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Abstract. In this paper, we introduce a new type of attack, called nonlinear invariant
attack. As application examples, we present new attacks that are able to distinguish
the full versions of the (tweakable) block ciphers Scream, iScream and Midori64 in
a weak-key setting. Those attacks require only a handful of plaintext–ciphertext pairs
and have minimal computational costs. Moreover, the nonlinear invariant attack on
the underlying (tweakable) block cipher can be extended to a ciphertext-only attack in
well-knownmodes of operation such as CBC or CTR. The plaintext of the authenticated
encryption schemes SCREAM and iSCREAM can be practically recovered only from
the ciphertexts in the nonce-respecting setting. This is the first result breaking a security
claim of SCREAM. Moreover, the plaintext in Midori64 with well-known modes of
operation can practically be recovered. All of our attacks are experimentally verified.

Keywords. Nonlinear invariant attack, Boolean function, Ciphertext-only message-
recovery attack, SCREAM, iSCREAM, Midori64, CAESAR competition.

1. Introduction

Block ciphers are certainly among the most important cryptographic primitives. Since
the invention of the DES[21] in the mid-1970s and even more with the design of the
AES[23], a huge amount of research has been done on various aspects of block cipher
design and block cipher analysis. In the last decade, many new block ciphers have
been proposed that aim at highly resource-constrained devices. Driven by new potential
applications like the internet of things, we have witnessed not only many new designs,
© International Association for Cryptologic Research 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-018-9285-0&domain=pdf


1384 Y. Todo et al.

but also several new cryptanalytic results. Today,we have at hand awell established set of
cryptanalytic tools that, when are carefully applied, allow to gain significant confidence
in the security of a block cipher design. The most prominent tools here are certainly
differential [6] and linear [19] attacks and their numerous variations [2,5,12,14].
Despite this fact, quite some of the recently proposed lightweight block ciphers got

broken rather quickly. One of the reasons for those attacks, on what is supposed to be a
well-understood field of cryptographic designs, is that the new lightweight block ciphers
are designed more aggressively than, e.g., most of the AES candidates. In particular,
when it comes to the design of the key schedule, many new proposals keep the design
very simple, often using identical round keys. While there is no general defect with
such a key schedule, structural attacks become much more of an issue compared to a
cipher that deploys a more complicated key schedule. In this paper, we introduce a new
structural attack, named nonlinear invariant attack. At first glance, it might seem quite
unlikely that such an attack could ever be successfully applied. However, we give several
examples of ciphers that are highly vulnerable to this attack.

1.1. Our Contribution

Given a block cipher Ek : FN2 → F
N
2 , the general principle of the nonlinear invariant

attack is to find an efficiently computable nonlinear Boolean function g : FN2 → F2
such that

g(P) ⊕ g(Ek(P))

is constant for any plaintext P and for many possible keys k. Keys such that this term
is constant are called weak keys. The function g itself is called nonlinear invariant for
Ek . Clearly, when the block cipher Ek has a (non-trivial) nonlinear invariant function
g, g(P) ⊕ g(Ek(P)) is constant for any plaintext P and any weak key k. On the other
hand, for given h pairs of (P, Ek(P)), the probability that random permutations have
this property is about 2−h+1 when g is balanced. Therefore, attackers can immediately
execute a distinguishing attack. Moreover, if the constant depends on the secret key, an
attacker can recover one bit of information about the secret key by using one known
plaintext–ciphertext pair.
For round-based block ciphers, our attack builds the nonlinear invariants of the whole

cipher from the nonlinear invariants of the single round functions. In order to extend
the nonlinear invariant for a single round to the whole cipher, all round keys must be
weak keys. It may be infeasible to find such weak-key classes for block ciphers with
a non-trivial key schedule. However, as mentioned above, many recent block ciphers
are designed for lightweight applications, and they adopt more aggressive designs to
achieve high performance even in highly constrained environments. Several lightweight
ciphers do not deploy any key schedule at all, but rather use the master key directly as
the identical round key for all rounds. In such a situation, the weak-key class of round
keys is trivially converted into the weak-key class of the secret key. In particular, when
all round keys are weak, this property is iterative over an arbitrary number of rounds.
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Table 1. Summary of the nonlinear invariant attack.

# of weak keys Max. # of recovered bits Data complexity Time complexity

SCREAM 296 32 bits 33 ciphertexts 323

iSCREAM 297 32 bits 33 ciphertexts 323

Midori64 264 32h bits 33h ciphertexts 323 × h

h is the number of blocks in the mode of operation

1.1.1. (Ciphertext-Only) Message-Recovery Attacks

The most surprising application of the nonlinear invariant attack is an extension to
ciphertext-only message-recovery attacks. Clearly, we cannot execute any ciphertext-
only attack without some information on the plaintexts. Therefore, our attack is
ciphertext-only attack under the following conditions. Suppose that block ciphers which
are vulnerable against the nonlinear invariant attack are used in well-known modes of
operation, e.g., CBC, CFB, OFB, and CTR. Then, if the same unknown plaintext is
encrypted by the same weak key and different initialization vectors, attackers can prac-
tically recover a part of the plaintext only from the ciphertexts.

