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The physical system under consideration is the flow above a rotating disk and its cross-flow

instability, which is a typical route to turbulence in three-dimensional boundary layers. Our aim is

to study the nonlinear properties of the wavefield through a Volterra series equation. The kernels of

the Volterra expansion, which contain relevant physical information about the system, are estimated

by fitting two-point measurements via a nonlinear parametric model. We then consider describing

the wavefield with the complex Ginzburg–Landau equation, and derive analytical relations which

express the coefficients of the Ginzburg–Landau equation in terms of the kernels of the Volterra

expansion. These relations must hold for a large class of weakly nonlinear systems, in fluid as well

as in plasma physics. © 2000 American Institute of Physics. @S1054-1500~00!00204-4#

In this paper we analyze the results of a rotating disk

flow experiment, using a Volterra series equation. Volt-

erra models can describe a wide variety of nonlinear be-

havior, with the kernels of the Volterra series carrying

the physical information about the system under study;

in particular, the higher order kernels represent the in-

tensity of nonlinear interactions between the Fourier

components of the wavefield. This approach has mostly

been used to characterize nonlinear phenomena in plas-

mas: here, we explore the possibility of applying the same

kind of approach to fluid mechanics, and present a pro-

cedure for extracting Volterra kernels from experimental

two-point measurements of the fluid velocity. We then

translate our results in terms of a Ginzburg–Landau

model, which is extensively used in fluid dynamics to de-

scribe instabilities and transition to turbulence. More

precisely, we show that the coefficients of the Ginzburg–

Landau equation can be analytically calculated as func-

tions of the kernels of the Volterra series equation. This

gives an original method of estimating the Ginzburg–

Landau coefficients from experimental data, which is a

notoriously difficult task, especially when the system is

well beyond the instability threshold.

I. INTRODUCTION

Volterra series equations were first applied to the study

of nonlinear systems by Wiener1 and can be used to describe

a large variety of weakly nonlinear behavior.2,3 Recently, this

approach has mostly been used for modeling nonlinear inter-

actions and transition to turbulence in plasmas.4,5 In this pa-

per, we apply the same type of analysis to a fluid system: we

use a Volterra equation, whose kernels will be estimated us-

ing two-point measurements of the wavefield, to discuss

some properties of the flow in the boundary layer above a

rotating disk.6,7

Our main aim in this article is to examine the relation

existing between the Volterra model and the complex

Ginzburg–Landau ~GL! amplitude equation, which is one of

the classical tools used to describe the instability of flows

and their transition to turbulence.8,9 We will indeed show

that, if a GL equation is applicable, then its coefficients can

be analytically calculated as functions of the kernels of the

Volterra series equation.

We stress that our approach is not restricted to the GL

equation or to a particular physical system, but holds for a

large class of weakly nonlinear systems ~described, for ex-

ample, by the nonlinear Schrödinger equation, or the Swift–

Hohenberg equation!, under some general hypotheses that

will be specified in the following.

This way of establishing a quantitative link between the

experimental signal and the GL model, apart from its theo-

retical interest, also has a practical importance, since the

identification of coefficients of the GL equation from finite

and noise corrupted data is notoriously difficult. Volterra

models can handle a much larger class of nonlinearities than

those described by the GL equation, so our approach can also

be used to test if such an amplitude equation is actually

applicable to a particular physical system. This last point is

important since many experiments have been set up for mea-

suring parameters of the GL equation, without actually pro-

viding efficient means for validating the use of such a model.

a!Electronic mail: floriani@cpt.univ-mrs.fr
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The paper is organized as follows: in Sec. II we will

present the main features of rotating disk flow instabilities,

and briefly describe the experiment that produced the data

we analyze here. In Sec. III we will define the Volterra

model and discuss its physical interpretation. Section IV is

devoted to numerical aspects of model identification while a

first overview of the results obtained with the rotating disk

data is given in Sec. V. In Sec. VI we will present the ana-

lytical calculation of the coefficients of the complex

Ginzburg–Landau equation from Volterra kernels. Finally,

the results of Sec. VI are applied to the rotating disk flow in

Sec. VII.

II. ROTATING DISK FLOW INSTABILITIES

Ekman10 was the first in 1905 to formulate the math-

ematical expression of the rotating velocity field of the atmo-

spheric boundary layer at the terrestrial poles. His analysis

was based on the linearization of the fluid motion equations

and the search for self-similar solutions. He supposed that

the fluid and the disk angular velocities are very close to one

another. The solution he wrote takes the form of a spiral,

now called the ‘‘Ekman Spiral,’’ and is mainly localized in a

thin boundary layer near the rotating disk. Later, in 1921,

Karman generalized this search for self-similar solutions11 to

the full nonlinear case of a revolving disk limiting a semi-

infinite volume of a fluid initially at rest. But it is only from

the sixties that the stability of the Ekman or Karman bound-

ary layers was approached. Faller12 presented in 1991 a re-

view of the stability of these flows. Two types of instabilities

appear in a generic way. They are called type I and type II

instabilities.13 Type II instability corresponds to a destabili-

zation by the combined effects of the forces due to the Co-

riolis and viscous effects. It produces waves which are rolled

up in spirals in a contrary direction to the disk rotation. On

the other hand, the study of Stuart14 shows that type I insta-

bility is inviscid and comes from the presence of unstable

inflection points in the radial velocity profiles. This instabil-

ity also produces spiral waves but which are rolled up in the

direction of rotation of the disk. A great amount of experi-

mental and analytical work has been devoted to this type I

instability which is a paradigm for the study of laminar–

turbulent transition in three-dimensional boundary layer

flows.15–18 In particular, one of the most recent analyses of

these flows was realized by Lingwood,19 who demonstrated

that these instabilities experience a transition from convec-

tive to absolute regimes at given Reynolds numbers which

seem to correspond to the Reynolds numbers where the tran-

sition to turbulence is usually observed.

As the characteristic boundary layer thickness is d
5An/V where n is the viscosity of the fluid and V the disk

angular velocity, one can define the Reynolds number of the

flow at radius r by Re5r/d5AVr2/n . This parameter will

grow as a fluid particle moves away from the center of the

disk. The flow near the center is then dominated by viscous

effects which damp the disturbances: the zone is occupied by

a laminar state. But starting from a critical Reynolds

number,6 three-dimensional disturbances grow and propagate

in the boundary layer. This part of the disk is called the

transition zone where more or less quite localized

wavepackets20 appear and form a crown of vortices at the

nonlinear stage of their development. Finally, at the periph-

ery of this zone, the flow is disordered, and presents a tur-

bulent aspect. These three concentric zones are visualized in

the illustration of Fig. 1, obtained by dye injection.21

The anemometric signals we analyze here come from

experiments in which a small roughness element was glued

on the disk surface, just under the linear threshold.7 A full

description of the experimental apparatus is given in Refs. 6,

7 and the main features of the setup are the following. A

stainless steel disk having a diameter of 500 mm, is mounted

on a vertical shaft and immersed in a filled up water tank.

