
Nonlinear Interactions between Free Electrons

and Nanographenes

Joel D. Cox†,‡ and F. Javier García de Abajo∗,¶,§

†Center for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230

Odense M, Denmark

‡Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55,

DK-5230 Odense M, Denmark

¶ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and

Technology, 08860 Castelldefels (Barcelona), Spain

§ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23,

08010 Barcelona, Spain

E-mail: javier.garciadeabajo@nanophotonics.es

Abstract

Free electrons act as a source of highly confined, spectrally broad op-

tical fields that are widely used to map photonic modes with nanome-

ter/millielectronvolt space/energy resolution through currently available

electron energy-loss and cathodoluminescence spectroscopies. These tech-

niques are understood as probes of the linear optical response, while non-

linear dynamics has escaped observation with similar degree of spatial de-

tail, despite the strong enhancement of the electron evanescent field with

decreasing electron energy. Here, we show that the field accompanying

low-energy electrons can trigger anharmonic response in strongly nonlinear
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materials. Specifically, through realistic quantum-mechanical simulations,

we find that the interaction between . 100 eV electrons and plasmons in

graphene nanostructures gives rise to substantial optical nonlinearities that

are discernable as saturation and spectral shifts in the plasmonic features

revealed in the cathodoluminescence emission and electron energy-loss spec-

tra. Our results support the use of low-energy electron-beam spectroscopies

for the exploration of nonlinear optical processes in nanostructures.

Keywords: nonlinear optics, electron beams, graphene plasmons, electron microscopy,

nanographenes, cathodoluminescence

Optical spectroscopies rely on the response of the sample to the electromagnetic field of

an external light source. When combined with far-field microscopy, the spatial resolution

of these techniques is limited by diffraction to roughly half the light wavelength,1 while the

use of tips in scanning near-field optical setups permits imaging features with sizes down to

tens of nanometers.2 A substantial gain in spatial resolution can be achieved if the exter-

nal field is supplied by electron beams (e-beams), which can be currently focused down to

sub-Ångstrom spots, where spectral analysis of the energy losses experienced by the elec-

trons3–5 or the cathodoluminescence (CL) light emission resulting from their interaction with

the sample6 allow us to identify optical excitations with millielectronvolt energy resolution.

In an intuitive picture, the passage of an electron produces a transient evanescent electric

field that can be regarded as a broad optical pulse capable of exciting the sample. In CL

spectroscopy, an optical monochromator separates different frequency components of the

scattered far-field (i.e., different emitted photon energies) resulting from that interaction,

while in electron energy-loss spectroscopy (EELS) an electron analyzer is used to resolve the

excitation frequencies as spectral features associated with energy losses experienced by the

transmitted electrons. These techniques have been extensively applied to study plasmons

in nanostructures,7–12 optical modes in photonic crystals,13–15 and more recently, localized

phonon polaritons in the mid-infrared spectral range.3–5 The interaction of e-beams with
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engineered photonic structures has been also explored as a mechanism for integrated light

sources.16,17 Adding to the unprecedented combination of space and energy resolution en-

abled by electron beams, ultrafast temporal resolution has been achieved through the use

of ultrashort electron pulses emitted from a cathode under femtosecond laser pulse irradia-

tion.18–20

Because the excitation yield of optical modes by e-beams is generally found to be small

(e.g., < 10−4 per electron at typical beam energies ∼ 100 keV), EELS and CL are commonly

regarded as probes of the linear optical response. Nevertheless, the amplitude of the evanes-

cent field provided by a moving electron at a specific frequency (i.e., the spectral component

of that field in the frequency range of the sampled mode) scales as ∼ 1/v at low velocity

v ≪ c,6 thus resulting in a ∼ 1/v2 dependence of the excitation yield. In fact, for < 100 eV

electrons and strong plasmonic optical modes, the interaction has been theoretically shown

to reach unity order.21 We thus expect that low-energy e-beams can trigger an anharmonic

response in strongly nonlinear nanostructures such as graphene nanoislands, where a depar-