1.1.2. Applications

We demonstrate that our new attack practically breaks the full authenticated encryp-
tion schemes SCREAM1 [10] and iSCREAM [9] and the low-energy block cipher
Midori64 [1] in the weak-key setting.

We show that the tweakable block ciphers Scream and iScream have a nonlinear
invariant function, and the numbers of weak keys are 296 and 297, respectively.Midori64
also has a nonlinear invariant function, and the number of weak keys is 264. Table1 sum-
marizes the result of the nonlinear invariant attack against SCREAM, iSCREAM, and
Midori64. The use of the tweakable block cipher Scream is defined by the authenticated
encryption SCREAM, and the final block is encrypted like CTR when the byte length
of a plaintext is not multiple of 16. We exploit this procedure and recover 32 bits of the
final block of the plaintext if the final block length ranges from 12 to 15 bytes. We can
also execute a similar attack against iSCREAM. Note that our attack breaks SCREAM
and iSCREAM in the nonce-respecting model. Midori64 is a low-energy block cipher,
and we consider the case that Midori64 is used by well-known modes of operation. As
a result, we can recover 32 bits in every 64-bit block of the plaintext if Midori64 is used
in CBC, CFB, OFB, and CTR.

1.1.3. Comparison with Previous Attacks

Leander et al. [17] proposed invariant subspace attack on iSCREAM, which is a weak-
key attack working for 296 weak keys. The attack can be a distinguishing attack and key
recovery attack in the chosen-message and chosen-tweak model. Guo et al. [8] presented
a weak-key attack on full Midori64, which works for 232 weak keys, distinguishes the
cipher with 1 chosen-plaintext query, and recovers the key with 216 computations.

1Note that throughout the paper SCREAM always refers to the latest version asSCREAM, i.e.,SCREAM
(v3).
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Compared to [17], our attack has double weak-key size, and we distinguish the cipher
in the known-message and chosen-tweak model. Compared to [8], our weak-key class
is much larger and the cipher is distinguished with 2 known-plaintext queries. In both
applications, the key space can be reduced by 1 bit, besides a part of message/plaintext
can be recovered from the ciphertext.

1.2. Related Work

The nonlinear invariant attack can be regarded as an extension of linear crypt-
analysis [19]. While linear cryptanalysis uses a linear function to approximate the
cipher, the nonlinear invariant attack uses a nonlinear function and the probability
of the nonlinear approximation is one. When g is linear, ciphers that are resistant
against the linear cryptanalysis never have a linear approximation with probability
one.
The use of the nonlinear approximation has previously been studied. This exten-

sion was first discussed by Harpes et al. [13], and Knudsen and Robshaw [15] later
investigated the effectiveness deeply. However, they showed that there are insurmount-
able problems in the general use of nonlinear approximations. For instance, one can-
not join nonlinear approximations for more than one round of a block cipher because
the actual approximations depend on the specific value of the state and key. Knud-
sen and Robshaw [15] demonstrated that nonlinear approximations can replace linear
approximations in the first and last rounds only. Unfortunately, nonlinear cryptanalysis
has not been successful because of this limited application. Our attack can be seen as
the first application of the nonlinear cryptanalysis against real ciphers in the past two
decades.
Other related attacks are the invariant subspace attack [16,17] and symmetric struc-

tures [4,22,24]. Similar to the nonlinear invariant attack, those attacks exploit a crypt-
analytic property which continues over an arbitrary number of rounds in the weak-key
setting. While the attacker has to choose plaintexts, i.e., are chosen-plaintext attacks, the
nonlinear invariant attack does not need to choose plaintexts in general. This in particular
allows us to extend the nonlinear invariant attack from a pure distinguishing attack to a
(ciphertext-only) message-recovery attack.

1.3. Paper Organization

Weexplain the general ideas and principles of the newattack in Sect. 2. Section 3 explains
how, in many cases, nonlinear invariants can be constructed by using an algorithmic
approach for most practical ciphers. Moreover, we give a structural reason why some
ciphers, more precisely some linear layers, are inherently weak against our attack and
why our attack is possible against those ciphers. In Sect. 4, we explain in detail our
attacks on SCREAM and iSCREAM. Moreover, Sect. 5 details our nonlinear invariant
attack on Midori64. In Sect. 6, we show a new class of weak constants for the nonlinear
invariant attack, which expands the class of vulnerable targets. Finally, in Sect. 7, we
give some additional insights into the general structure of nonlinear invariant functions
and outline some future work.
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2. Nonlinear Invariant Attack

In this section, we describe the basic principle of the attack and its extension to
(ciphertext-only) message-recovery attacks when used in common modes of operations.
While our attack can be applied to any cipher structure in principle, we focus on the
case of key-alternating ciphers and later on substitution permutation networks (SPN)
ciphers to simplify the description. We start by explaining the basic idea and later how,
surprisingly, the attack can be extended to a (ciphertext-only) message-recovery attack
in many scenarios.