The disk angular velocity V is fixed at 1 Hz. Above this

disk, a circular Plexiglas lid is maintained at a distance of 20

mm from the disk by a vertical shroud. This cylindrical wall

has an inner diameter of 700 mm. Two anemometric probes

are plunged vertically through openings practiced in the lid

and are positioned at a distance of 0,6 mm above the disk

surface at the desired radial location; they are oriented as

shown in Fig. 2. The sensors are directed radially in such a

way that the hot films are mainly sensitive to azimuthal ve-

locity fluctuations.

A wave packet of type I instability is generated by the

roughness element. Its frequency is centered around vc

532 Hz, and its shape widens as its amplitude grows; see

FIG. 1. Type I instability waves in the Karman boundary layer ~Ref. 21!.

FIG. 2. Orientation of the anemometric probes ~marked by dots! with re-

spect to the flow rotation. The wavenumber we measure is the projection ka

of k along Dx. In the present experiment, Dx58 mm and e'18 deg.
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Fig. 3. The critical Reynolds number has been found7 to be

about Re'280, while developed turbulence takes over at

Re'500.

As presented in Ref. 7, finite amplitude effects affect the

growth and the dynamics of these waves. In particular, it was

qualitatively shown that a one-dimensional complex

Ginzburg–Landau equation could model some experimental

features such as the growth of harmonic modes or the fre-

quency shift due to finite amplitude of the waves. The ex-

perimental dispersion relation was even successfully tested

against the theoretical one. Note that the Ginzburg–Landau

equation has been widely used in hydrodynamics in order to

model thermal convection22 or wakes23 for instance. Usually,

to evaluate the parameters of the equation, experimentalists

study the impulse response of the system under its instability

threshold. However, when the flow is already in a chaotic

regime, the obtention of the parameters is much more deli-

cate and several techniques have already been used more or

less successfully: optimization techniques24,25 or proper or-

thogonal decompositions.26 The inversion problem is known

to be difficult in this case of chaotic dynamics because of the

presence of unavoidable experimental noise that pollutes the

data.

III. DEFINITION OF THE VOLTERRA MODEL

Since our objective is to quantify the wavefield proper-

ties for various Reynolds numbers, it is essential that we use

a model which can be identified in an unambiguous way

from experimental data, while giving direct access to the

physical properties of interest. Volterra models are a good

candidate for this. They can accommodate more types of

nonlinearities than the Ginzburg–Landau equation, while

still offering a straightforward physical interpretation. Our

decision to apply such models is further motivated by a de-

sire to leave room for possible unsuspected features that

could not be described by the GL equation.

Let v(x ,t ,Re) be the azimuthal fluid velocity recorded at

time t, position x and Reynolds number Re. A general dy-

namical model for the wavefield amplitude is

]v~x ,t ,Re!

]x
5F„v~x ,t ,Re!…,

where F is a continuous, nonlinear and time-invariant opera-

tor. We write F as a Volterra series:

]v i~x ,Re!

]x
5 (

k50

`

gk~Re!v i2k~x ,Re!

1 (
k50

`

(
l50

`

gk ,l~Re!v i2k~x ,Re!v i2l~x ,Re!

1 (
k50

`

(
l50

`

(
m50

`

gk ,l ,m~Re!v i2k~x ,Re!

3v i2l~x ,Re!v i2m~x ,Re!1••• . ~1!

The wavefield v is sampled at a constant rate, so a discrete

version of the Volterra series is used here, with the notation

v i(x ,Re)5v(x ,t5t i ,Re). The coefficients gk ,gk ,l and gk ,l ,m

are, respectively, called first, second and third order Volterra

kernels. In the following, the dependence of v i on x and Re

and the dependence of the kernels g on Re will sometimes be

omitted, to ease notation.

An expression of the type ~1! for F, local in space and

convolutive in time, is applicable to a large class of causal

systems. In our case, causality is guaranteed by the convec-

tive nature of the instability.

In a weakly nonlinear system like the rotating disk

boundary layer instability, one would expect the lowest order

terms of the series to rule the dynamics. This will indeed be

the case, allowing us to truncate the Volterra series after

cubic terms. Furthermore, since we are dealing with nonlin-

early interacting waves, it is appropriate to consider Fourier

modes of the wavefield. The discrete Fourier transform in

time of Eq. ~1! gives

FIG. 3. Excerpt of the wavefield amplitude as measured by the two probes,

for different Reynolds numbers. The downstream probe signal is in bold,

and amplitude units are arbitrary. The roughness element is approximately

located at 0.4 sec. See also Fig. 4 of Ref. 7.
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] v̂~x ,v !

]x
5G1~v !v̂~x ,v !

1 (
v11v25v

G2~v1 ,v2!v̂~x ,v1!v̂~x ,v2!

1 (
v11v21v35v

G3~v1 ,v2 ,v3!

3 v̂~x ,v1!v̂~x ,v2!v̂~x ,v3!1••• , ~2!

where v̂(v) stands for the Fourier transform of v i at fre-

quency ~unless stated otherwise, we shall call frequency

what normally should be the angular frequency! v . The link

between the Volterra kernels in Fourier space and their tem-

poral counterparts is established by Ref. 27:

G1~v !5 (
k50

`

gke ivk,

G2~v1 ,v2!5 (
k50

`

(
l50

`

gk ,le
i(v1k1v2l), ~3!

G3~v1 ,v2 ,v3!5 (
k50

`

(
l50

`

(
m50

`

gk ,l ,me i(v1k1v2l1v3m), . . . .

Equation ~2! shows that the quadratic kernel G2(v1 ,v2)

is associated with three-wave interactions that satisfy the

resonance condition v11v25v , whereas the cubic term

G3(v1 ,v2 ,v3) is related to four-wave interactions v11v2

1v35v . Typical examples are decay instabilities for the

former and modulational instabilities for the latter. Kernels

of different orders are thus directly related to specific physi-

cal processes. Likewise, the imaginary part of the linear ker-

nel is associated with the wavefield dispersion and its real

part is associated to the linear growth rate. Much work on

this topic has been done by Zakharov and his co-workers in

the framework of Hamiltonian systems.3

Another motivation for using a Fourier representation of

the Volterra equation is that it gives access to a key quantity

for weakly nonlinear wavefields, which is the spectral energy

flux. Although the analysis of such spectral energy transfers

falls beyond the scope of this article, we nevertheless men-

tion how they are related to the Volterra kernels. Two appli-

cations are described in Refs. 4 and 5.

We start by assuming that the weak turbulence approxi-

mation holds, which supposes that the number of interacting

waves is sufficiently large for phase decoherence to be effec-

tive. In this case, the spectral energy density E, which de-

scribes the spatial variation of the wavefield energy density,

can be defined as

E~x ,v ,Re!5^v̂*~x ,v ,Re!v̂~x ,v8,Re!&dv ,v8
, ~4!

where * denotes complex conjugation, d is the Dirac delta

function, and brackets denote ensemble averaging ~assumed

to be equivalent to time-averaging by ergodicity!.
Combining Eqs. ~2! and ~4! gives the kinetic equation28

]E~x ,v !

