase which is determined by the boundary conditions, and 

kz(z) = 

The upper and lower turning points are at 

3w2- k~. 
2gz 

2 The magnitude of kh is related to the angular order, /, of the corresponding solar mode by kh R0 = I. 
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560 KUMAR AND GOLDREICH 

and 

Between the turning points, z1 < z < z2 , 

and the WKB envelopes ofthe components of~ satisfy 

1 
~hex: 1/2' z 

From equations (2) and (8) we see that ~z is the dominant component of~ except very close to the lower turning point. 
In the isothermal atmosphere linear, adiabatic wave propagation is governed by 

d2Q 5g dQ (w2 2 2g2kt) 
-d 2 +-3 2-d + 2-kh +-3 2 2 Q=O, 

Z Co Z Co CoW 

where c0 is the adiabatic sound speed. 3 The displacement vector, ~. is related to Q by 

( 
2 2g2)-l(dQ 2g ) 

~z = w - 3c~ dz + 3c~ Q · 

Vol. 342 

(7) 

(8) 

(9) 

(10) 

(11) 

The differential equation (10) has constant coefficients so it may be solved analytically. At each value of kh, the acoustic cutoff 
frequency, Wac(kh), separates the low-frequency, evanescent solutions from the high-frequency, propagating solutions. Expressed in 
terms of the scale height, 

the relation for Wac reads 

H= 3c~ 
5g' 

( 2WCaoc H)2 = _21 {[1 + (2kh H)2] + [ (2k H)2]2 96 ( k H)2} 1+ h -252h . 

(12) 

(13) 

As the above equation shows, Wac increases with increasing kh, but its dependence on kh is weak for kh H ~ 1, and in this limit 
equation (13) simplifies to Wac ~ c0/2H = 5g/(6c0 ). For w <wac both solutions of equation (10) grow exponentially with height with 
inverse scale lengths given by 

(14) 

The more slowly growing solution is the appropriate one for evanescent disturbances which originate within the adiabatic layer. For 
kh H ~ 1 the expression for K _ H simplifies to 

(15) 

The propagating solutions of equation (10) also grow exponentially with height and have imaginary value ofkzH = t as required by 
flux conservation. 

The eigenfunctions are obtained by numerically integrating equation (1) through the adiabatic layer and then by matching the 

solutions to the analytic solutions of equation (10) in the isothermal layer. At z = zb, we take ~z = 0. The boundary conditions at 
z = z1 express the continuity of both ~z and the Lagrangian pressure perturbation, llp. The latter condition is equivalent to the 

continuity of Q + g~z· Thus, ~z• Q, and ~hare all continuous across z = z1• 

Trapped modes correspond to evanescent solutions in the isothermal layer. This restricts w2 to a discrete set of eigenfrequencies. 
We often use the number of nodes, n, in the vertical displacement eigenfunction instead of w to identify a trapped mode for fixed kh. 
The eigenfunctions for trapped modes are normalized such that 

(16) 

We define the mass per unit surface area for a trapped mode IX to be the ratio of its energy per unit surface area to its mean square 

3 The Brunt-Viiisala frequency, N 2 = 2g2 f3c~. 
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surface velocity: 

(17) 

where z. is the surface value of z. Since I ~..(z) I grows exponentially with height in the isothermal layer, A« decreases exponentially 
with the height of the level at which the surface velocity is defined. The sensitivity of A« to height is small for w ~ wac and increases 
monotonically with w. The p-mode masses derived from our model atmosphere, 4nRt A« are slightly larger at low l and slightly 
smaller at high l than those derived from a standard solar model. The modal masses track the solar ones fairly well as w varies in 
spite ofthe limitations ofthe model atmosphere in representing the Sun. 

The propagating modes are chosen to have no net flux in the isothermal layer; that is, they are composed of a pair of inward and 
outward propagating waves of equal amplitude. This choice ensures that they have real frequencies, are orthogonal to the trapped 
modes, and take on all frequencies OJ ~ wac· Propagating modes are normalized such that 

f Zb 

w 2 _ 
00 

dz Po ~ .. h.ro • ~ .. h.ro' = b(w - w') . (18) 

The contribution from the adiabatic atmosphere to the integral in equation (18) is finite and thus negligible. The integration over the 
isothermal atmosphere may be carried out analytically to yield normalized enthalpy eigenfunctions for propagating modes in the 
isothermal atmosphere: 

with 

Q = c(J) SID [Kz(z - z,) + CroJ exp zkh • X- IOJt + I ' 
. [· . 5(z- z)J 

4z1 

K= z 

c = (J) 
2(3w2c5 - 2g2) 

3np1 Kz c5 OJ ' 

where p1 is the density at the top ofthe adiabatic atmosphere and Cro is determined by the continuity of ~z and Q at z = z1• 

(19) 

(20) 

It might seem more natural to adopt an outward radiation boundary condition for propagating modes in the isothermal 
atmosphere; we refer to these solutions as pseudomodes. Pseudomodes have discrete, complex frequencies. However, they are 
neither square integrable nor orthogonal to trapped modes. They correspond to resonances in the scattering amplitudes of 
incoming waves by the atmosphere. The normalized propagating modes reveal these resonances by having large amplitudes in the 
adiabatic atmosphere at frequencies equal to the real values of the frequencies of pseudomodes. With increasing w > wac at fixed kh 
these amplitudes exhibit a series of peaks. The location of each peak and its sharpness and height are related to the real and 
imaginary part of the frequency of a pseudomode. The observed power spectrum of solar p-modes at frequencies greater than Wac 

should contain broad peaks of width "'wfn, where w and n are the frequency and number of radial node of a pseudomode. Such 
pseudomodes have apparently been detected by Libbrecht (1988). 

The kh - w diagram for the normal modes of the model atmosphere is displayed in Figure 1. It looks quite similar to that for the 
solar f- and p-modes except at small kh where the finite depth of the adiabatic layer is responsible for changing the curvature of the 
dispersion ridges. The return to normal curvature is marked by the clustering of the ridges along a thin, almost vertical, line. For kh 
sufficiently large that bottom effects are negligible, the dispersion curves are well fitted by the analytic formula 

(21) 

which is exact for an infinitely deep adiabatic atmosphere with vanishing surface pressure (Christensen-Dalsgaard 1980; Chris
tensen Dalsgaard and Gough 1980). 

A detailed comparison of the dispersion curves for the model atmosphere with those for the Sun reveals that, for n > 0 and large 
kh, the former lie systemically above the latter.4 This difference arises because, at depth, the temperature is lower at a given pressure 
in the Sun than in the model atmosphere; the lowering of the temperature gradient due to the reduction of r in the ionization zones 
more than compensates for the superadiabatic temperature gradient at the top of the convection zone in determining the run of 
temperature with depth in the Sun. The higher temperature of the model atmosphere leads to a higher sound speed and thus to 
higher frequency p-modes. 

Expanding ~in the terms of the normal modes of the system, we obtain 

~ = ~ N [~..(z) exp (ikh • x- icpJ + ~:(z) exp ( -ikh • x + icpJ], (22) 

where J« and cp« are action-angle variables, and the sum over IX is three-dimensional, two dimensions for kh, and one for w. More 

4 Of course, the n = 0 curves are in excellent agreement because we have chosen the density at the top of the adiabatic layer of the model atmosphere to match 
that ofthe solar photosphere. 
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FIG. I.-The kh- w diagram for the model atmosphere whose parameters are given in Table 1. Note that kh has been multiplied by R 0 , and the product 

is denoted by angular degree, I. Trapped modes are shown by solid lines and pseudomodes by dotted lines. 

precisely, L includes a sum over the discrete frequencies of the trapped modes and an integral over the continuous frequencies of the 

propagating modes. The phase cpll(t) = wll t + Ell. 