2.1. Core Idea

Let R : F
N
2 → F

N
2 be the round function of a key-alternating cipher and Rk(x) =

R(x ⊕ k) be the round function including the key XOR. Thus, for an r -round cipher, the
ciphertext C is computed from a plaintext P using round keys ki as

x0 = P,

xi+1 = Rki (xi ) = R(xi ⊕ ki ) 0 ≤ i ≤ r − 1,

C = xr ,

where we ignore post-whitening key for simplicity.
The core idea of the nonlinear invariant attack is to detect a nonlinear Boolean function

g such that

g(R(x ⊕ k)) = g(x ⊕ k) ⊕ c = g(x) ⊕ g(k) ⊕ c ∀x

for many keys k, where c is a constant in F2. Keys for which this equality holds will be
called weak keys. The function g itself is called nonlinear invariant in this paper.
The important remark is that, if all round keys ki are weak then

g(C) = g(R(xr−1 ⊕ kr−1))

= g(xr−1) ⊕ g(kr−1) ⊕ c

= g(R(xr−2 ⊕ kr−2)) ⊕ g(kr−1) ⊕ c

= g(xr−2) ⊕ g(kr−2) ⊕ g(kr−1)

...

= g(P) ⊕
r−1⊕

i=0

g(ki ) ⊕
r−1⊕

i=0

c.

Thus, the invariant is iterative over an arbitrary number of rounds and immediately leads
to a distinguishing attack.
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2.1.1. Distinguishing Attack

Assume that we found a Boolean function g that is nonlinear invariant for the round
function Rki of a block cipher. Then, if all round keys are weak, this function g is also
nonlinear invariant over an arbitrary number of rounds.
Let (Pi ,Ci ) 0 ≤ i ≤ h−1 be h pairs of plaintexts and their corresponding ciphertexts.

Then, g(Pi )⊕g(Ci ) is constant for all pairs. If g is balanced, i.e., p = #{x ∈ F
N
2 |g(x) =

1}/2N = 1/2, the probability that g(Pi ) ⊕ g(Ci ) = 0 in random permutations is
p2 + (1− p)2 = 1/4+1/4 = 1/2. Therefore, the probability that random permutations
have this property is about 2−h+1. We can practically distinguish the block cipher from
random permutations under a known-plaintext attack.

While themain focus of this paper is the case that g is balanced,we additionally discuss
the case that g is unbalanced. When unbalanced g is applied, e.g., p < 1/2, we can still
mount a distinguishing attack.When the known-plaintext scenario is used, the probability
that g(Pi )⊕ g(Ci ) = 0 in random permutations is p2 + (1− p)2 = 2p2 −2p+1. Then
the probability that g(Pi )⊕ g(Ci ) is preserved by 0 for all h pairs is (2p2 −2p+1)h−1.
Therefore, the farther from 1/2, the smaller the distinguishing probability is. When the
chosen-plaintext scenario is applied, the success probability of distinguishing attack
increases. In this scenario, we prepare the set of chosen plaintext defined asX satisfying
#{x ∈ X|g(x) = 1}/|X| = 1/2. Then, the probability that g(Pi )⊕g(Ci ) = 0 in random
permutations is 1

2 × p + 1
2 × (1 − p) = 1/2. Similarly to the case that g is balanced,

the probability that g(Pi ) ⊕ g(Ci ) is preserved by 0 for all h pairs is about 2−h+1.

2.1.2. Suitable Nonlinear Invariants

We next discuss a particular choice of a nonlinear invariant g for which it is directly
clear that weak keys exist. Imagine we were able to identify a nonlinear invariant g for
R, i.e., a function such that

g(R(x)) ⊕ g(x)

is constant, where g is actually linear (or constant) in some of the inputs. In this case,
all round keys that are zero in the nonlinear components of g are weak. More precisely,
without loss of generality, assume that the nonlinear invariant g is linear in the lastN� bits
of input (implying that g is nonlinear in the firstN f bits of input whereN = N� +N f ).
Namely, we can view g as

g : (F
N f
2 × F

N�

2 ) → F2

such that

g(x, y) = f (x) ⊕ �(x, y)

where the domain of f is nonlinearly involved, and that of � is linearly involved. An
example to understand this notation is shown in the following.
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Example 1. Let g : F4
2 → F2 be a nonlinear invariant as

g(x3, x2, x1, x0) = x3x2 ⊕ x2 ⊕ x1 ⊕ x0.

Then, the function g can be viewed as

g(x3, x2, x1, x0) = f (x3, x2) ⊕ �(x3, x2, x1, x0),

where f (x3, x2) = x3x2 and �(x3, x2, x1, x0) = x2 ⊕ x1 ⊕ x0.