]x
5T1~x ,v !1 (

v11v25v
T2~x ,v1 ,v2!

1 (
v11v21v35v

T3~x ,v1 ,v2 ,v3!1••• .

The expressions for the first three energy transfer functions

are

T1~x ,v !52ReG1~v !E~x ,v !,

T2~x ,v1 ,v2!52Re (
v11v25v

^G2~v1 ,v2!v̂~x ,v1!

3 v̂~x ,v2!v̂*~x ,v !&,

T3~x ,v1 ,v2 ,v3!52Re (
v11v21v35v

^G3~v1 ,v2 ,v3!

3 v̂~x ,v1!v̂~x ,v2!

3 v̂~x ,v3!v̂*~x ,v !&,

where Rez stands for the real part of z. These transfer func-

tions tell us how energy at a given frequency v is redistrib-

uted to other Fourier modes by nonlinear wave–wave inter-

actions; such couplings are a hallmark of weakly nonlinear

systems. A negative quadratic energy transfer T2(v1 ,v2),

for example, implies an energy loss at v which is transferred

by three-wave interactions to Fourier modes with frequencies

v1 and v2 ~with v11v25v). Negative transfers typically

arise when a linear instability needs to be saturated. All these

quantities can be directly estimated from both the time-

domain and frequency-domain Volterra series.

A final modification concerns the estimation of the spa-

tial derivative from the two-point measurements. If the probe

separation Dx is sufficiently small compared to the wave-

length ~i.e., if k•Dx!1), then we may write

]v i~x ,Re!

]x
'

v i~x1Dx ,Re!2v i~x ,Re!

Dx
.

Using this result, we may express the Volterra model into the

more convenient framework of transfer functions. For this

we consider the rotating fluid between the two probes as a

causal and open loop system that reacts to a given excitation

~5 the input, or upstream probe! by giving a response ~5 the

output, or downstream probe!. The Volterra model then de-

scribes the nonlinear transfer function between the observa-

tion points.4 It can be written as

u i5v i~x ,Re! ~ the input!,

~5!
y i5v i~x1Dx ,Re! ~ the output!

5 (
k50

n

ḡku i2k1 (
k50

n

(
l50

n

ḡk ,lu i2ku i2l

1 (
k50

n

(
l50

n

(
m50

n

ḡk ,l ,mu i2ku i2lu i2m1•••1e i ,

837Chaos, Vol. 10, No. 4, 2000 Nonlinear interactions



where e i is the residual error to be minimized. The coeffi-

cients ḡ of the transfer function are related to the Volterra

kernels @Eq. ~1!# by

g5
ḡ

Dx
,

except for the linear term of zero lag, g05( ḡ021)/Dx . Note

that in contrast to Eq. ~1!, the number of considered lags is

now bounded by n, to comply with the finite length of the

time series.

Although the closeness of the probes ~i.e., the condition

k•Dx!1) was imposed above to approximate the spatial

derivative of the wavefield, it can be relaxed in situations

like here where we are dealing with an amplitude equation

and one dominating Fourier mode. What matters is that the

characteristic scale associated with the evolution of the wave

envelope and not the carrier itself. This scale should be small

as compared to the probe spacing, and yet large enough to

make nonlinear effects easily distinguishable. In our experi-

ment k•Dx'1 provides a reasonable compromise in the lin-

ear and weakly nonlinear regimes.

IV. VOLTERRA MODEL IDENTIFICATION

Now that we have selected a physically relevant model,

the next step consists in identifying that model from finite

and noise-corrupted time series. There is vast literature on

theoretical properties of Volterra models2,29,30 but relatively

little is known about their statistical properties and their in-

ference from experimental data.

Most approaches to Volterra model identification so far

have been carried out in the frequency domain.4,5,31,32 This is

indeed justified when the system dynamics is dominated by a

limited number of interacting modes. The advantage of a

model equation like ~2! is that the unknown kernels enter the

problem in a linear way, which means that they can be esti-

mated by standard linear regression techniques.

Unfortunately, frequency-domain identification leads to

ill-conditioned problems. Because of this, most studies have

been restricted so far to quadratically nonlinear models only,

with relatively few Fourier modes. It is therefore of prime

importance to find a parsimonious model if we wish to in-

vestigate cubic and higher order wave interactions in our

experiment.

To alleviate the problem of ill-conditioning, we estimate

the Volterra model in the time domain, and subsequently

compute the kernels in the Fourier domain using Eq. ~3!.
Indeed, the significant kernels are generally easier to identify

and to validate in the time domain. Quite often, less than a

dozen suitably chosen kernels suffice to fit the data with

reasonable accuracy.

It should be noted that the time-domain Volterra model

~1! belongs to the class of more general parametric models

called Nonlinear AutoRegressive Moving Average with

eXogeneous inputs ~NARMAX!. The ability of such models

to fit various types of nonlinear systems has led to a large

interest in them.30,33,34 In NARMAX models, the output y i at

a given time is given by

y i5F @y i21 , . . . ,y i2n ,u i ,u i21 , . . . ,u i2n ,

e i21 , . . . ,e i2n#1e i , ~6!

where u i is the input, e i the residual error and F a polyno-

mial. In contrast to the Volterra series, the output of such

models depends on combinations involving past outputs, past

and present inputs and past residual errors. This enhances the

fitting capacity of the NARMAX model considerably.

Physical considerations suggest that our data should be

better described by NARMAX than by Volterra models. In-

deed, the former can handle various features ~resonances,

long time constants! which Volterra models cannot. How-

ever, it is also known that NARMAX models can be arbi-

trarily well approximated by a Volterra series, at the expense

of a larger ~or possibly infinite! number of parameters.

Our main incentive for choosing Volterra instead of

NARMAX models, is due to the smaller computational in-

vestment of the former. Furthermore, some of the theoretical

results needed to recover frequency-domain expressions

from NARMAX models aren’t yet in the public domain. Our

work should in this sense be considered as a first step toward

a better adapted model.

We are now left with the determination of the significant

terms in Eq. ~5!. This is the problem of model structure

selection, which is crucial for a successful identification. Par-

simony is necessary to avoid ill-conditioning, but the selec-

tion of the significant kernels is equally important for a

proper modeling.

In practice, one starts with a model that has large lags n

and a relatively high polynomial degree. Then, by successive

elimination, the unnecessary kernels are discarded until a

‘‘minimum model’’ is retained. The Error Reduction Ratio

~ERR! criterion is generally used for that purpose.35,36 Its

definition, together with practical aspects of nonlinear model

identification, are deferred to the Appendix.

The final step is the estimation and the validation of the

model parameters. There are few rigorous results on nonlin-

ear model validation; to a large extent one has to rely on

better understood results from the linear case; see Ref. 37.