ture from the linear regime should be already observable at the level of a single plasmon

excitation.22

Here, we demonstrate through realistic quantum-mechanical simulations that low-energy

e-beams can indeed trigger nonlinear optical response in graphene nanoislands, giving rise

to saturation and sizeable frequency shifts of the peaks in CL emission and energy loss

spectra associated with the excitation of plasmons in the sample. We base these results on

time-domain simulations of the electron-graphene interaction, with the latter described in a

self-consistent field approximation that incorporates nonlinear processes at all orders, and

the electron introduced as the external field produced by a moving point charge. Nonlinear

effects are revealed by studying the dependence of CL and energy loss spectra on the charge of

the probe q, which shows a clear departure from the linear regime (i.e., quadratic dependence

on q) already for q = −e (one electron). In a practical scenario, we find that nonlinear effects

can be probed by studying the dependence of the emission or energy loss spectra on e-beam

3



energy and lateral position, where spectral shifts as large as the plasmon linewidth should be

feasible under optimal conditions. The present study supports the potential of low-energy

electrons to explore the nonlinear optical response of nanostructures with unprecedented

spatial resolution.
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Figure 1: Nonlinear optics with electron beams. (a) A free electron passing near
a nanostructure can interact multiple times via its evanescent Coulomb field with one of
the sample plasmons, triggering nonlinear optical response that in turn leaves a signature
in the resulting cathodoluminescence (CL) light emission. (b) The strength of the field
produced by the electron depends on distance to its trajectory and has an effect on a sample
resonance of lifetime τ similar to a spectrally narrow light pulse with an equivalent fluence
F eff ≈ e2c/(2πv2R2τ) (left scale) and electric field strength E = (2e/vR)/

√
τ∆ (right scale),

as shown in this plot for 25 eV electron energy (v ≈ c/100), ~τ−1 = 10 meV (τ ≈ 66 fs), and
∆ = 100 fs light pulse duration. Estimates of the onsets of nonlinear response in self-standing
gold spheres and silicon-supported graphene disks are shown for comparison as a function of
their size (see main text).

Equivalent Optical Pulse Fluence of a Free Electron. Electrons moving in vacuum

produce an evanescent electromagnetic field that can interact with the optical modes of a

sample, giving rise to energy losses and emission of radiation6 (Figure 1a). This is the basis of

the EELS and CL techniques, the spectra of which are conveniently studied by time-Fourier

transforming the electric field produced by the electron, Eext(r, t) =
∫

(dω/2π)e−iωtEext(r, ω).

For constant nonrelativistic velocity v ≪ c, the frequency-space electric field intensity reduces

to6 |Eext(r, ω)|2 = (2eω/v2)2 K2
m(ωR/v) as a function of distance R normal to the trajectory,

where Km are modified Bessel functions and m = 0 (m = 1) must be selected for directions

parallel (perpendicular) to the velocity vector v. For low photon energies ~ω . 1 eV and
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small distances (R ∼ few nm), the perpendicular component becomes dominant and the

Bessel function in this expression can be approximated as K1(θ) ≈ 1/θ, even for electron

velocities as small as v ∼ c/100 (i.e., ∼ 25 eV electrons), leading to a frequency-independent

field amplitude 2e/(vR).

The transient evanescent field of the electron presents a fluence F = (c/2π)
∫

dt|Eext(r, t)|2 =

(c/4π2)
∫

dω |Eext(r, ω)|2. In order to estimate the effect of this field on sample excitations,

we consider an optical mode of frequency ω0 and lifetime τ , which allows us to define an

effective fluence F eff = (c/4π2)
∫

dω |Eext(r, ω)|2/[1+4(ω−ω0)2τ 2] obtained by weighting the

spectral field components with the corresponding Lorentzian line shape of the resonance. As

we argue above, Eext(r, ω) is nearly independent of ω for the low resonance energies and small

distances under consideration (ω0R ≪ v), thus allowing us to obtain F eff ≈ e2c/(2πv2R2τ)

(Figure 1b, blue curve). Now, it is convenient to compare this estimate with a typical ul-

trashort Gaussian light pulse (2Re{E e−iω0t−t2/∆2} field profile) of ∆ = 100 fs duration and

the same fluence cE2∆/8π = F eff ; this leads to an equivalent light field peak amplitude

E ∼ 107 V/m at a distance R = 1 nm for 25 eV electrons acting on an excitation of width

~τ−1 = 10 meV (Figure 1b, blue line and right vertical axis), which is sufficient to produce

substantial nonlinear effects in several materials, and in particular, gold and graphene, as

we discuss below.