Since g is a nonlinear invariant for R, it holds that

g(x, y) ⊕ g(R(x, y)) = c,

where c is a constant in F2. Now consider a round key k ∈ F
N f
2 × F

N�

2 of the form
(0, k′). That is, we consider a round key such that its firstN f bits are zero. Then it holds
that

g(R(0,k′)(x, y)) = g(R(x, y ⊕ k′))
= g(x, y ⊕ k′) ⊕ c

= f (x) ⊕ �(x, y ⊕ k′) ⊕ c

= f (x) ⊕ �(x, y) ⊕ �(0, k′) ⊕ c

= g(x, y) ⊕ g(0, k′) ⊕ c.

In other words, all those round keys that are zero in the first N f bits are weak. Phrased
differently, the density of weak keys is 2−N f .

2.1.3. On Key Schedule and Round Constants

Many block ciphers generate round keys from the master key by a key schedule. For
a proper key schedule, it is very unlikely that all round keys are weak in the above
sense. However, many recent lightweight block ciphers do not have a well-diffused key
schedule, but rather use (parts of) the master key directly as the round keys. From a
performance point of view, this approach is certainly preferable. However, the direct
XORing with the secret key often causes vulnerabilities like the slide attack [7] or the
invariant subspace attack [16]. To avoid those attacks, round constants are additionally
XORed in such lightweight ciphers. While dense and random-looking round constant
would be a conservative choice, many such ciphers adopt sparse round constants because
they are advantageous in limited memory requirements.
Focusing on the case of identical round keys, assume that there is a Boolean function

g which is nonlinear invariant for the round function R. Now if all used round constants
rci are such that rci is only involved in the linear terms of g, the function g is nonlinear
invariant for this constant addition. This follows by the same arguments for the weak
keys above. We call such constants, in line with the notation of weak keys from above,
weak constants.
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To conclude, given a key-alternating cipher with identical round keys andweak round-
constants, any master key that is weak, is immediately weak for an arbitrary number of
rounds. In this scenario, the number of weak keys is 2N� , or equivalently, the density of
weak keys is 2−N f .

2.2. Message-Recovery Attack

As described so far, the nonlinear invariant attack leaks at most one bit of the secret key.
However, if a block cipher that is vulnerable to the nonlinear invariant attack is used
in well-known modes of operation, e.g., CBC, CFB, OFB, and CTR, surprisingly, the
attack can be turned into a ciphertext-only message-recovery attack.

Clearly, we cannot execute any ciphertext-only attack without some information on
the plaintexts. When block ciphers are used under well-known modes of operation,
the plaintext itself is not the input of block ciphers and the input is rather initializa-
tion vectors. Here we assume that an attacker can collect several ciphertexts where the
same plaintext is encrypted by the same (weak) key and different initialization vectors.
We like to highlight that this assumption is more practical not only compared to the
chosen-ciphertext attack but also to the known-plaintext attack. In practice, for instance,
assuming that an application sends secret password several times, we can recover the
password practically. While the feasibility depends on the behavior of the application,
our attack is highly practical in this case.

2.2.1. Attack Against CBC Mode

Figure1 shows an encryption by the CBC mode. Let Pj be the ( j + 1)th plaintext
block, and Ci

j denotes the ( j + 1)th ciphertext block by using the initialization vector

I V i . The attacker aims at recovering the plaintext (P0, P1, . . . , Pj ) by observing the
ciphertext (I V i ,Ci

0,C
i
1, . . . ,C

i
j ). Moreover, we assume that the block cipher Ek is

vulnerable against the nonlinear invariant attack, i.e., there is a function g such that
g(x) ⊕ g(Ek(x)) is constant for any x ∈ F

N
2 .

First, we explain how to recover the plaintext P0 by focusing on the first block. Since
Ek is vulnerable against the nonlinear invariant attack, there is a function g such that
g(P0 ⊕ I V i ) ⊕ g(Ci

0) is constant for any i ∈ {0, 1, . . . , h}. If g would be a linear
function,

Ek

P0

C0

Ek

P1

C1

Ek

P2

C2

Ek

Pj

Cj

IV

Fig. 1. CBC mode.
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g(P0 ⊕ I V i ) ⊕ g(Ci
0) = g(P0) ⊕ g(I V i ) ⊕ g(Ci

0)

is constant, and the attacker could only recover at most one bit of secret information.
However, g is nonlinear in our attack. Therefore, we can guess and determine the part of
P0 that is involved in the nonlinear term of g. More precisely, assume as above—without
loss of generality—that g is nonlinear in the first N f inputs and linear in the last N�

inputs, i.e.,

g : FN f
2 × F

N�

2 → F2

such that

g(x, y) = f (x) ⊕ �(x, y)

where f is any (nonlinear) Boolean function, and � is a linear Boolean function. Consider

again a plaintext P0 = (x, y) with x ∈ F
N f
2 and y ∈ F

N�

2 . The corresponding ciphertext
Ci
0 is split as C

i
0 = (zi , wi ) and the IVs as I V i = (ui , vi ). With this notation, we can

rewrite g for the first block as follows:

g(P0 ⊕ I V i ) = ( f (x ⊕ ui ) ⊕ �(x ⊕ ui , y ⊕ vi )) ,

g(P0 ⊕ I V j ) = (
f (x ⊕ u j ) ⊕ �(x ⊕ u j , y ⊕ v j )

)
,

g(Ci
0) = ( f (zi ) ⊕ �(zi , wi )) ,

g(C j
0 ) = (

f (z j ) ⊕ �(z j , w j )
)
.