Among the quantities to be studied are the confidence inter-

vals of the parameters, the dependence of the results on the

model choice and a statistical analysis of the residuals e .

Visual inspection of the latter should not reveal any correla-

tion with the in- or output. This can be further quantified by

hypotheses testing the level of cross correlation between e ,

and y or u.

V. APPLICATION TO THE ROTATING DISK FLOW

The present analysis is based on two-point measure-

ments carried out with a fixed probe separation of Dx58

mm, at a constant disk rotation speed. We consider 18 series

of 32768 samples each, representing 64 rotation periods

each. These series correspond to Reynolds numbers going

from 250 to 505, which roughly encompasses the transition

from laminar to developed turbulent motion.

Two problems we had to overcome before analyzing the

data were the oblique orientation of the probes ~see Fig. 2!
and the lack of calibration. The former means that the two
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probes do not observe exactly the same structures. For scales

of the order of the probe separation, however, the waves are

essentially planar and so this problem can be neglected.

Calibration of the probes is compulsory for an estimation

of the linear growth rate. To overcome its absence, we used

ad hoc methods to correct the signal levels. Satisfactory re-

sults were obtained by equaling the wavefield power spectral

density in a limited band around the frequency vc of the

fundamental. This choice is justified by the saturation of the

fundamental mode, which should not vary much over the

range of the probe separation. Adaptive high pass filtering

was also applied in order to eliminate low frequency distur-

bances observed at low Reynolds numbers.

The Volterra model identification is now detailed for a

particular data set, which corresponds to Re5387. First, the

most significant kernels are identified, using the procedure

described in Sec. IV. For this particular data set, Akaike’s

information criterion ~see the Appendix! suggests that a

model with seven terms only represents a satisfactory

tradeoff between parsimony and the ability to fit the results.

Out of these seven terms, two are linear and five are cubic. A

least squares fit yields the model coefficients:

y i520.7610u i2810.0032u i28u i21
2

20.0105u i224
2 u i23

10.1022u i10.0017u i223u i220u i28

20.0115u i214u i23u i2110.0103u i223u i211u i1e i .

The uncertainty level of these coefficients is typically less

than 10% but increases with the model order. The different

terms are arranged here in decreasing Error Reduction Ratio

~ERR! order, that is, the leading terms are the most important

ones for predicting the output. One should not pay too much

attention to the values of the delays, especially those appear-

ing in the nonlinear terms, since what eventually matters are

the combinations of the terms, as given in Eq. ~3!.
The most significant kernels are chosen among all pos-

sible combinations of linear, quadratic and cubic terms, with

a memory ~i.e., a number of delays n) equaling up to three

wavefield periods. We also ran the procedure with models

including fourth and fifth order terms, in order to test for the

possible existence of higher order nonlinearities. All these

tests were negative, suggesting that no higher order terms are

needed to properly model the wavefield dynamics. This is an

important point, since it justifies the truncation of the Volt-

erra series at cubic terms. Such a truncation not only eases

the identification procedure, but also provides a convenient

closure for the analytical expressions. This closure is often

imposed a priori as a working hypothesis while we deduce it

from the flow.

Another noticeable result is the strong ordering of the

Volterra kernels, regardless of the value of the Reynolds

number. Linear terms always prevail, as it is expected for

this type of experiment. The dominant nonlinear term, how-

ever, is not quadratic but cubic. Indeed, quadratic terms al-

ways show up much later in the sequence, thereby attesting

the relative weakness of three-wave interactions as compared

to four-wave interactions. The same type of ordering is

found in the nonlinear interaction of gravity waves; both

have their origin rooted in the nonlinear dispersion relation

of the wavefield, which forbids interactions between waves

satisfying the resonance condition v(k11k2)5v(k1)

1v(k2), whereas four-wave interactions of the type v(k1

1k21k3)5v(k1)1v(k2)1v(k3) are compatible with the

dispersion relation.

One of the common signatures of three-wave interac-

tions is an up–down asymmetry in the wavefield, which re-

sults in a generation of harmonics. A higher order spectral

analysis of the wavefield confirms the existence of weak

three-wave interactions, and the power spectral density in-

deed has a small peak at 2vc . These interactions are stron-

gest at intermediate Reynolds numbers (330,Re,440), for

which the nonlinearity is already significant while the disper-

sion relation still allows for some three-wave interaction.

Four-wave interactions can have various signatures. We

are dealing here with a coupling between frequencies located

in narrow bands that are centered on the fundamental fre-

quency. These different results are illustrated in Fig. 4 which

compares the in- and output, the model prediction and the

linear and nonlinear constituents of the latter. A model with

11 terms was used in order to include the leading quadratic

term.

As far as the model performance is concerned, Fig. 4~b!
shows that a low order Volterra model succeeds relatively

well in reproducing the real data. The fit can certainly be

improved since the residuals are neither white nor uncorre-

lated with the input. NARMAX models may be more appro-

priate here, but the relatively low level of residual noise

gives us confidence that the Volterra model still captures the

salient features of the wavefield dynamics. The general per-

formance gradually degrades as the wavefield becomes tur-

bulent, essentially because the probe spacing is too large as

compared to the characteristic scale over which the wavefield

evolves. More closely spaced probes would certainly have

given better results here.

The decomposition of the Volterra model output into its

different linear and nonlinear constituents is an interesting

exercise, since it reveals how each type of nonlinearity con-

tributes to the wavefield dynamics. Figures 4~d!–4~f! con-

firm the ordering ~linear . cubic . quadratic! of the ker-

nels. The main effect of the linear term is to fit the

convective motion by shifting the wave pattern in time by

about 30 ~msec!. This delay is equivalent to one period of the

fundamental mode. Notice that a linear prediction fails to

reproduce the phase shift observed at the center of the pulse,

for which a nonlinear correction is needed. This 40 to 50

degree phase shift is taken into account by the cubic term,

whose effect therefore amounts to an amplitude dependence

in the dispersion relation.

We must stress that these results are systematic; by in-

cluding more or less terms in the Volterra series one changes

the kernels in Fourier space a little, but the conclusions re-

main unaffected. We now consider how Volterra kernels are

related to the parameters of the GL equation.

VI. RELATION TO THE COMPLEX
GINZBURG–LANDAU EQUATION

The ~one-dimensional! Ginzburg–Landau equation de-

scribes the evolution, near the critical linear threshold Rec ,
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of a linearly unstable wave packet centered on the marginal

wave of frequency vc , wavenumber kc , and propagating in

the direction x. The hydrodynamic field defining the wave

packet, v(x ,t), can be written as

v~x ,t !5A~x ,t !e ikcx2ivct
1c.c., ~7!

where A(x ,t) is a complex function, slowly varying in space

and time. The GL equation is an equation for the amplitude

A(x ,t), that, taking into account the lowest order nonlinear-

ity, has the form

t0F]A~x ,t !