Highly doped graphene inherits a strong nonlinear response from its conical electronic

band structure with constant Fermi velocity vF ≈ c/300.23–25 Additionally, this material ex-

hibits electrically tunable infrared plasmons26–33 that have been argued to boost the nonlinear

response to unpredecedented levels.34 Following a previously reported analytical description

of plasmon-mediated nonlinear response of graphene islands,35 in excellent agreement with

quantum-mechanical calculations at the same level of theory used in the present work, we

can readily quantify the external optical field amplitude E that needs to be applied to a

nanographene structure in order to produce a nonlinear dipole strength similar to the linear

one; here, we present a succinct description of the procedure described in the Methods sec-
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tion: from the condition |α11
ω E| = |α31

ω E3|, where α11
ω and α31

ω are the linear and third-order

polarizabilities at frequency ω, we find |E|2 ≈ 1.39EF
3/2D1/2/(e3v2

Fτ 3) at the peak energy

0.60 e
√

EF/D of the dipolar plasmon sustained by a graphene disk supported on silicon

(ǫ = 12.1) with side length D and Fermi energy EF. This rough estimate (Figure 1b, grey

line, for EF = 1 eV) predicts that the onset of nonlinear response in graphene nanoislands

is below the effective fluence provided by a ∼ 25 eV electron at distances . 5 nm from the

beam. We note that the actual onset value depends on EF, τ , sample morphology, and

orientation of the electron trajectory, which could be further adjusted to make it even lower.

From the measured third-order nonlinear response of gold,36 we estimate E2 = |α11
ω /α31

ω | ∼

7×1015 V2/m2 for metal spheres at 532 nm light wavelength. This field onset, which is shown

in Figure 1b for comparison, lies above the equivalent optical field supplied by a 25 eV elec-

tron. However, we expect significantly lower onset fields due to near-field enhancement in

gold tips and narrow gaps, where nonlinear effects could perhaps be effectively triggered by

free electrons within the energy range considered here.

Nonlinear CL Emission from Graphene Nanohexagons. We apply the quantum-

mechanical atomistic formalism outlined in Methods to study the response of a hexagonal

graphene nanoisland with exclusively armchair edge terminations lying in the x-y plane,

consisting of N = 546 carbon atoms (≈ 4.5 nm diameter), and doped to a Fermi energy

EF = 1 eV. To examine the nonlinear response, we consider the interaction with a point

charge q (e.g., q = −e for an electron) that moves parallel to and z0 = 0.5 nm above the

graphene plane with velocity c/100 (≈ 25 eV energy for electrons), as illustrated in Figure

2a. The probe takes only ∼ 1.5 fs to fly over the island, but its effects, quantified by the

induced dipole p(t) (oriented along the beam direction due to the symmetry of the system),

are observed to last much longer (roughly over a time scale dictated by the relaxation time τ ,

in this case ≈ 66 fs), as shown in Figure 2c, where we normalize the dipole to the charge q in

order to directly visualize any departure from the linear regime. We find that the normalized

dipole does not present observable variations within the scale of the plot when comparing
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Figure 2: Nonlinear plasmonic CL emission from a graphene nanoisland. (a)
Schematic illustration of an armchair-edged hexagonal graphene nanoisland (546 C atoms,
4.55 nm diameter) interacting with a point charge q passing parallel to and 0.5 nm above the
graphene plane. (b) Absorption spectrum (cross section σabs ≈ (4πω/c)Im{α11