III. THREE-MODE COUPLINGS 

a) Hamiltonian Formalism 

We adopt a Hamiltonian approach to the calculation of mode coupling. The Hamiltonian is expanded in powers of the 

displacement vector ~- The second-order terms yield the linear differential equations (1) and (10) for the normal modes, and the 
third-order terms describe nonlinear interactions among them. We assume that the nonlinear interactions are sufficiently weak so 
that they may be determined perturbatively. We assess this important approximation in§ IV d. 

The second- and third-order parts of the Hamiltonian density appropriate to the adiabatic perturbations of a static configuration 
composed of a perfect gas take the form (see Appendix A) 

(23) 

where 

(24) 

and 

(25) 

where Po is unperturbed pressure, ei,J is the derivative of ei with respect to x1, and the summation convention for repeated indices is 
assumed. We evaluate the three-mode couplings among the acoustic modes of the plane-parallel, stratified atmosphere described in 

the previous section. Expressing the second-order Hamiltonian density, Jf 2 , in the terms of the normal modes and integrating it 

over volume, we find 

H2 = Ja3xJf2 = L wllJil = L Ell. 
ll ll 

(26) 

Thus, the energy in mode ex, Ell = wll J ll' 

Next, we expand Jf 3 in the terms of the normal modes and integrate it over space to obtain 

_ f 3 "' JEilEpEr . ,~,.) H 3 = d X Jf 3 = L. 8A Kll,./Jspysy exp [ -z(sll cpll + Sp c/Jp + Sy 'f'y ] . 

«S«, fJsfJ, 'Ysy 

(27) 
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The terms in the above sum are restricted by the conservation of horizontal momentum expressed through the matching condition 
on the horizontal wave vectors, 

Sakha + Spkhfl + Sykhy = 0, (28) 

where IX, p, y refer to different modes of oscillation and the symbols sa, sp, sy take on the values + 1 or -1. 
The coefficient Ka.fl•n•, which appears in equation (27) is symmetrical under the interchange of indices IX•a• Psfl• and Ysy· It is 

defined by 

K = - f dz Po {(r - 1)2(V • ~ vv • ~ XV • ~ ) + ei,j ej.k ek,i + ei,j ej,k ek,i a .. fl,n" 6 tZ..,J\ • flsp Yoy a.. {Js{J y,, flsp a. Yoy 

+ <r- 1)[(v • ~ .... >e~!, e!~: + <v • ~{J.,>e~!r et: + <v • ~y.,>e~~ eA~J} , (29) 

where the complex conjugate eigenfunction should be used for s11 = -1. 
Our system has now been reduced to that of N interacting harmonic oscillators with action-angle variables,] a, 4Ja· In terms of 

these variables the Hamiltonian reads 

H = ro • J + H;nM, t/J) . (30) 

The Hamilton equations then yield 

(31) 

and 

(32) 

Substituting for H 3 from equation (27) in the Hamilton equations (31) and (32), we find the evolution equations for mode IX due to 
a single triplet: 

d4Ja = OJ + 6wa I K .... p,8117 I {E;E; COS (<I> + 0 ) 
dt a fi4 .J E; 3 ' 

(33) 

and 

dJ a = 12sa I Ka .. p.n •• I J E E E sin (<I> + o ) 
dt fi4 a {J y 3 ' 

(34) 

where <I> and 03 are defined by 

(35) 

and 

(36) 

The combinatorial factors of 6 and 12 in equations (33) and (34) arise because the triplet (IX, p, y) occurs 6 times for each choice of IX in 

equation (27). 

b) Master Equation 

For simplicity, we begin by calculating dEJdt due to the interactions among the single triplet (IX, p, y) and then sum the result over 
all possible triplets which involve mode IX. Finally, we take the expectation value of the resulting expression to obtain the master 
equation which governs the expectation value of the rate at which nonlinear interactions change the energy of mode IX. 

We solve equations (33) and (34) perturbatively. The zeroth-order values of 4Ja and Ja are taken to be the actual values at some 
arbitrarily chosen time t. The corrections of order n at time t + t are computed with the right-hand sides of the equations evaluated 

to order n - 1. This procedure, carried out to first order for 4Ja and to second order for J a• yields 

(37) 

J<l>(t + -r) = _ l2sa I K .... fl.ay •• l J £<0 > £<0 > £<0>[cos (Awt + e + o ) - cos (e + o )] 
a foAm a fl y 3 3 3 3 , 

(38) 

and 

(39) 
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where 

(40) 

(41) 

and 

Aw = S11 W 11 + Sp Wp + sy wY ~ 0 . (42) 

We assume that the phases of different modes are uncorrelated and define 

/dE") w" n 2> \ dt =--; JC. (t + •). (43) 

The angle brackets denoting expectation value are called for because we discard the direct contribution which J~ 1 > makes to dE,Jdt 
beca,use it has vanishing expectation value. 

Next, we substitute equation (39) into equation (43) and simplify the resulting expression by setting 

1 . 2 (Aw-r) n-r 
(Aw)2 sm -2- ~ 2 b(Aw) ' (44) 

which is an expression of approximate energy conservation. 
Then, we sum equation (43) over all the triplets which contain mode ex and take the limit A --. oo. The latter step involves the 

replacement 

where Oap is the angle between kha and khp· We note that 0 ::;; 011p < 2n, and that 011p and 2n- 011p correspond to the same value of khy· 
To account for this degeneracy, we integrate over d011p from 0 to 1t and include a factor of2 in equation (46). 

The triplets with which we are concerned have at most one propagating mode, and it is always taken to be mode y. We have 
written equation (46) in a form which is suitable for either a propagating or a trapped mode y. In the former case, the integrand is a 
continuous function of wY which exhibits peaks at the frequencies of the pseudomodes described in § II. A plot of I Kapy I as a 
function of ky showing these peaks is provided as Figure 2. In the latter case, the integral over dw, reduces to a sum over n,. 

If mode y is propagating, the integral over roy in equation (46) is carried out trivially to yield 

\d!:•·) = 92:" ~ f dkhpkhp rdOapiK~~soPsnsY{w 11 EpEy + s1 wpE11 Ey + s2wyEaEp}. (47) 

If mode y is trapped, we carry out the integral over 011p and eliminate the <5-function in frequency using 

(48) 

and 

(49) 

to arrive at 

d011p _ -s1 2kh dkhy 

dwy - j[(kha + khp)2 - k~y][k~y - (kha - khp)2] dwy . 
(50) 

Taken together, these operations on equation (46) yield the time rate of change of mean energy in mode ex due to its couplings with 
all possible trapped modes 

\
dE,. .. ) - 9w" "\' f dk I Ka..p.nsx12 khp khy dkhy (w E E + s w E E + s w E E) (51) 

dt - 7t £... hP f[(k k )2 - k ][k2 - (k - k )2] dw " P Y 1 P " Y 2 Y " P . 
np,ny V ha+ hP hy hy ha hP Y 

The expressions for (dE,. .. fdt) given in equations (47) and (51) are the fundamental formulae of this paper. For each, it is 
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FIG. 2.-JK.,,I as a function ofkh, for fixed modes a(l. = 1000, v. = 3.180mHz)and P(lp = 750, v, = 2.754 mHz) 

important to avoid double counting modes in carrying out the integral over kh,- The frequency matching equation (42) implies that 
either one or both of s1 and s2 are negative. In the former case we choose s2 = -1 and take the integral over those modes for which 
w1 :2:: wfJ. In the latter case, s1 = s2 = -1, the integral is restricted to modes with wfJ :;:;; w,j2. 

c) Number of Resonant Triplets per Solar p-Mode 

In deriving the master equation for three trapped modes, we have implicitly assumed that each mode is involved in many triplets 
which satisfy the frequency matching equation (42) to within the sum of the line widths of the three modes. Otherwise, the steps 
taken in equations (44) and (45) which lead to an expression that is independent of the line widths could not be defended. We justify 
this procedure below. 