]t
1Vg

]A~x ,t !

]x
G5mA1j0

2~11ic1!
]2A~x ,t !

]x2

2g~11ic2!uA~x ,t !u2A~x ,t !,

~8!

where

m5
Re2Rec

Rec

,

Vg is the group velocity, t0 and j0 are the characteristic time

and length of the instability, c1 and c2 are nondimensional

and g is the saturation parameter.

The general solution of a linear stability hydrodynamic

problem can be expressed using a frequency and a wavenum-

ber that verify a complex dispersion relation v5v(k ,Re).

The coefficients t0 , Vg , j0 , c1 are related to the Taylor

expansion of the frequency v(k ,Re) near the critical thresh-

old in the following way:9

t0
21

52i Rec

]v

] Re
U

c

, ~9!

Vg5
]v

]k
U

c

, ~10!

j0
2~11ic1!5

it0

2

]2v

]k2 U
c

, ~11!

where uc means that the partial derivatives are calculated at

the critical point Re5Rec , k5kc .

If the solution A(x ,t) is developed in a temporal Fourier

series,

A~x ,t !5(
n

Â~x ,n !e2int,

it is easy to verify that Eq. ~8! is equivalent to

05inÂ~x ,n !2
]v

]k
U

c

]Â~x ,n !

]x
1

i

2

]2v

]k2U
c

3
]2Â~x ,n !

]x2
2i

]v

] Re
U

c

~Re2Rec!Â~x ,n !

2q (
n11n21n35n

Â~x ,n1!Â~x ,n2!Â*~x ,2n3!, ~12!

where q is defined by

q5
g~11ic2!

t0

. ~13!

This one-dimensional equation can describe, at least ap-

proximately, our 3-dimensional system, because the vortices

produced by the cross-flow instability have a definite propa-

gation direction, so that the system is essentially convective.

This one-dimensional approach has been successfully ap-

plied in Ref. 7.

Now compare ~12! to the Volterra Eq. ~2!:

FIG. 4. Excerpt of the wavefield amplitude at Re5387 showing from top to

bottom ~with the downstream probe always in bold!: ~a! the measured in-

and output, ~b! the measured output and its prediction, ~c! the measured

output and the residuals, ~d! the measured output and the linear constituent

of the prediction, ~e! the measured output and the quadratic constituent of

the prediction, and ~f! the measured output and the cubic constituent of the

prediction. The measured signals are centered and reduced.

840 Chaos, Vol. 10, No. 4, 2000 Floriani, Dudok de Wit, and Le Gal



] v̂~x ,v !

]x
5G1~v !v̂~x ,v !

1 (
v11v25v

G2~v1 ,v2!v̂~x ,v1!v̂~x ,v2!

1 (
v11v21v35v

G3~v1 ,v2 ,v3!v̂~x ,v1!

3 v̂~x ,v2!v̂~x ,v3!, ~14!

considered at Re.Rec , v.vc , and the coordinate x is mea-

sured along the propagation direction. Both equations de-

scribe the same physical situation. There must then be a re-

lation between the coefficients of the GL equation and the

kernels G i , that we will now determine.

One remark is in order: the Volterra expansion has a

structure that is very different from that of the GL equation.

The GL equation involves by construction the slowly vary-

ing amplitude of the fundamental wave (kc ,vc), A(x ,t),

whose Fourier components Â(x ,n) are non negligible only

for n small. On the other hand, the lowest order nonlinear

term in the Volterra expansion ~14!, considered at Re

.Rec , v.vc , is equal to zero if, in the sums, only the

frequencies close to the fundamental one vc are taken into

account, so that we are obliged to include at least the first

harmonic of the marginal wave in our description. In fact,

the sum (v11v25v.vc
takes its lowest order contribution

from the terms v1.2vc ,v2.2vc , and v1.2vc ,v2

.2vc .

More precisely, we will suppose that, near the critical

threshold Re5Rec , v(x ,t) has the following form:

v~x ,t !5@A~x ,t !e ikcx2ivct
1B~x ,t !e i2kcx2i2vct#1c.c.,

~15!

with A(x ,t), B(x ,t) slowly varying in space and time. The

GL equation ~14! is then an equation for A(x ,t) only,

whereas the quadratic term in ~8! at v.vc will contain

B(x ,t) too.

Equation ~15! gives in Fourier space,

v̂~x ,v !5e ikcxÂ~x ,v2vc!

1e2ikcxÂ*~x ,2v2vc!1e i2kcxB̂~x ,v22vc!

1e2i2kcxB̂*~x ,2v22vc!.

The fact that A(x ,t), B(x ,t) are slowly varying means

that their Fourier components Â(x ,n), B̂(x ,n) are non neg-

ligible only for n.0. This implies, of course,

v̂~x ,v.vc!5e ikcxÂ~x ,v2vc!,

v̂~x ,v.2vc!5e i2kcxB̂~x ,v22vc!,

v̂~x ,v.2vc!5e2ikcxÂ*~x ,2v2vc!,

v̂~x ,v.22vc!5e2i2kcxB̂*~x ,2v22vc!.

Equation ~14! gives then, for v close to vc ,

]Â~x ,v2vc!

]x
5@G1~v !2ikc#Â~x ,v2vc!12 (

v11v25v ,

v1.2vc ,v2.2vc

G2~v1 ,v2!B̂~x ,v122vc!Â*(x ,2v22vc)

13 (
v11v21v35v ,

v1.v2.2v3.vc

G3~v1 ,v2 ,v3!Â~x ,v12vc!Â~x ,v22vc!Â*~x ,2v32vc!, ~16!

where we used the symmetry of the kernels G i with respect

to their i arguments.

We want an equation involving only Â(x ,n), in order to

establish a relation with the GL equation. We will then con-

sider the second order Volterra expansion ~14! for v1

.2vc :

]B̂~x ,v122vc!

]x
5@G1~v1!22ikc#B̂~x ,v122vc!

1 (
v31v45v1 ,

v3.v4.vc

G2~v3 ,v4!

3Â~x ,v32vc!Â~x ,v42vc!. ~17!

Near the critical point threshold, the real part of Ĝ1(2vc)

~the spatial growth rate of the first harmonic of the marginal

wave! is large and negative. The adiabatic approximation is

thus applicable,38 so that

B̂~x ,v122vc!.2
1

Re„G1~v1!…

3 (
v31v45v1 ,

v3.v4.vc

G2~v3 ,v4!

3Â~x ,v32vc!Â~x ,v42vc!. ~18!

Substituting this expression in ~16!, we get
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]Â~x ,v2vc!

]x
5@G1~v !2ikc#Â~x ,v2vc!22 (

v11v25v ,

v1.2vc ,v2.2vc

(
v31v45v1 ,

v3.v4.vc

G2~v1 ,v2!G2~v3 ,v4!

Re„G1~v1!…
Â~x ,v32vc!Â~x ,v42vc!