Now, by using two distinct initialization vectors I V i and I V j

0 = g(P0 ⊕ I V i ) ⊕ g(Ci
0) ⊕ g(P0 ⊕ I V j ) ⊕ g(C j

0 )

implies

f (x ⊕ ui ) ⊕ f (x ⊕ u j ) = �(ui ⊕ u j , vi ⊕ v j ) ⊕ g(Ci
0) ⊕ g(C j

0 ). (1)

Assuming that the left side of Eq. (1) randomly changes depending on x , that is the left
N f bits of P0, we can recover one bit of information on P0 by using two initialization
vectors. Similarly, we can recover h−1 bits of P0 by using h initialization vectors. Note
that we can usually efficiently recover these bits by solving linear systems if the algebraic
degree of f is small [20]. We show the specific procedure for SCREAM and Midori64
in Sects. 4 and 5, respectively. The relationship among (P0, I V,C0) is equivalent to that
among (Pi ,Ci−1,Ci ). Therefore, we can similarly guess and determine the part of Pi
from Ci−1 and Ci for any of the plaintext blocks. One interesting remark is that as long
as we start to recover the message from the second block, the attack can be executed
even without the knowledge of the IV.
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2.2.2. Attacks Against Other Modes

We can execute a similar attack against the CFB, OFB, and CTR modes.
In the CFB mode, the ( j + 1)th ciphertext block C j is encrypted as

C j = Ek(C j−1) ⊕ Pj ,

where the initialization vector I V is used as the input of the first block. For simplicity,
let C−1 be I V . Then, we can recover the part of Pj from two ciphertext blocks C j−1
and C j .
In the OFB mode, the ( j + 1)th ciphertext block C j is encrypted as

C j = (Ek)
j (I V ) ⊕ Pj ,

where (Ek)
j (I V ) is j times multiple encryption. Since the nonlinear invariant property

is iterative over an arbitrary number of rounds, the multiple encryption is also vulnerable
against the nonlinear invariant attack. Therefore, we can recover the part of Pj from I V
and C j .
In the CTR mode, the ( j + 1)th ciphertext block C j is encrypted as

C j = Ek(I V + j) ⊕ Pj .

Therefore, we can recover the part of Pj from I V + j and C j .

3. Finding Nonlinear Invariants for SP-Ciphers

Westart by considering the very general problemof finding nonlinear invariants.Namely,
given any function

F : Fm
2 → F

m
2 ,

our goal is to find a Boolean function

g : Fm
2 → F2

such that

g(x) = g(F(x)) ⊕ c (2)

where c is a constant in F2. Moreover, let us denote by

U (F) := {g : Fm
2 → F2 | g(x) = g(F(x)) ⊕ c}

the set of all (nonlinear) invariants.
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The description so far is generic in the sense that it applies to basically any block
cipher. For now, and actually for the remainder of the paper, we focus on key-alternating
ciphers with a round function using a layer of S-boxes and a linear layer, the so-called
substitution–permutation networks (SPN).

3.1. SPN Ciphers

In the following, we consider the un-keyed round function only. That is to say that we
ignore the key schedule and also any round constants.
For simplicity, we focus on the case of identical S-boxes, but the more general case

can be handled in a very similar manner. In this section, we denote by t the number of
S-boxes and by n the size of one S-box. Thus, the block size processed is n · t bits. With
this notation, we consider one round function R of an SPN

R : (
F
n
2

)t → (
F
n
2

)t

as consisting of a layer of S-boxes Ṡ with

Ṡ(xt−1, . . . , x0) = (S(xt−1), . . . , S(x0))

where S is an n-bit S-box and a linear layer

L : (
F
n
2

)t → (
F
n
2

)t

which can also be seen as

L : Fnt
2 → F

nt
2 .

The round function R is given as the composition of the S-box layer and the linear layer,
i.e.,

R(x) = L ◦ Ṡ(x).