Let us estimate the number of resonant triplets which involve a particular mode IX. By a resonam triplet we mean one which 
satisfies the frequency matching condition given by equation (42) to within the sum of the line widths of the three modes. For 
simplicity, we consider a restricted set of couplings for which wand l for all three modes (IX, p, y) lie within intervals llwfw. ::5 1 and 
lllfl* ::5 1 about the fiducial values w* and 1 •. 5 Moreover, we assume that all the modes have similar line widths llw ~ wj!l, wnere !2 
is the quality factor. 

Given mode IX there are N fJ - n* l! choices for mode p. 6 With both IX and p determined the angular momentum addition rules 
allow of order l* possible choices of l for mode y. However, for l* ~ 1 one Clebsch-Gordon coupling coefficient is much larger than 
the others and 11 is essentially unique. 7 Approximate energy conservation determines w1 to within a tolerance of order w.f !2. Thus, 
the probability that an appropriate mode y exists to complete the resonant triple is N 1 - n./!2. Multiplying this probability by the 
number of possible choices for mode fJ we obtain an estimate of 

2 [2 
%::NfJN1 -n* * (52) 

!2 

for the number of resonant triplets which involve mode IX. 

The solar p-modes in the 5 minute band have !2 - 103 and (n, l) combinations ranging from (25, 0) to (0, 103). As examples, we take 
the limiting cases (n., l*) = (20, 10) and (n., l*) = (1, 700). These choices yield.%- 4 x 101 and .At- 5 x 102, respectively. Thus, 
we may safely conclude that each 5 minute mode is coupled to many other modes. 

IV. NUMERICAL PROCEDURE AND RESULTS 

a) Class 1 and Class 2 Triplets 

As is already clear from the last section, the three-mode couplings separate naturally into two classes. 
Class 1 consists of all the possible triplets for which w1 :2:: W80 • Since mode y is propagating it has negligible energy. The 

three-mode coupling acts to drain energy from the trapped modes IX and p. We denote by Y~ 1 ) the rate at which mode IX loses energy 

5 In the remainder of this subsection we use the radial order, n, instead of ro, together with I and m to specify a mode. 
6 Foreach(n,l)pair -1 :S;m :S: I. 
7 For I* 11:> 1 the rules for the addition of I reduce to those for the addition of kh. 
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as the result of its class 1 couplings. To compute y~u, we set Ey = 0 and s2 = -1 in equation (47) and sum over all the class 1 triplets 
which involve mode a. 

Class 2 contains the remaining resonant triplets, those which involve only trapped modes. Each three-mode coupling in this class 
drives the modes it connects toward equipartition of energy. Since the trapped modes with frequencies just below wac have the 
lowest energies, these interactions tend to transfer energy from the lower to the higher frequency modes. To compute ~ 2 >, the net 
rate at which three-mode couplings in class 2 change the energy of mode a, we sum the contributions to equation (51) over all those 
class 2 triplets which include mode a. 

We note that Y~ 1 > is always negative, but Y~ 2 > may have either sign. In general, Y~ 1 > is much larger than ~ 2 >, for reasons explained 
in§ IVd. 

b) Mode Energies 

Mode energies are required as input to the calculations of the energy transfer rates given by equations (47) and (51). Libbrecht and 
Zirin (1986) and Libbrecht (1988) have accurately measured the surface velocities of the low-degree, 1 ;::5 20, solar p-modes in the 5 
minute band. We determine mode energies by multiplying their mean square velocities by mode masses appropriate to the 
line-forming level for their observations. We adopt these mode energies for our calculations making the assumption that the mode 
energy is independent of 1. While this assumption is theoretically plausible, its observational support is shaky. The most relevant 
high-degree, 1 ;::5 200, results indicate that the rms surface velocities do not vary with 1 (Libbrecht et al. 1986). Since the mode mass 
decreases by about a factor of 3 between 1 = 0 and 1 = 200, there may be a slow decline in mode energy with increasing 1. Our 
assumption of I-independent mode energy tends to overestimate the importance of nonlinear mode coupling if the mode energies 
really do decline with increasing 1. 

The total mean-square surface velocity is obtained by summing the contributions from all of the trapped modes. We have 

2 - . .!. J 2 I a~ 12 - ~ J d2k,.. E" 
v = 1~ A d xh ot - ~ (2n)2 M". 

(53) 

The mode energies we adopt yield vrms ~ 0.8 km s- 1 at the interface between the adiabatic and isothermal layers. At higher levels 
vrms is larger; the precise value depends on the energies of the unobserved, high-degree, trapped modes. 

c) Calculational Method 

i) Class 1 Triplets 

A straightforward numerical computation of ~ 1 > involves a two-dimensional integral over khfJ since there is a propagating mode 
for all khy and Wy ~ Wac(kJ. 

ii) Class 2 Triplets 

Starting with mode a, we find all pairs of modes that satisfy the horizontal wavevector and frequency matching conditions given 
by equations (28) and (42). To do so, we slide the position of mode p along the portion of each ridge in the kh - w diagram which lies 
below the acoustic cutoff frequency, Wac· For specified values, k,.., w" and khp• Wp, the values of kh , w1 correspond to the intersections 
of the lines wY = w" ± Wp with the ridges in the k - w diagram that lie between the boundari~s I kha - khfJ I :5; khy :5; kha + khp· The 
coupling coefficient for each triplet is computed using equation (29), and ~ 2 > is obtained by summing the contributions from all the 
class 2 triplets which involve mode a. 

d) Three-Mode Coupling Coefficients 

Physically, we expect the nonlinear mode interaction to be strongest in regions where the appropriate nonlinearity parameter, 
viz., the acoustic Mach number, is large. Mathematically, the local contribution to the three-mode coupling coefficient is pro
portional to the product of the unperturbed pressure and the gradients of the displacement eigenfunctions of the three modes (see eq. 
[29]). Let us separate the contributions to Ka/ly from the adiabatic and isothermal layers and examine each individually. 

The situation is simpler in the adiabatic layer and we begin with it. Here p0 oc z512 • The dominant term in gradient of the 
displacement is oezfoz, whose envelope diminishes as z- 312 for z1 < z < z2 and as exp (-khz) for z > z2 (see eq. [9]). This gives a 
local three-mode coupling strength which decreases at least as fast as z- 2 for z greater than the largest z 1 of the three modes. Thus, 
the contribution to the three-mode coupling coefficient from the adiabatic layer is concentrated close to its upper boundary. 