ω } normalized
to hexagon area) for normally incident light. (c) Time dependence of the dipole moment p(t)
induced on the island by probes of different charge q moving with velocity c/100 (≈ 25 eV
energy for electrons). For comparison, we show the external electric field component E‖

parallel to the beam direction produced by the electron at the hexagon center (right scale).
The electron passes above this point at t = 0. (d) CL emission probability normalized to the
squared probe charge q2. We set the Fermi energy to EF = 1 eV (doping charge Q ∼ 16e)
and the damping to ~τ−1 = 10 meV.
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results for q = −e/10 and q = −e/100, indicating that these small charges are still unable to

trigger a nonlinear response. However, we find p(t) to decay substantially faster over time

for q = −e (i.e., for an electron). This effect, which appears to evolve nonmonotonically

with increasing q, effectively saturates the response and becomes rather strong at q = −4e.

In all cases, p(t) oscillates with a period of ∼ 3.8 fs, in good agreement with the optical

period of the 1.1 eV dominant plasmon revealed in the linear optical absorption spectrum

of the structure (Figure 2b), which is confirmed in the CL emission spectra (Figure 2d):

the normalized intensities for q = −e/10 and q = −e/100 cannot be distinguished from

the result predicted by linear response theory on the scale of the plot and follow a similar

spectral profile as the absorption; however, the results for q = −e already reveal significant

spectral variations (attenuation, overall blue shift, and spectral reshaping), which become

dramatic as q increases further.

We note that, as explained in Methods, our simulations are performed in the nonrecoil

approximation, so that the probe is unperturbed by its interaction with the graphene nanois-

lands; however, recoil corrections for an electron probe are anticipated to introduce only small

modifications, such as frequency shifts of the emission features.17 Additionally, these results

are general for a point charge with constant velocity, and thus apply also to heavier particles

such as ions, for which the nonrecoil approximation should be quantitatively very accurate

down to low speeds, even below that considered here. Incidentally, given the small size of

the graphene island compared to the wavelength, the angular profile of emission should be

dipolar. Interestingly, the saturation and spectral shifts in CL emission resemble those aris-

ing due to the optical Kerr nonlinearity for plasmons that are resonantly driven by intense

ultrashort light pulses; such effects become more important for pulses of longer duration,

eventually approaching a bistable regime for cw illumination.34 Our findings confirm that a

moving point probe can trigger nonlinearities akin to those produced by intense ultrashort

optical pulses, with the probe velocity defining the strength of the nonlinear interaction.

Size, Doping, and Beam-Energy Dependence. Examining graphene islands of different

8



0.00

0.01

0.50 0.55 0.60 0.65

0.00

0.05

0.10

0.8 0.9 1.0 1.7 1.9 2.1

Q=8e

Q=6e

Q=4e
Q=2e

E
m

is
s
io

n
p

ro
b

a
b

ili
ty

,
Γ C

L
(1

0
-3

e
V

-1
)

Linear

Nonlinear
(a)

Q=0

(b) (c)

x2

(d) (e)

Photon energy (eV)

(f)

x2

7.1 nm0.5 nm 4.5 nm0.5 nm 2.0 nm0.5 nm

v=c/50 v=c/50

v=c/100v=c/100v=c/100

v=c/50

Figure 3: Size and doping dependence of free-electron-induced nonlinear CL. Sim-
ulated CL spectra for graphene nanohexagons with C-to-C diameters of (a,d) 7.11 nm (1302
C atoms), (b,e) 4.55 nm (546 atoms), and (c,f) 1.99 nm (114 atoms). Electrons are imping-
ing parallel to and 0.5 nm above the graphene plane with an energy of either (a-c) 100 eV
(v ≈ c/50) or (d-f) 25 eV (v ≈ c/100). The structures are doped with an additional charge Q
(see labels in (a)). Nonlinear time-domain simulations (solid curves) are compared to results
obtained from linear response theory (dashed curves).