We would like to find nonlinear invariant g for R. However, computing this directly
is difficult as soon as the block size is reasonable large. Recall the definition of U (R),
which is the set of all nonlinear invariants for R. Then it holds that

g ∈ (
U (Ṡ) ∩U (L)

) ⊂ U (R)

because functions that are invariant under both Ṡ and L are clearly invariants for their
composition R = L ◦ S.
As we will explain next, computing parts of U (Ṡ) ∩U (L) are feasible and sufficient

to automatically detect the weaknesses described later in the paper.
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3.1.1. The S-box Layer

We start by investigating the S-box layer. Given the S-box as a function

S : Fn
2 → F

n
2

computing U (S) is feasible as long as n is only moderate in size.
Note that, for any function F , U (F) is actually a subspace of Boolean functions. To

see this, note that given two Boolean functions f, g ∈ U (F), it holds

( f ⊕ g)(x) = f (x) ⊕ g(x)

= ( f (F(x)) ⊕ c) ⊕ (
g(F(x)) ⊕ c′)

= ( f ⊕ g)(F(x)) ⊕ (c ⊕ c′)

for any x . Thus, the sum, f ⊕ g, is in U (F) as well. Moreover, the all-constant func-
tion is in U (F) for any F . Therefore, any nonlinear invariant gS ∈ U (S) can actually
be described by a linear combination of basis elements of U (S). More precisely, let
b0, . . . , bd−1 : Fn

2 → F2 be a basis of U (S), then any gS ∈ U (S) can be written as

gS(x) =
d−1⊕

i=0

γi bi (x)

for suitable coefficients γi in F2.
To identify a nonlinear invariant gS ∈ U (S), the idea is to consider the algebraic

normal form (ANF) of gS , that is to express gS as

gS(x) =
⊕

u∈Fn2
λux

u,

where λu ∈ F2 are the coefficients to be determined and xu denotes
∏

xuii . The key
observation is that Eq. (2), for any fixed x ∈ F

n
2, translates into one linear (or affine)

equation for the coefficients λu , namely

⊕

u∈Fn2
λu(x

u ⊕ S(x)u) = c.

The ANF of (xu ⊕ S(x)u) is computed for all u ∈ F
n
2, and we can easily solve the basis

b0, . . . , bd−1 ∈ U (S) for n not too big. “AppendixA” shows the algorithm in detail.
In particular, for commonly used §-box sizes of up to 8 bits, the space U (S) can be
computed in less than a second on a standard PC.
So far, we have considered only a single S-box, and it still needs to be discussed how

those results can be translated into the knowledge of invariants for the parallel execution
of S-boxes, i.e., for Ṡ. Again, for a layer of S-boxes Ṡ computing U (Ṡ) directly using
its ANF is (in general) too expensive. However, we can easily construct many elements
in U (Ṡ) from elements in U (S) as summarized in the following proposition.
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Proposition 1. Let gi ∈ U (S), for i ∈ {0, . . . , t − 1} be any set of invariants for the
S-box S. Then, any function of the form

gṠ(xt−1, . . . , x0) =
t−1⊕

i=0

αi gi (xi )

withαi ∈ F2 is inU (Ṡ), that is an invariant for the entire S-box layer. The set of functions
form a subspace of U (Ṡ) of dimension d ∗ t where d is the dimension of U (S), and t is
the number of parallel S-boxes.

Example 2. Let us consider Ṡ, where four 4-bit S-boxes are applied in parallel. Assum-
ing that the following Boolean function

gS(x[3], x[2], x[1], x[0]) = x[3]x[2] ⊕ x[2] ⊕ x[1] ⊕ x[0]

is a nonlinear invariant for the 4-bit S-box,

gS(x3, x2, . . . , x0) =
3⊕

i=0

αi (xi [3]xi [2] ⊕ xi [2] ⊕ xi [1] ⊕ xi [0]).

is nonlinear invariant for Ṡ with any (α3, α2, α1, α0) ∈ (F2)
4. For example, when

(α3, α2, α1, α0) = (1, 0, 1, 0),

gṠ(x3, x2, . . . , x0) = (x3[3]x3[2] ⊕ x3[2] ⊕ x3[1] ⊕ x3[0])
⊕ (x1[3]x1[2] ⊕ x1[2] ⊕ x1[1] ⊕ x1[0])

is an nonlinear invariant for Ṡ .

We denote this subspace of invariants for Ṡ by U�(Ṡ), and U�(Ṡ) ⊂ U (Ṡ).
It turns out that, in general, many more elements are contained in U (Ṡ) than those

covered by the construction above. We decided to shift those details, which are not
directly necessary for the understanding of the attacks presented in Sects. 4 and 5 to the
end of the paper, in Sect. 7.

3.1.2. The Linear Layer

For the linear layer computing U (L) using its ANF seems again difficult. But, as stated
above, we focus on

g ∈ (U (L) ∩U�(Ṡ)) ⊂ (U (L) ∩U (Ṡ)) ⊂ U (R),

and computing U (L) ∩U�(Ṡ) is feasible in all practical cases.
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Recall that any nonlinear invariant g ∈ U (S) can actually be described by a linear
combination of basis of U (S) as

gS(x) =
d−1⊕

i=0

γi bi (x)

for suitable coefficients γi in F2.
As any f in U�(Ṡ) is itself a direct sum of elements in U (S), it can be written as

f (xt−1, . . . , x0) =
t−1⊕

i=0

d−1⊕

j=0

βi, j b j (xi )

with βi, j ∈ F2. Computing those coefficients βi, j can again be done by solving a linear
system, as any fixed x ∈ (

F
t
2

)n results in a linear equation for the coefficients by using

f (x) = f (L(x)).