Nonlinear mode coupling in the isothermal layer is complicated by the exponential increase with height of~ (see eq. [15]) which, 
for some triplets, overwhelms the exponential decrease of the pressure in the integrand of the coupling coefficient. Coupling 
coefficients which formally diverge in an infinite isothermal atmosphere are primarily associated with class 1 triplets, especially 
those for which the frequency of at least one of the trapped modes is not far below the acoustic cutoff. A physically plausible way to 
bound the coupling coefficients is to choose the upper limit in their defining integral to be the height at which the acoustic Mach 
number reaches unity. Unfortunately, the validity of the perturbation expansion becomes questionable at this point; higher order 
couplings have comparable strengths to the three-mode couplings there. 

Even the coefficients which are formally convergent show a pronounced increase in magnitude with increasing w and kh of the 
modes they couple. This dependence is due to the increased concentration of modes with high values of w and kh in the upper layers 
of the atmosphere. It is the same property that is responsible for the small masses of these modes (see Table 2). Furthermore, for 
small kh.• khp "' kh , and since the magnitude of Ka/Jy is roughly proportional to kh, kh (see eq. [29]), KafJy increases with increasing khp 
ask~,. Of course, there is an upper limit to kh, beyond which the contribution to mode coupling declines rapidly. This turnover arises 
because the mode energy spectrum falls rapidly at high frequencies. 

Figure 3 displays the integrand of the mode coupling coefficient for a variety oftriplets. 
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v (mi~z) P (minute) 

1.1140 14.96 

1.5914 10.47 

1.7505 9.52 

1.8620 8.95 

1.9894 8.38 

2.2282 7.48 

2.3873 6.98 

2.5463 6.55 

2.7852 5.98 

3.0239 5.51 

3.1831 5.24 

3.3423 4.99 

3.5810 4.65 

3.7401 4.46 

3.9789 4.19 

4.3768 3.81 

4.6155 3.61 

4.9338 3.38 

1.5913 10.47 

1.8306 9.10 

2.0690 8.06 

2.3872 6.98 

2.7055 6.16 

2.9444 5.66 

3.1829 5.24 

3.3421 4.99 

3.5811 4.65 

3.8196 4.36 

4.0583 4.11 

4.2975 3.88 

4.5369 3.67 

4.7710 3.49 

5.0078 3.33 

1.9258 8.65 

2.2489 7.41 

2.5309 6.59 

2.7846 5.99 

3.0169 5.52 

3.2326 5.16 

3.4346 4.85 

3.6254 4.60 

3.8065 4.38 

3.9792 4.19 

4.1446 4.02 

4.3035 3.87 

4.4565 3.74 

4.6042 3.62 

SOLAR ACOUSTIC MODES 

TABLE 2 

MODE PROPERTIFS 

khR0 = e n 

122.7 0 

250.4 0 

303.0 0 

342.8 0 

391.3 0 

490.9 0 

563.5 0 

641.1 0 

767.0 0 

904.1 0 

1001.8 0 

1104.5 0 

1267.9 0 

1383.1 0 

1565.3 0 

1894.0 0 

2106.3 0 

2406.9 0 

107.3 1 

142.0 1 

181.4 1 

241.5 1 

310.3 1 

367.6 1 

429.8 1 

474.1 1 

544.9 1 

620.9 1 

702.7 1 

791.0 1 

887.0 1 

991.1 1 

1118.0 1 

100.0 2 

100.0 3 

100.0 4 

100.0 5 

100.0 6 

100.0 7 

100.0 8 

100.0 9 

100.0 10 

100.0 11 

100.0 12 

100.0 13 

100.0 14 

100.0 15 

e) Energy Transfer Rates 

M., (gram) 

1.552xl020 

2.897x1025 

1.879x1025 

1.426x1025 

1.066x1025 

6.569x1024 

4.945x1024 

3.819x1024 

2.712x1024 

2.022x1024 

1.703xl024 

1.462x1024 

1.201x1024 

1.078x1024 

9.47lx1023 

8.426x1023 

8.468x1023 

9.750x1023 

1.099x1020 

5.724x1025 

3.278x1025 

1.744x1025 

1.024x1025 

7.255x1024 

5.350x1024 

4.449x1024 

3.474x1024 

2.796x1024 

2.313x1024 

1.973x1024 

1.743x1024 

1.632x1024 

1.885x1024 

7.715x10"" 

5.331x1025 

4.044x1025 

3.263x1025 

2.751x1025 

2.392x1025 

2.131x1025 

1.937x1025 

1.788x1025 

1.672x1025 

1.582x1025 

1.511x1025 

1.458x1025 

1.420x1025 

567 

Ea (erg) 

2.90x10'" 

2.90x1026 

3.94x1026 

5.70x1026 

8.28x1026 

1.66x1027 

2.65x1027 

4.26x1027 

6 . .56x1027 

9.37x1027 

9.68x1027 

6.79x1027 

3.07x1027 

1.61x1027 

7.91x1026 

3.07x1026 

1.75x1026 

8.06x1025 

2.90x1026 

5.18x1026 

1.04x1027 

2.65xl027 

5.86x1027 

8.68x1027 

9.68x1027 

6.79x1027 

3.07x1027 

1.19x1027 

6.88xl026 

3.76x1026 

2.12x1026 

1.18x1026 

6.90x1025 

6.87x1026 

1.77xl027 

4.06x1027 

6.55x1027 

9.32x1027 

9.07x1027 

5.12x1027 

2.58x1027 

1.24x1027 

7.91x1026 

5.72x1026 

3.70x1026 

2.55x1026 

1.80x1026 

We compute net energy transfer rates for a selected sample of modes whose parameters are listed in Table 2. The modes have been 
chosen to sample the region of kh - w diagram which makes the greatest contribution to mode couplings. Therefore, most lie on the 
n = 0 and n = 1 ridges. In addition, we have included modes with fixed 1 = 100 and a range of n values. These are used to gauge the 
effects of nonlinear interactions on mode energy, line width, and overstability. The computed values of Y~ 1 ) and Y~ 2 l are listed in 
Tables 3 and 4 for two different choices of the thickness of isothermal atmosphere. An obvious feature is that every trapped mode, 
except the lowest frequency one, is losing energy due to its nonlinear interactions. Of course, class 1 couplings drain energy from 
trapped modes by transferring it to propagating modes. However, even class 2 couplings, which conserve the energy of the trapped 
modes, damp all modes expect those in a narrow frequency range bounded from above by wac· This is a consequence of the steep 
decline in the energy per mode as w approaches wac from below. 

The lifetimes (the inverses of the line widths) of the low-degree solar p-modes near the peak of the 5 mmute band are ot order 
several days (Libbrecht 1988; Libbrecht and Zirin 1986; Isaak 1986). In addition, the mode lifetimes decrease monotonically with 
increasing w at fixed kh. The significance of the nonlinear interactions is measured by comparing the damping rate, Yla = Y JEa, 
displayed in Tables 3 and 4, to the line width for each mode. 

The values of fla are quite sensitive to the thickness of the isothermal layer and to the energies of the high-degree fundamental, 
n = 0, modes. For a thin isothermal layer and small energies of the high-degree modes, the calculated damping times of low-degree, 
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FIG. 3.-Integrand of K_,, for four triplets. Solid and dotted lines are used in the adiabatic and isothermal layer, respectively. The isothermal layer is 2.5 scale 

heights thick. Discontinuity inK_,, is due to the discontinuity of ae,;az. Clockwise from the upper left, the values of v (mHz) and l for the three modes in each triplet 

are {(1.5915, 250), (2.1723, 200), (3.7597, 280)}, {(1.5915, 250), (3.8950, 1500), (5.4866, 1400)}, {(3.2308, 100), (1.6828, 120), (4.9155, 185)}, and {(3.2308, 100), (3.8945, 

1500), (7.1254, 1400)}. Contributions to the coupling coefficient from the isothermal and adiabatic layer, K.,y(I) and K_,y(A), are written at the top of each panel. 