3Â*~x ,2v22vc!13 (
v11v21v35v ,

v1.v2.2v3.vc

G3~v1 ,v2 ,v3!Â~x ,v12vc!Â~x ,v22vc!Â*~x ,2v32vc!,

which can be rewritten as

]Â~x ,v2vc!

]x
5@G1~v !2ikc#Â~x ,v2vc!

1 (
v11v21v35v ,

v1.v2.2v3.vc

L~v1 ,v2 ,v3!

3Â~x ,v12vc!Â~x ,v22vc!

3Â*~x ,2v32vc!, ~19!

where L is defined by

L~v1 ,v2 ,v3!522
Ĝ2~v1 ,v2!Ĝ2~v2v3 ,v3!

Re„Ĝ1~v2v3!…

13Ĝ3~v1 ,v2 ,v3!. ~20!

Notice that in the cubic part of Eq. ~16!, we did not take

into account the possible terms proportional to ÂB̂B̂*; this is

justified a posteriori by the fact that, to leading order, B̂

}Â2, and we are considering only the cubic nonlinear term

in the GL equation.

Differentiating Eq. ~19! with respect to x we get

]2Â~x ,v2vc!

]x2
5@G1~v !2ikc#

2Â~x ,v2vc!

1 (
v11v21v35v ,

v1.v2.2v3.vc

Â~x ,v12vc!

3Â~x ,v22vc!Â*~x ,2v32vc!

3L~v1 ,v2 ,v3!@„G1~v !2ikc…

1„G1~v1!2ikc…1„G1~v2!2ikc…

1„G1~v3!1ikc…# . ~21!

Again, we keep only terms proportional to An with n

<3.

We will now replace the expressions ~19! and ~21! for

]Â(x ,n)/]x and ]2Â(x ,n)/]x2 in the GL equation ~12!. We

get

05iÂ~x ,v2vc!H ~v2vc!1i
]v

]k
U

c

@G1~v !2ikc#2
]v

] Re
U

c

~Re2Rec!1
1

2

]2v

]k2 U
c

@G1~v !2ikc#
2J

1 (
v11v21v35v ,

v1.v2.2v3.vc

Â~x ,v12vc!Â~x ,v22vc!Â*~x ,2v32vc!H 2
]v

]k
U

c

L~v1 ,v2 ,v3!

1
i

2

]2v

]k2U
c

L~v1 ,v2 ,v3!@G1~v !1G1~v1!1G1~v2!1G1~v3!22ikc!]2qJ . ~22!

The first thing to observe is that the expression multi-

plying Â(x ,v2vc) on the first line is approximately zero,

for Re close to Rec and v close to vc . In fact, the first

Volterra kernel G1 is obviously related to the inverse of the

complex dispersion relation v(k ,Re):

G1~v ,Re!5ik~v ,Re!. ~23!

Near the critical point we have

k~v ,Re!.kc1
]k

]v
U

c

~v2vc!1
]k

] Re
U

c

~Re2Rec!

1
1

2

]2k

]v2U
c

~v2vc!2.

Replacing this expression for G1(v ,Re) in ~22!, we see that

the term linear in Â(x ,v2vc) is zero, thanks to the follow-

ing relations:
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]k

]v
U

c

]v

]k
U

c

51, ~24!

]2k

]v2 U
c

]v

]k
U

c

1S ]k

]v
U

c
D 2 ]2v

]k2U
c

50, ~25!

]v

] Re
U

c

1
]v

]k
U

c

]k

]Re
U

c

.0. ~26!

Equations ~24! and ~25! are general, and express the relation

existing between the first and second derivatives of a func-

tion of complex variable and the derivatives of the inverse

function. Equation ~26! is specific to a dipersion relation, and

is proved in Ref. 39.

Let us now consider the cubic term in Eq. ~22!:

(
v11v21v35v ,

v1.v2.2v3.vc

Â~x ,v12vc!Â~x ,v22vc!Â*~x ,2v32vc!

3H 2
]v

]k
U

c

L~v1 ,v2 ,v3!1
i

2

]2v

]k2 U
c

L~v1 ,v2 ,v3!

3@G1~v !1G1~v1!1G1~v2!1G1~v3!22ikc)#2qJ
[ (

v11v21v35v ,

v1.v2.2v3.vc

Â~x ,v12vc!Â~x ,v22vc!

3Â*~x ,2v32vc!@Q~v1 ,v2 ,v3!2q# .

Expanding Q(v1 ,v2 ,v3) around the critical point

(vc ,vc ,2vc), like it was done for G1(v), we see that the

parameter q has to be identified with the leading term

Q(vc ,vc ,2vc). Since G1(vc)5ikc , we get

q52
]v

]k
U

c

L~vc ,vc ,vc!

5
]v

]k
U

c

F2
G2~vc ,vc!G2~2vc ,2vc!

Re„G1~2vc!…

23G3~vc ,vc ,2vc!G .

Explicitly, using Eqs. ~9!–~11!, ~23!, ~24!–~26! we get

Vg5iF ]Ĝ1

]v
U

c

G21

, ~27!

t05FRecVg

]Ĝ1

]Re
U

c

G21

, ~28!

j0
2~11ic1!52

t0

2
Vg

3
]2Ĝ1

]v2 U
c

, ~29!

g~11ic2!5Vgt0F2
G2~vc ,vc!G2~2vc ,2vc!

Re„G1~2vc!…

23G3~vc ,vc ,2vc!G . ~30!

The first three relations involve the linear terms of both

models. They are a consequence of the fact that, on the one

hand, the coefficients of the linear terms of the GL equation

depend on the dispersion relation v(k ,Re) and, on the other

hand, the linear kernel of the Volterra model is proportional

to the inverse dispersion relation k(v ,Re). The fourth rela-

tion fixes the value of the cubic nonlinear coupling in the GL

equation in function of the nonlinear couplings of the Volt-

erra model, in such a way as to make the two approaches

compatible.

A Volterra model of the type ~2! and the GL equation ~8!
are not always equivalent in the way expressed by Eqs. ~27!
to ~30!. They are if three hypotheses are satisfied: ~1! the

system is close to the linear instability threshold, ~2! the

dynamics is dominated by the marginal wave (kc ,vc),

whose amplitude is a slowly varying function of time and

space and ~3! the first harmonic of the fundamental mode

follows it adiabatically. These hypotheses are in any case

those under which this amplitude equation can be derived.38

There is one more point to be underlined: from the be-

ginning, we have neglected kernels of order higher than three

in the Volterra series. While this is often imposed as a hy-

pothesis that cannot be verified, the experiment clearly con-

firms such a truncation. Had 4th or 5th order kernels been

important, then the terms generated by them would have led

to a quintic GL equation and not to a cubic one.

VII. GINZBURG–LANDAU COEFFICIENTS FOR THE
ROTATING DISK FLOW

Now that a link has been established between the Volt-

erra kernels and the coefficients of the GL equation, we dis-

cuss the inference of the latter from the experimental data.