As long as the dimension of U�(Ṡ), i.e., the number of unknowns, is not too large, this
again can be computed within seconds on a standard PC.

3.1.3. Experimental Results

When the procedure explained above was applied to the ciphers SCREAM and Midori,
it instantaneously detected possible attacks. Actually, as we will explain next, there is a
common structural reason why nonlinear invariant attacks are possible on those ciphers.

3.2. Structural Weakness with Respect to Nonlinear Invariant

Let us consider linear layers which are actually used in the LS-designs [11] (cf. Sect. 4)
and also in anyAES-like cipher that uses a binarydiffusionmatrix as a replacement for the
usual MixColumns operation. Then, we consider a linear layer that can be decomposed
into the parallel application of n identical t × t binary matrices M . The input for the first
t × t matrix is composed of all the first output bits of the t S-boxes, and the input for the
second matrix is composed of all the second output bits of the S-boxes, etc.
Here, when M is an orthogonal matrix, that is if

〈x, y〉 = 〈xM, yM〉 ∀ x, y,

any quadratic nonlinear invariant for the S-box can be extended to a nonlinear invariant
of the whole round function as described in Theorem1.

Note that from a design point of view, takingM as an orthogonalmatrix seems actually
beneficial. Thanks to the orthogonality of M , bounds on the number of active S-boxes
for differential cryptanalysis directly imply the same bounds on the number of active
S-boxes for linear cryptanalysis.
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Theorem 1. For the SPN ciphers whose round function follows the construction used
in LS-designs, let M ∈ F

t×t
2 be the binary representation of the linear layer and M is

orthogonal. Assume there is a nonlinear invariant gS for the S-box. If gS is quadratic,
then the function

g(xt−1, . . . , x0) :=
t−1⊕

i=0

gS(xi )

is a nonlinear invariant for the round function L ◦ Ṡ.

Proof. First, due to Proposition 1, it is immediately clear that g is a nonlinear invariant
for the S-box layer Ṡ.
Next, let us consider the linear layer L . Let x ∈ (Fn

2)
t and y ∈ (Fn

2)
t be the input

and output of L , respectively. Moreover, xi [ j] and yi [ j] denotes the j th bit of xi and yi ,
respectively. For simplicity, let xT ∈ (Ft

2)
n and yT ∈ (Ft

2)
n be the transposed input and

output, respectively, where xTj ∈ F
t
2 denotes (x0[ j], x1[ j], . . . , xt−1[ j]). Then, it holds

yTi = xTi × M for all i ∈ {0, 1, . . . , n − 1}. Since the Boolean function gS is quadratic,
the function is represented as

gS(xi ) =
n−1⊕

i1=0

n−1⊕

i2=0

γi1,i2(xi [i1] ∧ xi [i2]),

where γi1,i2 are coefficients depending on the function g. From the inner product
〈xTi1 , xTi2 〉 = ⊕t−1

i=0 xi [i1] ∧ xi [i2],

g(x) =
t−1⊕

i=0

gS(xi ) =
n−1⊕

i1=0

n−1⊕

i2=0

γi1,i2〈xTi1 , xTi2 〉.

Then,

g(y) =
n−1⊕

i1=0

n−1⊕

i2=0

γi1,i2〈xTi1M, xTi2M〉.

From the orthogonality of M ,

g(y) =
n−1⊕

i1=0

n−1⊕

i2=0

γi1,i2〈xTi1 , xTi2 〉

=
t−1⊕

i=0

gS(xi ) = g(x).

Therefore, the function g(x) = ⊕t−1
i=0 gS(xi ) is a nonlinear invariant for L . �
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Assuming that the matrix M is orthogonal, Theorem1 shows that there is a nonlinear
invariant for the round function L ◦ S if there is a quadratic function which is nonlinear
invariant for the S-box.
When M is not orthogonal, we have to execute the algorithm described in Sect. 3.1 to

find nonlinear invariants for L . As far as we tried, we could not find balanced nonlinear
invariant gwithout condition thatM is orthogonal.On the other hand, if g is not balanced,
we can regard that the invariant subspace [16] is a special case of the nonlinear invariant.
We have not exploited the orthogonality of M in the invariant subspace attack, and it
implies that there is the possibility to exist nonlinear invariant even ifM is not orthogonal.
We describe this observation in Sect. 7 in detail.