Units are g- 1' 2 s3' 2 for class 1 triplets (panels 2 and 4) and g- 112 s for class 2 triplets (panels 1 and 3). 

5 minute, modes are several months, much longer than the observed lifetimes. However, for a thick isothermal layer and l 
independent energies, the damping times for these modes drop to several days, close to the values deduced from observation. 

The scale length for the exponential growth of the eigenfunctions in the isothermal layer decreases with increasing frequency (see 
eq. [15]). This accounts for the increase with frequency of the sensitivity of the damping times to the thickness of the isothermal 
layer. 

The values of 111) and 112) listed in Tables 3 and 4 display a few abrupt changes over small ranges of k~~a.. These are puzzling but 
do not signal an error in our computations. Rather, they may be traced to the availability or unavailability of triplets which couple 
mode (X to modes on a particular ridge, usually the fundamental, n = 0, ridge. 

f) Effect of Mode Couplings on p-Mode Energy Spectrum 

In this section we assume that the excitation of the p-modes is due to the emission of acoustic radiation by turbulent convection. 
Mode damping is attributed to an unspecified combination of radiative damping and the absorption of acoustic radiation by 
turbulence. We adopt a crude model for these processes in which we set 

(54) 
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TABLE 3 

ENERGY DISSIPATION RATE DUE TO MODE CoUPLINGS 

v (mHz) khR0 ::£ Ea(erg) 1'~ 1 J (erg/ sec) l'~J (erg/sec) 17a (seC 1 ) 

1.1140 122.7 2.90x1o•• -1.33x10 1 ~ 3.75x10"' 8.34x10-" 

1.5914 250.4 2.90x1026 -1.14x1020 -6.72x1019 -6.25x1o-7 

1.7505 303.0 3.94x1026 -2.55x1020 -1.55x1020 -1.04x1o-6 

1.8620 342.8 5.70x1026 -6.47x1020 -2.28x1020 -1.54x10-6 

1.9894 391.3 8.28x1026 -1.38x1021 -2.80x1020 -2.00x1o-6 

2.2282 490.9 1.66x1027 -4.78x1021 -2.96x1020 -3.06x1o-6 

2.3873 563.5 2.65x1027 -1.01x1022 -3.07x1020 -3.93x1o-6 

2.5463 641.1 4.26x1027 -2.13x1022 -2.83x102l -5.07x1o- 6 

2.7852 767.0 6.56x1027 -4.75x1022 -1.70x1020 -7.27x1o-6 

3.0239 904.1 9.37x1027 -0.99x1023 -9.14x1019 -1.06x10-5 

3.1831 1001.8 9.68x1027 -1.30x1023 -5.76x1019 -1.34x1o-s 

3.3423 1104.5 6.79x1027 -1.17x1023 -2.06x1019 -1.72x1o-s 

3.5810 1267.9 3.07x1027 -7.67x1022 -1.00x1019 -2.50x1o-s 

3.7401 1383.1 1.61x1027 -5.08x1022 0.00 -3.16x1o-s 

3.9789 1565.3 7.91x1026 -3.65x1022 0.00 -4.61x1o-s 

4.3768 1894.0 3.07x1026 -2.52x1022 0.00 -8.21x1o-s 

4.6155 2106.3 1.75x1026 -2.03x1022 0.00 -1.16x10-4 

4.9338 2406.9 8.06x1025 -1.48x1022 0.00 -1.84x1o- 4 

1.5913 107.3 2.90x102 " -1.86x101" -3.26x10'" -1.77x1o-

1.8306 142.0 5.18x1026 -1.02x1020 -3.88x1018 -2.04x10-7 

2.0690 181.4 1.04x1027 -3.93x1020 -6.41x1019 -4.40x1o- 7 

2.3872 241.5 2.65x1027 -2.14x1021 -4.24x1019 -8.24x1o-7 

2.7055 310.3 5.86x1027 -7.47x1021 -2.34x1019 -1.28x10-6 

2.9444 367.6 8.68x1027 -1.55x1022 -1.00x1019 -1.79x10-6 

3.1829 429.8 9.68x1027 -2.49x1022 -3.7lx1018 -2.57x1o-s 

3.3421 474.1 6.79x1027 -2.25x1022 -1.29x1018 -3.31x10-6 

3.5811 544.9 3.07x1027 -1.53x1022 -3.39x1017 -4.98x10- 6 

3.8196 620.9 1.19x1027 -8.78x1021 -2.32x1018 -7.38x10-6 

4.0583 702.7 6.88x1026 -7.53x1021 1.25x1018 -1.09x10-5 

4.2975 791.0 3.76x1026 -6.05x1021 2.57x1019 -1.60x1o-5 

4.5369 887.0 2.12x1026 -5.37x1021 1.38x1020 -2.47x1o-s 

4.7710 991.1 1.18x1026 -4.90x1021 5.95x1020 -3.65x1o-s 

5.0078 1118.0 6.90x1025 -5.76x1021 2.57x1021 -4.62x1o-s 

1.9258 100.0 6.87x1020 -9.82x10'" -2.12x10'~ -1.46x1o-

2.2489 100.0 1.77x1027 -4.09x1020 -1.69x1019 -2.41x1o-7 

2.5309 100.0 4.06x1027 -1.22xl021 -7.78x1018 -3.02x1o- 7 

2.7846 100.0 6.55xl027 -2.43x1021 -2.66x1018 -3.7lx1o- 7 

3.0169 100.0 9.32x1027 -4.18x1021 -5.60xl017 -4.49xlo- 7 

3.2326 100.0 9.07xl027 -4.80x1021 -1.36xl017 -5.29x1o-7 

3.4346 100.0 5.12x1027 -3.08x1021 -2.41x1016 -6.02x1o-7 

3.6254 100.0 2.58x1027 -1.78x1021 -5.89x1015 -6.90x1o-7 

3.8065 100.0 1.24x1027 -1.00x1021 -6.01x1015 -8.06x1o-7 

3.9792 100.0 7.91x1026 -7.73x1020 -1.50x1015 -9.77xlo- 7 

4.1446 100.0 5.72xl026 -7.06x1020 7.48x1015 -1.23xlo-6 

4.3035 100.0 3.70xl026 -5.92xl020 3.76x1016 -1.60x1o-6 

4.4565 100.0 2.55xl026 -5.28x1020 1.31x1017 -2.07x1o-6 

4.6042 100.0 1.80xl026 -4.79x1020 3.61x1017 -2.66x1o- 6 

" 

Here A« denotes the mean rate of turbulent excitation and B« expresses the damping due to radiation and turbulence. We assume 
that both A« and B« are inversely proportional to Jt «' Therefore, in the absence of mode couplings all modes have the same energy. 8 

We include the effect of the dominant, class 1, mode couplings on the energy spectrum by adding equation (47) to equation (54) to 
obtain 

d!« =A«- B«E« + 92:« L fakhpkhp f"ao«PI K«,.P•n•r 12 b(w« + s1 Wp + s2 w1)(w«EpE1 + s1 wpE«E1 + s2 w7 E«Ep). (55) 
np,}'sy Jo 

The above set of coupled equations is solved to yield the equilibrium energies of the modes. The result for low-/ modes is shown in 
Figure 4 and for modes on n = 0 and 1 ridges is contained in Table 5. Note that the three-mode couplings reduce all of the mode 
energies, with the largest effect occurring for the highest values of w < wac and kh. In addition, the energy spectrum has developed a 
peak at a frequency of -4.0 mHz. 