diameter D (see upper insets in Figure 3), we corroborate the expected scaling of the intensity

associated with the onset of nonlinear effects as ∝ EF
3/2D1/2. Indeed, for a fixed doping

charge Q, we have37 EF ∝ Q1/2/D, therefore resulting in a Q1/2/D overall dependence of the

onset, so that stronger nonlinear effects are produced in larger hexagons for an equal number

of doping charges (cf. dashed (linear) and solid (nonlinear) curves of the same color in the

three structures considered in Figure 3) or when increasing Q in each of the hexagons. The

scaling of the probe field amplitude as ∝ 1/v also affects the magnitude of the generated

nonlinear effects, which are substantially increased when moving from v = c/50 (upper

plots in Figure 3) to v = c/100 (lower plots). Similar to the effects observed for the hexagon

examined in Figure 2, the nonlinear response produces plasmon blue shifts and attenuation of

the CL emission intensity for all of the hexagon sizes, electron energies, and doping conditions

considered in Figure 3. Generally, we observe more pronounced shifts in the CL emission

peaks for the largest graphene island, while those of the smallest island tend to saturate.
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Indeed, while plasmons are redshifted with increasing size as a result of the increase in aspect

ratio of the planar graphene island, the detailed spectral dependence on D and Q is strongly

influenced by quantum-mechanical effects for the small islands under consideration.22 In

particular, the emergence of gaps in electronic structure for these structures endow them

with a high sensitivity to minute changes in electron population, particularly for the smallest

island resembling a large polycyclic aromatic hydrocarbon; besides adding or removing an

individual electron, substantial changes in the plasmon resonance energies and associated

nonlinearities in the CL spectra can manifest from the re-distribution of electron population

for a raised graphene electron temperature, as we explore in Figure S1 in the Supplementary

Information (SI).

Practical Schemes for Nonlinear CL Measurements. The analysis of the CL intensities

performed above as a function of probe charge q is not practical in actual experiments

involving low-energy electrons. Instead, we propose to study the way in which the CL

emission spectra evolve when varying more easily controllable e-beam parameters. The

latter can affect the strength of the electron field actually acting on the sample, effectively

allowing us to explore the transition between linear and nonlinear regimes. Specifically,

we consider the spectral dependence either on the lateral position of the e-beam for fixed

electron energy (Figure 4a) or on electron energy for fixed e-beam position (Figure 4b).

The dependence on lateral impact parameter d shows a nonmonotonic evolution of both

the nonlinear plasmon blue shift and its associated emission intensity, which do however

follow a similar pattern, reaching a maximum of ∼ 10 meV at intermediate positions of the

e-beam. This result confirms the intuition that the contribution of the dominant transversal

field of the electron suffers sign cancellations when trying to excite the plasmon polarized

along the e-beam direction with a central symmetric trajectory. Also, an outer trajectory

produces comparatively weaker polarization and blue shift (e.g., ∼ 3 meV for d = 4 nm) be-

cause it does not overlap the bulk of the island. Consequently, an optimal interaction is found

in Figure 4a in an intermediate configuration, for which nonlinear effects are maximized.
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Additionally, we find that the nonlinearity exhibits a monotonic increase with decreasing

electron energy, in agreement with the low-velocity 1/v2 scaling of the electron field intensity.

Actually, linear simulations produce roughly energy-independent spectral line shapes that

have similar intensity when multiplied by the electron energy E0 (Figure 4b). In contrast,

nonlinear simulations reveal an increasing departure from this regime as the electron energy

is reduced, with blue shifts in the ∼ 3 − 10 meV range for the energies considered.