Note that, in a strict sense, the results derived from the

Volterra equation @Eqs. ~19! and ~21!# can be inserted into

the GL equation @Eq. ~12!# only if the spatial derivatives are

taken in the same direction. This direction is given here by

the propagation of the vortices, i.e., the group velocity

]v/]k uk5kc
.Experimentally, however, we only have access

to the spatial derivative of the flow ]v/]x along a direction

which is oblique to the group velocity; see Fig. 2. It should

thus be kept in mind that we are dealing here with a ‘‘pro-

jected’’ Ginzburg–Landau equation. As for the validity of

the adiabatic hypothesis ~18!, it can be checked on the ex-

perimental data, and is indeed satisfied.

We recall that the Volterra kernels contain pertinent

physical information regardless of the model one is actually

trying to fit. The imaginary part of the linear kernel G1(v),
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for example, is directly related to the wavefield dispersion

relation. We refer to Ref. 7 for a discussion on that. Like-

wise, the real part of G1(v) is related to the spatial linear

growth rate. The real part ReG1(v) is displayed in Fig. 5

together with the frequency vc of the fundamental mode.

Because of the lack of probe calibration, the value of the

growth rate is known up to an additive constant. With the ad

hoc calibration we used, the uncertainty level is estimated to

be about 50 ~m21! ~i.e., one contour interval of Fig. 5!. In

spite of this, positive values of the growth rate confirm the

onset of the instability around Re5300, in good agreement

with previous studies.7 As the Reynolds number increases,

the growth rate reaches a maximum and then decays to be-

come slightly negative. A plausible reason for this decay is

the increasing difficulty in modeling the turbulent wavefield.

Using the values of Volterra kernels calculated from ex-

perimental data in Eqs. ~27! to ~30! we finally get, near the

linear threshold (Rec'280),

Vg50.1660.03 m•s21,

t0515.163.2 ms,

j052.160.5 mm,

c1520.4760.28.

These results agree with those obtained in Ref. 7. The rela-

tively large uncertainty intervals reflect not only the fit of the

Volterra kernels by the GL coefficients, but also the irrepro-

ducibility of the experiment, i.e., the difficulty in reproduc-

ing with a single model each pattern triggered by the rough-

ness element. The error bars are obtained by fitting models

with various numbers of kernels to different sequences of the

time series. They are therefore conservative.

As far as the nonlinear part of the GL equation is con-

cerned, namely the coefficients c2 and g, our error bars are

presently too large to meaningfully assess the value of these

coefficients. There is strong evidence, however, for g to be

positive and c2 negative. The absolute value of g does not

have any physical meaning in this particular application,

since the probes measure a voltage and not a velocity. The

positive sign of g, however, is important, as it confirms the

supercritical nature of the bifurcation associated with the

cross-flow instability.

The GL equation is in principle applicable only close to

the linear instability threshold. However, its domain of va-

lidity is frequently extended to higher Reynolds numbers ~up

to secondary instabilities!. In Fig. 6, we plot the values of the

group velocity Vg and diffusion length j0 obtained in ex-

trapolating formulas ~27! and ~29! for Re.Rec . We cannot

do this for t0 , because for Re.Rec the dependence of the

growth rate of the fundamental mode from the Reynolds

number is rapidly dominated by nonlinear effects: it is then

meaningless to evaluate t0 as the derivative of the linear

growth rate with respect to Re.

In this figure, we see that the group velocity increases Vg

with Re, which is what one expects;7 the diffusion length j0

does not vary much up in the range 280<Re<380, and in-

creases for Re.400, as the wave packets triggered by the

roughness element start to spread out and merge. The param-

eter c1 does not vary significatively with the Reynolds num-

bers. Its value, which has no straightforward physical inter-

pretation, is in agreement with that found in Ref. 7.

Let us finally consider the criterion of convective vs ab-

solute instability of the flow. For Re>Rec , let

h5
Re2Rec

Rec

2
Vg

2t0
2

4j0
2~11c1

2!
. ~31!

As it is discussed in Ref. 8, a flow is convectively unstable

when h is negative, and absolutely unstable when h is posi-

tive. Figure 7 suggests that the transition to absolute insta-

bility takes place near Re'400, in agreement with the linear

prediction given in Ref. 19 for a Rossby number estimated at

R050.73. This feature is also compatible with results ob-

FIG. 5. The real part of the linear Volterra kernel G1 for various frequencies

and Reynolds numbers. Superimposed on it is the frequency vc of the fun-

damental.

FIG. 6. Group velocity Vg projected along the probe separation vector, and

characteristic length j as measured using the Volterra model, for different

Reynolds numbers. Notice that they are expressed in different units.

FIG. 7. Criterion for convective instability ~31!: the flow becomes abso-

lutely unstable when h is positive.
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tained on the same data set, using demodulation techniques:

in Ref. 20, it is shown that the spatial organization of the

flow strongly increases at Re.380, which might therefore

correspond to the onset of absolute instability.

VIII. CONCLUSIONS

In this paper we present some properties of the flow in

the boundary layer above a rotating disk. We describe the

wavefield in terms of weakly interacting Fourier modes, us-

ing a Volterra series equation, whose kernels are estimated

using two-point measurements of the wavefield.

One of the advantages of Volterra models is that they

provide access to the nonlinear terms at various orders. Sur-

prisingly, the dynamics of the flow is well described by a

model containing a limited number ~five to twelve! of linear

and cubic kernels only. The prevalence of linear kernels is

normal because we are in a weakly nonlinear regime. The

quasi-absence of quadratic terms, whose manifestations are

three-wave interactions, is more surprising. It is explained by

the dispersion relation, which forbids three-wave resonances.

Four-wave resonances, however, are not forbidden, and thus

rule the nonlinear dynamics.

We have studied the relation of this model to the ampli-

tude equation that is classically used to describe the instabil-

ity of flows, the complex Ginzburg–Landau equation. We

have shown that the two apparently different approaches are

compatible. Analytical results for this are presented in detail:

they are summarized by relations ~27! to ~30!. These rela-

tions hold under the same hypotheses as those justifying the

use of an amplitude equation, and can be applied to a large

class of weakly nonlinear extended systems. Our results for

the GL coefficients relative to the rotating disk flow are com-

patible with those obtained in Ref. 7.

Interestingly, the Volterra approach reveals that fourth

and fifth order interactions are not significant, thereby jus-

fifying its truncation at the cubic term. This truncation is

often imposed a priori as a hypothesis while here it is de-

duced from the experiment. Moreover, this confirms that our

physical system can indeed be described by means of an

amplitude equation with a cubic nonlinearity.

Thanks to their general structure and phenomenological

character, Volterra equations can describe a wide variety of

nonlinear behavior, while still offering a straightforward

physical interpretation. That is why this analysis could be

extended to different types of amplitude equations, for ex-

ample to a quintic GL equation,40 including in this case

higher order Volterra kernels in our model. This approach

gives some insight in the structure and physical meaning of

the different terms of amplitude equation considered, and can

eventually be used to test if it really can apply to the system

under study.