It is not obvious how mode couplings produce a peak in the energy spectrum which in their absence would be flat. This effect has 
its roots in the geometry of kh- w diagram, and is best understood by reference to pseudomodes. Modes of fixed 1 = 100 and 

8 Numerical values for A. and B. are set by adopting 1.0 J.tHz and 5.0 x 1027 ergs for the line width and energy ofthe 5 minute radial mode. 
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TABLE 4 

ENERGY DISSIPATION RATE DUE TO MODE CoUPUNGS 

v (mHz) kh~=l E,(erg) T~ 1 (erg/sec) T~) (ergfsec) 11a (sec- 1 ) 

1.1140 122.7 2.90x1020 -2.20x10 1 ~ 3.75x10 1 ~ 5.34x1o-" 

1.5914 250.4 2.90x1026 -1.36x1020 -7.43x1019 -7.25x1o- 7 

1.7505 303.0 3.94x1026 -2.81x1020 -1.69x1020 -1.14x1o-6 

1.8620 342.8 5.70x1026 -6.93x1020 -2.56x1020 -1.66x1o-6 

1.9894 391.3 8.28x1026 -1.40x1021 -3.14x1020 -2.07x1o-6 

2.2282 490.9 1.66x1027 -4.69x1021 -3.34x1020 -3.03x1o-6 

2.3873 563.5 2.65x1027 -0.99x1022 -3.50x1020 -3.88x1o-6 

2.5463 641.1 4.26x1027 -2.13x1022 -3.25x1020 -5.08x1o-6 

2.7852 767.0 6.56x1027 -4.73x1022 -1.94x1020 -7.24x1o-6 

3.0239 904.1 9.37x1027 -9.38x1022 -1.05x1020 -1.00x1o-s 

3.1831 1001.8 9.68x1027 -1.20x1023 -6.55x1019 -1.24x1o-s 

3.3423 1104.5 6.79x1027 -1.08x1023 -2.25x1019 -1.59x1o-s 

3.5810 1267.9 3.07x1027 -6.86x1022 -l.llx1019 -2.23x1o-s 

3.7401 1383.1 1.61x1027 -4.61x1022 0.00 -2.86x1o-s 

3.9789 1565.3 7.91x1026 -3.28x1022 0.00 -4.15x1o-5 

4.3768 1894.0 3.07x1026 -2.54x1022 0.00 -8.27x1o-s 

4.6155 2106.3 1.75x1026 -2.31x1022 0.00 -1.32x1o-4 

4.9338 2406.9 8.06x1025 -2.10x1022 0.00 -2.61x1o- 4 

1.5913 107.3 2.90x1020 -2.36x10'" -3.65x10'" -2.07x10 

1.8306 142.0 5.18x1026 -1.07x1020 -5.31x1018 -2.17x1o- 7 

2.0690 181.4 1.04x1027 -3.55x1020 -7.34x1019 -4.12x1o-7 

2.3872 241.5 2.65x1027 -1.84x1021 -4.90x1019 -7.13x1o-7 

2.7055 310.3 5.86x1027 -5.88x1021 -2.76x1019 -1.01x10-6 

2.9444 367.6 8.68x1027 -1.20x1022 -1.17x1019 -1.38x10-6 

3.1829 429.8 9.68x1027 -1.94x1022 -4.2.4x1018 -2.00x1o-6 

3.3421 474.1 6.79x1027 -1.74x1022 -1.46x1018 -2.56x1o-6 

3.5811 544.9 3.07x1027 -1.09x1022 -3.74xl017 -3.55x1o-6 

3.8196 620.9 1.19x1027 -5.92x1021 -2.34x1018 -4.98x1o-6 

4.0583 702.7 6.88x1026 -5.36x1021 1.26x1018 -7.79x1o-6 

4.2975 791.0 3.76x1026 -4.95x1021 2.59x1019 -1.31x1o-s 

4.5369 887.0 2.12x1026 -5.08x1021 1.39x1020 -2.33x1o-s 

4.7710 991.1 1.18x1026 -6.49x1021 6.08x1020 -4.98x1o-s 

5.0078 1118.0 6.90x1025 -1.30x1022 2.65x1021 -1.50x1o-4 

1.9258 100.0 6.87x1020 -1.03x1020 -2.22x10 1 ~ -1.53x10 

2.2489 100.0 1.77x1027 -3.56x1020 -2.01x1019 -2.12x1o-7 

2.5309 100.0 4.06x1027 -9.55x1020 -1.01x1019 -2.38x1o- 7 

2.7846 100.0 6.55x1027 -1.68x1021 -3.36x1018 -2.57x1o- 7 

3.0169 100.0 9.32x1027 -2.53x1021 -6.94x1017 -2.72x1o- 7 

3.2326 100.0 9.07x1027 -2.64x1021 -1.76x1017 -2.91x1o-7 

3.4346 100.0 5.12x1027 -1.74x1021 -3.12x1016 -3.40x1o- 7 

3.6254 100.0 2.58x1027 -1.17x1021 -7.17x1015 -4.53x1o-7 

3.8065 100.0 1.24x1027 -7.84x1020 -6.47xl015 -6.32x1o-7 

3.9792 100.0 7.91x1026 -6.76x1020 -1.58xl015 -8.55x1o-7 

4.1446 100.0 5.72x1026 -6.19x1020 8.53x1015 -1.08x1o-6 

4.3035 100.0 3.70x1026 -4.76x1020 4.60x1016 -1.29x1o-6 

4.4565 100.0 2.55x1026 -3.85x1020 1.70x1017 -1.51x1o-6 

4.6042 100.0 1.80x1026 -3.44x1020 5.11x1017 -1.91x1o-6 

v ;:;;; 3.0 mHz couple most strongly to mode pairs consisting of a trapped mode on the f-ridge and a pseudomode on then= 1 ridge. 
The /-values of these modes typically fall in a segment of length AI"' 400. The central /-value of the segment increases with 
increasing v;:;;; 3 mHz, resulting in an increase in the dissipation rate. For v "'4 mHz, one end of the segment is at l"' 3000 which is 
where the.f-mode ridge terminates. Modes with l = 100 and v;:::; 4.0 mHz are most strongly coupled to mode pairs consisting of a 
trapped mode on the f-ridge and a pseudomode on then = 2 ridge. Therefore, for v in the range of~ mHz, where a transition from 
n = 1 to n = 2 coupling occurs, the dissipation rate is much smaller than that for v ;:;;; 3 mHz. With further increase in v ;:::; 4 mHz, 
modes with l = 100 couple to (f-mode, n = 2 mode) pairs with higher/, and the dissipation rate again increases with increasing v. 

Thus, the peak in the computed energy spectrum is accounted for by the termination ofthe.f-mode ridge near l = 3000. 
The position of the peak in the energy spectrum is essentially determined by the frequency separation between the n = 0 and 

n = 1 ridges at l "' 3000. This separation is -1 mHz larger for our model than it is for the Sun. Therefore, we expect that a similar 
calculation for a solar model would give rise to a peak in the energy spectrum at v "' 3 mHz. 