Nonlinear Response Revealed through EELS. The CL emission only accounts for a

fraction of the energy lost by the electron probe. The ratio between CL and EELS proba-

bilities is in fact similar to the ratio between the cross sections for optical elastic scattering

and extinction (see Figure S2 in SI), which is ∼ 10−5 under the conditions of Figure 2. For

simplicity, we estimate the EELS probability from the Fourier transform of the induced field,

using the same expression as in the weak coupling regime, under the assumption that multi-

ple nonlinear interactions do not produce significant re-distribution of energy-loss events in

the electron spectra (see Methods). We find that the calculated EELS spectra in Figure 4

(lower panels) show similar spectral profiles as the CL emission (upper panels), except for

the much larger probability and some small relative variations between linear and nonlinear

theories depending on electron energy and impact parameter. These conclusions are general

and apply to the rest of the structures considered in this work (see, for example, Figure S3

in the SI, which shows EELS spectra under the same conditions as in Figure 3).

Concluding Remarks

In summary, we have shown that the evanescent electromagnetic field carried by low-energy

electrons acts on the plasmon modes supported by graphene nanostructures in a similar way

as intense ultrashort laser pulses, capable of driving strong nonlinear response that should be

observable through saturation and frequency shifts of the resulting CL emission and EELS

peaks. The electron energy range under consideration (< 200 eV) is commonly used in low-
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energy electron microscopes (LEEMs), which can currently reach a spatial resolution down

to < 10 nm.38,39 These types of setups could be used to investigate the nonlinear response

of individual graphene nanoislands, such as chemically synthesized quantum dots.40 Alter-

natively, the nonlinear response of graphene nanoislands could be examined by depositing

them on a dielectric surface and analyzing either the EELS probability or the CL emission

associated with low-energy electrons that are grazingly scattered from such surface. Short

electron-graphene distances such as those considered in this work ∼ 0.5 nm are expected

under grazing-incidence surface electron scattering in the context of LEEM38,39 and elas-

tic low-energy electron diffraction41 (LEED), which is routinely employed to resolve crystal

surface structures. An important aspect of the interaction between the graphene nanois-

land and the electron beam relates to the lateral extension of the latter, as we expect that

stronger nonlinear effects arise when the focal spot is comparable to or smaller than the size

of the island; this condition can be achieved using either LEEMs38,39 or secondary-electron

microscopes (SEMs) equipped with CL acquisition systems42 to explore islands in the few-

nm range.40 The rate of photon emission and loss events is also an important parameter

to be taken into account for the experimental observation of the effects here predicted. In

particular, from the CL and EELS spectra presented in Figure 4, we find ∼ 10−7 photons

and ∼ 10−2 loss events associated with the main plasmon feature per incident electron; this

CL yield is certainly challenging (although higher rates could be achieved under grazing

incidence, which allows the electron to constructively interact with a large number of islands

deposited on a substrate), while the EELS probability is sufficiently large to be comfortably

measured using currently available setups. Obviously, an increase in the nonlinear response

should arise when using highly charged ions as probes instead of electrons, for example under

glancing incidence on a surface where the islands are deposited, following similar methods as

in previous studies of ion-surface interaction.43 CL emission and EELS spectra convey sim-

ilar information on the nonlinear response, which could be complemented by simultaneous

interaction with strong light pulses, as recently proposed in the context of PINEM.44
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The possibility of inducing strong nonlinear effects on the nanoscale using a single low-

energy electron offers an appealing alternative to conventional nonlinear optical experiments

relying on ultrafast and high power lasers. Bridging current research activities in electron

spectroscopy and nonlinear optics, this concept adds a new dimension to CL and EELS, while

elucidating nonlinear dynamics of nanostructured materials without risking optically-induced

damage by high-fluence pulses and enabling a gain in spatial resolution by several orders

of magnitude when comparing electron- and light-beam focal spots. Single-free-electron-

induced nonlinearity further suggests a mechanism to blockade the excitation of nanoscale

optical resonances, potentially enabling an electron-based analogue of ultrafast all-optical

switching, and warranting future studies on the quantum information that can be encoded

and transferred between nanoscale optical resonators and individual free electrons.