A. Practical aspects of model identification

In this section we briefly describe the numerical proce-

dure for estimating the different kernels of the Volterra

model, i.e., the coefficients of the nonlinear transfer function

@Eq. ~5!#.
First, the transfer function is written in the matrix form

y5PQ1e, ~32!

with

y5F y1

A

yN

G , P5@p1 , . . . ,pM# , Q5F u1

A

uM

G , e5F e1

A

eN

G .

The M unknown parameters u are the various kernels ḡ of

Eq. ~5!. The N3M matrix P ~with N.M to avoid underde-

termination! contains the regressors pk , each of which is

some combination of past and present inputs.

The minimization of the Euclidian norm uueuu leads to a

standard least squares problem that has a unique solution Q̂.

Various numerical methods are available for that purpose;

see Ref. 36.

The ERR criterion proceeds as follows. Consider the

Cholesky decomposition P into WA where W is an N3M

orthogonal matrix and A is an M3M unit upper triangular

matrix. The residuals can then be written as

e5y2PQ5y2(PA21)(AQ)5y2Wg.

Equation ~32! thus becomes

y5Wg1e.

Computing the sum of squares of the output gives

y*y5 (
k51

M

gk
2wk

*wk1e*e,

where * denotes complex conjugate transposition. The ERR

is defined as the fraction of the output variance that is ex-

plained by each column vector wk,

ERRk5
gi

2wk
*wk

y*y
,

FIG. 8. Example of the evolution of the ERR criterion ~top! and the AIC

criterion ~bottom! as the number of coefficients of the model increases.

Notice that the ERR criterion is obtained using a single data set ~the one

used to estimate the kernels!, whereas the AIC includes an additional stage

of cross-validation, i.e., the model is first estimated and then tested using

different data sets.
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with 0<ERR<1.

What we actually do is a Gram–Schmidt orthogonaliza-

tion and the procedure goes as follows. First select the re-

gressor pk whose correlation coefficient with the output y is

the largest. The corresponding unknown uk designates the

first significant kernel. Then orthogonalize all regressors

with respect to pk ,

pi85pi2lpk, ;iÞk

in order to have pi
*pk50 if iÞk . Find among the new re-

gressors the one p8m that has the strongest correlation with

the output, and select the corresponding kernel. Then or-

thogonalize all regressors with respect to p8m and repeat the

procedure.

This algorithm is computationally efficient and requires

little storage. Gram–Schmidt orthogonalization, however, is

sensitive to round-off errors, but this is not a matter of con-

cern since the number of needed kernels is reached long

before round-off becomes a problem. Indeed, the ERR usu-

ally decreases fast enough to stop the procedure after less

than a dozen steps. Depending on the noise level and the

desired degree of accuracy, one typically wants the ERR to

be about 1022 to 1025. Information theoretic criteria such as

Akaike’s Information Criterion ~AIC! are further used to se-

lect the right number of coefficients.37

Figure 8 illustrates the gradual decrease of the ERR cri-

terion for the rotating disk data. Round-off becomes signifi-

cant here after the model has more than 20 coefficients. The

figure also shows the AIC, which expresses the tradeoff be-

tween model complexity and ability to fit results. A global

minimum is reached around 7, which means that models

containing more than 7 kernels do not contain significant

new information. This is a safe indication for keeping 7 ker-

nels only in the Volterra model.

Once the significant kernels have been identified, one

solves the linear system

y5PsQs1e, ~33!

in which the subscript s means that we consider a subset only

of the original system: the N3M s matrix Ps contains only

those regressors which correspond to significant kernels.
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tifying nonlinear wave interactions in space plasmas using two-point mea-

surements: A case study of Short Large Amplitude Magnetic Structures

~SLAMS!,’’ J. Geophys. Res. 104, 17079 ~1999!.
6 S. Jarre, P. Le Gal, and M. P. Chauve, ‘‘Experimental study of rotating

disk flow instability. I. Natural flow,’’ Phys. Fluids 8, 496 ~1996!.
7 S. Jarre, P. Le Gal, and M. P. Chauve, ‘‘Experimental study of rotating

disk flow instability. II. Forced flow,’’ Phys. Fluids 8, 2985 ~1996!.
8 R. J. Deissler, ‘‘Spatially growing waves, intermittency, and convective

chaos in an open-flow system,’’ Physica D 25, 233 ~1987!.

9 H. T. Moon, P. Huerre, and L. G. Redekopp, ‘‘Transitions to chaos in the

Ginzburg–Landau equation,’’ Physica D 7, 135 ~1983!.
10 V. W. Ekman, ‘‘On the influence of the Earth’s rotation on ocean cur-

rents,’’ Ark. Mat., Astron. Fys. 2, 1 ~1905!.
11 T. Von Karman, ‘‘Uber laminare und turbulente Reibung,’’ Z. Angew.

Math. Mech. 1, 233 ~1921!.
12 A. J. Faller, ‘‘Instability and transition of disturbed flow over a rotating

disk,’’ J. Fluid Mech. 230, 245 ~1991!.
13 A. J. Faller and R. E. Kaylor, ‘‘A numerical study of the instability of the

laminar Ekman boundary layer,’’ J. Atmos. Sci. 23, 466 ~1966!.
14 N. Gregory, J. T. Stuart, and W. S. Walker, ‘‘On the stability of three-

dimensional boundary layers with application to the flow due to a rotating

disk,’’ Philos. Trans. R. Soc. London 248, 155 ~1955!.
15 R. Kobayashi, Y. Kohama, and Ch. Takadamate, ‘‘Spiral vortices in

boundary layer transition regime on a rotating disk,’’ Acta Mech. 35, 71

~1980!.
16 M. R. Malik, ‘‘The neutral curve for stationary disturbances in rotating-

disk flow,’’ J. Fluid Mech. 164, 275 ~1986!.
17 N. Aubry, R. Guyonnet, and R. Lima, ‘‘Spatio-temporal analysis of com-

plex signals: Theory and applications,’’ J. Stat. Phys. 64, 683 ~1991!.
18 N. Aubry, R. Guyonnet, and M. P. Chauve, ‘‘Transition to turbulence on

a rotating flat disk,’’ Phys. Fluids 6, 2800 ~1994!.
19 R. J. Lingwood, ‘‘Absolute instability of the Ekman layer and related

rotating flows,’’ J. Fluid Mech. 314, 373 ~1995!.
20 P. Le Gal, ‘‘Complex demodulation applied to the transition to turbulence

of the flow over a rotating disk,’’ Phys. Fluids A 4, 2523 ~1992!.
21 P. Le Gal, M. P. Chauve, L. Schouveiler, and S. Jarre, ‘‘Instabilités entre

disque fixe et disque tournant,’’ in Des Phénomènes Critiques au Chaos,
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