We note that mode couplings give rise to a constant line width near the low-frequency side of the peak, and a constant value for 
the product of energy and line width on the high-frequency side (see Table 5). Both of these properties are found to hold 
observationally (Libbrecht 1988). However, the residual uncertainties in our calculations are such that the significance of these 
qualitative similarities between theory and observation is, at most, suggestive. 
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FIG. 4.-Equilibrium energy. Modified energy spectrum due to mode couplings. 

g) Error Tests 

The energy transfer rates are the end product of a fairly long series of calculations. Their numerical values are the major result of 
our investigation, and we have tried to ensure that they are correct. In order to minimize the chances for errors, we devised and 
performed a set of tests of various parts of the calculations. 

Approximate analytic eigenfunctions were derived to check the eigenfunctions determined by the numerical solution of the 
differential equations (1) and (10). These analytic eigenfunctions were used to compute three-mode coupling coefficients, K«flr• which 
were compared to those computed from the numerical eigenfunctions. 

In our calculations ofY~ 1 > and Y~ 2 >, we varied the number of choices of mode p for a given mode a. We also interchanged the roles 
of modes fJ and y in these calculations. Finally, we summed ~ 2 > over all the trapped modes to verify that the class 2 couplings 
conserve the total energy in the trapped modes. 

V. DISCUSSION AND CONCLUSIONS 

a) Significance of Nonlinear Mode Coupling 

Nonlinear interactions transfer energy among the normal modes. The most important nonlinear interactions are those which 
couple two trapped modes to a propagating mode. These drain the energies of the trapped modes. As a consequence, all of the 
trapped modes, except the lowest frequency ones, suffer a net loss of energy due to nonlinear mode interactions. 

These calculated damping times due to mode coupling may be compared to the observationally determined lifetimes of the solar 
p-modes. Unfortunately, this comparison is currently restricted by lack of adequate observational data to low-degree modes near 
the peak of the 5 minute band. Moreover, there are significant residual uncertainties in the nonlinear damping rates associated with 
the upper limit we choose for the integrals which give the divergent coupling coefficients, and with the energies we adopt for the 
high-degree trapped modes. These uncertainties preclude our reaching any firm conclusion regarding the importance of nonlinear 
interactions in affecting the energies of the solar p-modes. 

The observational consequences of the three-mode couplings, if they are significant, follow from the dependence of the damping 
rates on l and w. The increase in damping rate with increasing l might give rise to a decline of the energy per mode with increasing l 
at fixed w. Furthermore, the rapid increase in damping rate as w approaches wac from below might be, at least in part, responsible 
for the steep decline in the energy per mode at the high-frequency end of the 5 minute band. This decline is generally attributed to 
radiative damping, but calculations of that process are not secure enough to rule out the existence of another, possibly dominant, 
contributor. 

b) Stabilizing Overstable Modes by Three-Mode Couplings 

More than 25 years after the discovery of the 5 minute oscillations by Leighton, Noyes, and Simon (1961) and Evans and Michard 
(1962), we are still uncertain as to how the p-modes are excited. There are two leading contenders for the excitation mechanism: self 
excitation by the opacity (K) mechanism (Ando and Osaki 1975; Goldreich and Keeley 1977a), and stochastic excitation by 
turbulent convection (Goldreich and Keeley 1977b). Unfortunately, neither observation nor theory has been able to establish which, 
if either, is the correct choice. The linear stability of the solar f- and p-modes is unresolved despite several theoretical investigations 
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TABLE 5 

MODIFICATION TO ENERGY SPECTRUM DUE TO MODE CoUPLINGS 

v (mHz) n khR0 = £ E"(erg) f" (sec I) B" (sec -l) 
1.1141 0 122.7 4.59x102' L93x1o- L77x10 