Methods

Analytical Comparison of Electron- and Light-Induced Nonlinearities. The non-

linear optical response of light-driven plasmon resonances supported by graphene nanostruc-

tures of & 10 nm lateral size can be described in a semi-analytical fashion following previously

described methods,35 which we apply here to obtain an estimate for the equivalent optical

fluence associated with the passage of a free electron, as shown in Figure 1b. We consider for

simplicity a graphene disk of diameter D and Fermi energy EF deposited on silicon (ǫ = 12.1)

and described by the local Drude conductivity σ(ω) = (ie2EF/π~2)/(ω + iτ−1) with inelastic

lifetime τ . We focus on the disk dipolar plasmon, whose energy is ~ω ≈ e
√

EF/(−πη1ǫD) ≈

0.60e
√

EF/D with η1 = −0.073.35 Now, we estimate the optical electric field amplitude

E that is required to trigger large nonlinear effects from the condition that the induced

dipole components |α11
ω E| and |α31

ω E3| associated with linear and third-order Kerr nonlinear

response, respectively, have the same magnitude. Using analytical expressions for the respec-

tive polarizabilities α11
ω (eq 29a in Ref. 35) and α31

ω (eq 29c in Ref. 35) under the assumption
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ωτ ≫ 1, we obtain the condition |E|2 = |α11
ω /α31

ω | = C × ~EF
3/2D1/2/(e3v2

Fτ 3), where the

coefficient C = 8
√−πη1ǫζ

2/9ξ̃ ≈ 1.39 is obtained from the values ζ = 0.85 and ξ̃ = 0.77

tabulated in Table I of Ref. 35.

Quantum-Mechanical Description of e-Beam Interactions with Nanographenes.

We consider a graphene nanoisland lying in the z = 0 plane and interacting with a point

charge q (e.g., q = −e for an electron) that moves with velocity v along the trajectory

r = re + vt and passes by the position re at time t = 0. We take v ≪ c, allowing us to

safely neglect retardation effects. Additionally, we adopt the nonrecoil approximation by

maintaining v constant, thus disregarding changes in v arising from energy exchanges with

the sample; this is a reasonable assumption in the present study, where the probe kinetic

energy is large compared with the emitted photon energy ~ω. Although we consider doped

graphene islands, we neglect the effect of additional charge carriers on the trajectory of the

probe, which is a reasonable approximation for charge transfer from a substrate (i.e., when

extra graphene carriers are electrically neutralized by opposite charges on the substrate).

The external potential can thus be written as

φext(r, t) =
q

|r − re − vt| . (1)

Following previous work,34 we characterize the response of the graphene nanoisland to the

probe through the induced charge density ρind
l (t) associated with the out-of-plane 2p orbitals

|l〉 located at the carbon sites Rl = (xl, yl) (one orbital per carbon atom). The induced charge

is computed from the single-particle density matrix ρ according to ρind
l = −2e

∑

l(ρll − ρ0
ll),

with a factor of 2 accounting for spin degeneracy and the time dependent density matrix

elements ρll′ in the site basis governed by34

i~
∂ρll′

∂t
=

∑

l′′

(

HTB
ll′′ ρl′′l′ − ρll′′H

TB
l′′l′

)

− e(φl − φl′)ρll′ − i~
τ

(

ρll′ − ρ0
ll′

)

. (2)

In this equation of motion, the kinetic tight-binding Hamiltonian HTB consists of a −2.8 eV
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nearest-neighbor hopping37 and yields energy eigenvalues ~εj satisfying ~εj|j〉 = HTB|j〉,

such that the eigenstates |j〉 are mapped onto the site basis by real-valued expansion co-

efficients ajl according to |j〉 =
∑

l ajl|l〉. The self-consistent electrostatic potential φl =

φext
l +

∑

l′ vll′ρ
ind
l′ describes the external potential (eq 1) and electron-electron Hartree in-

teraction in graphene, with vll′ denoting the spatial dependence of the Coulomb repul-

sion between electrons at carbon sites Rl and Rl′ .
45 Additionally, the inelastic scattering

of graphene electrons is treated by relaxing the system with a phenomenological time τ

(~τ−1 = 10 meV throughout this work) to the equilibrium density matrix ρ0
ll′ =

∑

j fjajlajl′ ,

constructed from the state occupation factors fj. When the graphene doping is specified by

a Fermi energy EF, the state occupation factors fj follow the Fermi-Dirac statistics, such

that fj =
[

1 + e(εj−EF)/kBT
]−1

, choosing an electron temperature T = 0 throughout this

work except in Figure S1 of the SI. When a doping charge Q is specified instead of EF,

we determine fj by sequentially filling the lowest-energy unoccupied states with up to two

spin-degenerate electrons (imposing equal values for degenerate states) until reaching a total

of 2
∑

j fj = N − Q/e electrons, where N is the number of carbon atoms.

Time-Domain Simulations. Starting at a time for which the probe charge is still far away

from the graphene structure, direct numerical integration of eq 2 yields the density matrix

at an arbitrary time t, allowing us to extract the time-evolving induced dipole moment

p(t) =
∑

l ρind
l Rl from which CL spectra are obtained through Fourier analysis. Specifically,

we decompose p(t) =
∫

(dω/2π)e−iωtpω and calculate the frequency-resolved emission proba-

bility (photons emitted per unit time and frequency range) from the far-field integral of the

Poynting vector as6

ΓCL =
2ω3

3π~c3
|pω|2. (3)

For EELS, we follow methods previously developed in the weak-coupling regime,6 which

should provide a reasonable estimate of the transmitted spectra, although more elaborate
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analysis beyond the scope of this work is needed to conclusively elucidate the role of mul-

tiple nonlinear interactions in redistributing energy losses in the resulting spectra. In the

nonretarded limit, the weak-coupling EELS probability reduces to

ΓEELS =
e

π~

∫

dtRe
{

e−iωt∂zφind(re + vt, ω)
}

, (4)

where the induced potential

φind(r, ω) =
∑

l

ρind
ω,l

|r − Rl|
(5)

is computed from the frequency-space induced charge ρind
ω,l =

∫

dt ρind
l (t)eiωt. Direct insertion

of eq 5 into eq 4 yields the more explicit expressions

Γ⊥
EELS(ω) =

2e

π~v

∑

l

K0

(

ω

v
|Rl − Re|

)

Im
{

ρind
ω,l

}

, (6a)

Γ‖
EELS(ω) =

2e

π~v

∑

l

K0

(

ω

v

√

(yl − d)2 + z2
e

)

Im
{

ρind
ω,l e

−iωxl/v
}

(6b)

for perpendicular (v ‖ ẑ, re = Re = (xe, ye)) and parallel (v||x̂, re = (0, d, ze)) trajectories,

where K0 is a modified Bessel function.

Linear Response. Retaining linear terms in the perturbation expansion of eq 2 and, in

the spirit of the random-phase approximation (RPA), replacing the external potential by the

self-consistent potential, one obtains the expression45,46

ρind
ω,l =

∑

l′
χll′φ

ext
ω,l′ (7)

for the induced charge, where χ is the self-consistent susceptibility expressed in terms of the

noninteracting susceptiblity

χ0
ll′ =

2e2

~

∑

jj′

(fj′ − fj)
ajlaj′lajl′aj′l′

ω + i/2τ − (εj − εj′)
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according to χ = χ0 · (1 − χ0 · v)−1 for matrices indexed by l, and vll′ is the above-

mentioned Coulomb interaction. The Fourier transform of the external potential φext
ω,l =

∫

dt φext(Rl, t)eiωt (see eq 1) admits the analytical expressions φext
ω,l = (2q/v)K0 [(ω/v)|Rl − Re|]

and φext
ω,l = (2q/v)K0

[

(ω/v)
√

(yl − d)2 + z2
e

]

eiωxl/v for perpendicular and parallel trajecto-

ries, respectively, which we use to obtain ρind
ω,l from eq 7, and this in turn to calculate CL

and EELS probabilities through eqs 3 and 6.

Supplementary Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.xxx

We show the dependence of the CL probability on the graphene electron temperature,

the relative magnitude of CL and EELS probabilities, and the EELS counterpart of Figure

3.
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