1.5915 0 250.4 2.60x1027 L83x1o- 6 9.53x1o- 7 

1.7507 0 303.0 2.28x1027 3.23x1o- 6 L47x10-6 

1.8621 0 342.8 2.10x1027 4.63x1o- 6 L95x1o-6 

1.9894 0 391.3 L98x1027 6.60x10- 6 2.62x1o-6 

2.2282 0 490.9 L97x1027 L09x1o-s 4.29x1o-6 

2.3873 0 563.5 2.12x1027 L36x1o- 5 5.75x1o-6 

2.5465 0 641.1 2.27x1027 L66x1o-s 7.53x1o-6 

2.7852 0 767.0 2.15x1027 2.52x1o-s L09x1o-s 

3.0239 0 904.1 L80x1027 4.16x1o-s L50x1o-s 

3.1831 0 1001.8 L72x1027 5.32x1o-s L83x1o-s 

3.3423 0 1104.5 L71x1027 6.43x1o-s 2.20x1o-s 

3.5810 0 1267.9 L49x1027 9.54x10- 5 2.83x1o-s 

3.7401 0 1383.1 L41x1027 1.18x10-4 3.31x1o-s 

3.9789 0 1565.3 L23x1027 L68x1o- 4 4.11x1o-s 

4.3768 0 1894.0 9.74x1026 2.91x1o-4 5.67x1o-s 

4.6155 0 2106.3 8.36x1026 4.03x1o- 4 6.74x1o-s 

4.9338 0 2406.9 6.58x1026 6.32x10- 4 8.32x1o-s 

1.5915 1 107.3 3.86x10"' 3.24x10 2.50x10 

1.8303 1 142.0 3.23x1027 7.45x10- 7 4.81x10-7 

2.0690 1 181.4 2.69x1027 L57x1o-6 8.42x1o-7 

2.3873 1 241.5 2.19x1027 3.63x1o-6 L59x10-6 

2.7056 1 310.3 2.04x1027 6.69x1o-6 2.73x1o-6 

2.9444 1 367.6 2.13x1027 9.11x1o- 6 3.88x1o-6 

3.1831 1 429.8 2.22x1027 1.20x1o-s 5.31x1o-6 

3.3423 1 474.1 2.15x1027 L50x1o-s 6.44x10-6 

3.5810 1 544.9 L83x1027 2.29x1o-s 8.38x1o-6 

3.8197 1 620.9 L49x1027 3.57x1o-5 L06x1o-s 

4.0585 1 702.7 L31x1027 5.06x1o-s L32x1o-s 

4.2972 1 791.0 L16x1027 6.92x1o-s L61x1o-s 

4.5359 1 887.0 8.82x1026 L09x1o- 4 L93x1o-s 

4.7746 1 991.1 6.41x1026 L77x1o- 4 2.26x1o-s 

5.0134 1 1118.0 3.81x1026 3.45x1o-4 2.63x1o-s 

1.9258 2 100.0 3.43x10' 5.20x10 3.57x10 

2.2441 3 100.0 2.80x1027 9.23x1o-7 5.17x1o-7 

2.5306 4 100.0 2.27x1027 L50x1o- 6 6.82x1o-7 

2.7852 5 100.0 L92x1027 2.20x1o- 6 8.46x1o-7 

3.0239 6 100.0 L74x1027 2.89x1o-6 L01x10-6 

3.2308 7 100.0 1.69x1027 3.42x1o- 6 L16x1o-6 

3.4377 8 100.0 L76x1027 3.70x1o-6 L30x1o-6 

3.6287 9 100.0 L92x1027 3.73x1o- 6 L43x1o-6 

3.8038 10 100.0 2.12x1027 3.66x1o- 6 L55x1o-6 

3.9789 11 100.0 2.23x1027 3.73x1o-6 L66x1o-6 

4.1380 12 100.0 2.07x1027 4.26x1o-6 L76x1o-6 

4.2972 13 100.0 L67x1027 5.54x1o-6 L85x1o-6 

4.4563 14 100.0 L23x1027 7.82x10- 6 L92x1o-6 

4.5996 15 100.0 8.72x1026 L14x1o- 5 L98x1o-6 

4.5996 15 100.0 8.72x1026 L14x1o-s L98x1o-6 

aimed at providing a conclusive answer (Ando and Osaki 1975; Goldreich and Keeley 1977a; Christensen-Dalsgaard and Frandsen 
1982; Antia, Chitre, and Narashima 1986; Kidman and Cox 1984). Its resolution must await significant advances in modeling the 
interaction of turbulent convection with pulsation, and in treating radiative transfer in the transition region between high and low 
optical depth. The inconclusive nature of previous stability calculations is apparent; small and uncertain effects control the delicate 
balance between stability and overstability. Calculations of the stochastic excitation of the solar modes are plagued by the lack of an 
adequate theory for the interaction of acoustic radiation with turbulence, although there is encouraging recent progress on this front 
(Goldreich and Kumar 1988). 

Given the current situation it is not clear how best to proceed to determine the mechanism responsible for the excitation of the 
p-modes. An alternative to refining the stability calculations or the theory of the interaction of acoustic radiation with turbulence is 
to assume that the modes are either stable or overstable and then to explore the implications of each assumption. As discussed 
below, this approach suggests that knowledge of the rates at which nonlinear interactions transfer energy among the normal modes 
would indirectly help to resolve the issue of mode stability. 

If we assume that at least some of the p-modes are linearly overstable, there must be a nonlinear mechanism which saturates the 
instability and accounts for the observed amplitudes of the modes. An obvious possibility is that overstable modes transfer energy to 
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damped modes. The lowest order mode couplings involve near-resonant mode triplets. In order to serve as an amplitude limiting 
process, these three-mode couplings must be able to drain the energy from the overstable modes on their linear e-folding time scales. 

If the solar p-modes are linearly stable, they probably owe their excitation to the emission of acoustic radiation by turbulence 
near the top of the Sun's convection zone. In that case, their damping is likely due to a combination of acoustic readsorption by the 
turbulence and radiative diffusion. The three-mode couplings are less crucial if the p-modes are stable. However, they still act to 
redistribute energy among the different modes. This raises the question of whether an individual mode is more strongly coupled to 
the turbulent convection or to other acoustic modes. 

Our calculations show that the energy decay rates due to mode couplings are, with significant residual uncertainties, probably 
smaller than the products of the observed line widths and energies of the p-modes in the 5 minute band. By itself, this is a marginal 
indication that overstable modes could not be stabilized by mode couplings. However, there is better argument against overstable 
modes. The strongest nonlinear couplings of eachf- and p-mode involve modes on the n = 0 (f-modes) ridge; the coupling strengths 
decrease rapidly with increasing n due to effects explained in § IV d. Figure 5 displays the contribution to the coupling coefficient for 
two different modes a and np = 0, 1 as a function of 1p. This contribution generally increases with increasing 1p until either no more 
pseudomodes y are found or wp ;;:: wac' It is also evident that the coupling strengths decrease in going from the np = 0 to the np = 1 
ridge. To interpret these trends note that the maximum value of kh on a ridge is proportional to (n + %)- 1• Hence the coupling 
coefficient decreases as (n + !)- 2, and the available phase space also decreases as (n + !)- 2• This implies that the contribution to '1« 
from ridge n decreases as (n + :i)- 6 , so for n« > 0, '1« is independent of E«, but is proportional to the energies of the modes on the 
fundamental ridge. 

If the choice of 1 independent mode energies has led us to seriously overestimate the energies of the high-1 f-modes, the most 
important couplings might involve the next higher available ridge. This would not affect our conclusion that '1« is independent of E« 
for low-1, high-n, p-modes. 

The arguments presented above convince us that three-mode couplings, previously considered the best candidate for saturating 
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the energies of overstable solar p-modes, l!,re not viable for this purpose. This result casts severe doubt on any proposal for 
overstable p-modes. Recent observational results (Kaufman 1988) indicate that the energies of high-/ solarf-modes are comparable 
to those of p-modes with the same frequency. Since the Lagrangian pressure perturbation almost vanishes forf-modes, it is unlikely 
that they would be overstable due to opacity mechanism. 

The research reported here was supported by a visiting scientist fellowship awarded toP. K. at HAO, and by NSF grant AST 
861299 and NASA grant NAGW 1303. We are grateful to Ken Libbrecht for scientific discussions and for providing observational 
data in advance of publication. We thank Tim Brown and Douglas Gough for making useful comments on an earlier version of the 
manuscript, and an anonymous referee for suggesting several improvements in our presentation. P. K. is indebted to Lynne 
Andrade and Vic Tisone for help with the computations that were performed on the Cray-1 at NCAR. 

APPENDIX 

The equations of inviscid fluid dynamics of a perfect gas with adiabatic index r follow from varying the Lagrangian (Newcomb 
1962): 

I [v2 p(x) J 
L = dx0 p 0(x0) 2 - (r _ l)p(x) - t/J(x) . (Al) 

The background configuration is specified by p0(x0), p0(x0) and v0 = 0. The variation is achieved by displacing the position of each 
fluid element from x 0 to x = x 0 +~.where~ is the Lagrangian displacement. The conservation laws of mass and entropy imply 

pdx = Podxo = P = Pof- 1 , (A2) 

and 

PP-r = PoPor = P = Pof-r, (A3) 

where f is the Jacobian of the transformation. The Lagrangian can be written in terms off and the background variables as 

f [v2 p0 f 1 -r J 
L = dxo Po 2 - Po<r _ l) - t/J(xo + ~) · (A4) 

The Jacobian 

f = det (.£!._) = det (1 + ~) ox0 ox0 

(A5) 

may be rewritten in mixed vector and Cartesian tensor notation as 

1 .. 1 . 1 2 1 .. 'k k. (V • ~ .. .. 1 3 f = 1 + (V • ~) - - ~·,}~ ·' +- (V • ~ +- ~•.1~1. ~ ·' _ -- ~··1~1.• +- (V • ~) 
2 2 3 2 6 ' 

(A6) 

where ~i,J is the derivative of ~; with respect to x1, and the summation convection for repeated indices as assumed. Expanding the 
Lagrangian in powers of the displacement, ~. with the aid of equation (A6), we obtain the second- and third-order Lagrangian 
densities, 

(A7) 

and 

23 = Po[<r ~ 1)2 (V. ~)3 + (r ~ 1) (V. ~>~i,J~j,i + ~ ~i,j~j,k~k,i]- ~o t/l.ijk~i~j~k. (A8) 

The final terms in 2 2 and 2 3 vanish for a uniform gravitational field. 
The Hamiltonian and Lagrangian densiti@s are related by 

{>2 

.Yr = {Jot~i at~i- 2. (A9) 

Using equations (A 7), (A8) and (A9), we derive the second- and third-order Hamiltonian densities, 

.Yf 2 = io I~; 12 + ~ [(r - l)(V . ~)2 + ~i,J~J.i] ' (AlO) 

and 

(All) 
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