4. Practical Attack on SCREAM

The most interesting application of the nonlinear invariant attack is a practical attack
against the authenticated encryption schemes SCREAM and iSCREAM in the nonce-
respecting model. SCREAM and iSCREAM have 296 and 297 weak keys, respectively,
and we then practically distinguish their ciphers from a random permutation. Moreover,
we can extend this attack to a ciphertext-only attack.

4.1. Specification of SCREAM

SCREAM is an authenticated encryption scheme and a candidate of the CAESAR
competition [10]. It uses the tweakable block cipher Scream, which is based on the
tweakable variant of LS-designs [11].

4.1.1. LS-Designs

LS-designs were introduced by Grosso et al. in [11] and are used to design block ciphers.
We do not refer to the design rational in this paper, and we only show the brief structure
to understand this paper. The state of LS-designs is represented as an n× t matrix, where
every element of the matrix is only one bit, i.e., the block length is N = n × t . The i th
round function proceeds as follows:

1. The n-bit S-box S is applied to t columns in parallel.
2. The t-bit L-box L is applied to n rows in parallel.
3. The round constant RC(r) is XORed with the state.
4. The secret tweakey T K (σ ) is XORed with the state.

Figure2 shows the components of an LS-design. Let SB and LB be the S-box layer
and L-box layer, respectively. Then, we call the composite function (LB ◦ SB) an LS-
function. Let x ∈ F

n×t
2 be the state of LS-designs. Then x[i, �] ∈ F

t
2 denotes the row of

index i of x , and x[�, j] ∈ F
n
2 denotes the column of index j of x . Moreover, let x[i, j]

be the bit in the (i + 1)th row and ( j + 1)th column. The S-box S is applied to x[�, j]
for all j ∈ [0, t), and the L-box L is applied to x[i, �] for all i ∈ [0, n).



Nonlinear Invariant Attack 1399

Fig. 2. The components of an LS-design.

Algorithm 1 Specification of Scream
1: x ← P ⊕ T K (0)
2: for 0 < σ ≤ Ns do
3: for 0 < ρ ≤ 2 do
4: r = 2(σ − 1) + ρ

5: for 0 ≤ j < 16 do
6: xTj = S[x[�, j]]
7: end for
8: x ← x ⊕ RC(r)
9: for 0 ≤ i < 8 do
10: xi = L[x[i, �]]
11: end for
12: end for
13: x ← x ⊕ T K (σ )

14: end for
15: return x

4.1.2. Tweakable Block Cipher Scream

Scream is based on a tweakable LS-design with an 8× 16 matrix, i.e., the block length
is 8 × 16 = 128 bits. Let x ∈ F

8×16
2 be the state of Scream, then the entire algorithm

is defined as Algorithm1, where Ns be the number of steps depending on the security
parameter. Here S and L denote the 8-bit S-box and 16-bit L-box, respectively, which
are fully specified in “AppendixB.” The round constant RC(r) is defined as

RC(r) = 2199 · r mod 216.

The binary representation of RC(r) is XORed with the first row x[0, �]. Scream uses
a 128-bit key K and 128-bit tweak T as follows. First, the tweak is divided into 64-bit
halves, i.e., T = T0‖T1. Then, every tweakey is defined as

T K (σ = 3i) = K ⊕ (T0‖T1),
T K (σ = 3i + 1) = K ⊕ (T0 ⊕ T1‖T1),
T K (σ = 3i + 2) = K ⊕ (T1‖T0 ⊕ T1).
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SB LB SB LB8

16

Fig. 3. The σ th step function of Scream.
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Fig. 4. Encryption of plaintext blocks.

Here, the x[i, �] contains state bits from 16i to 16(i + 1) − 1, e.g., x[0, �] contains state
bits from 0 to 15 and x[1, �] contains state bits from 16 to 31. Moreover, Fig. 3 shows
the step function, where SB and LB are the S-box layer and L-box layer, respectively.

4.1.3. Authenticated Encryption SCREAM

The authenticated encryption scheme SCREAM uses the tweakable block cipher
Scream in the TAE mode [18]. SCREAM consists of three steps: associated data pro-
cessing, encryption of the plaintext block, and tag generation. Since our attack exploits
encryption of the plaintext block, we explain the specification (see Fig. 4). Plaintext
values are encrypted by using Scream in order to produce the ciphertext values, and
all blocks use Tctr = (N‖ctr‖00000000), where let nb be the bytesize of the nonce N ,
and it can be chosen by the user between 1 and 15 bytes. Moreover, the counter c can
take (120 − 8nb)-bit value. If the last block is a partial block, its bitlength is encrypted
to generate a mask, which is then truncated to the partial block size and XORed with
the partial plaintext block. Therefore, the ciphertext length is the same as the plaintext
length.

4.1.4. Security Parameter

Finally, we like to recall the security parameters of SCREAM, as described by the
designers. While the nonce bytesize nb can be chosen by the user, the designers recom-
mend that nb = 11, and we also use the recommended parameter in this paper.

SCREAM has three security parameters, i.e., lightweight security, single-key security,
and related-key security. They are summarized as follows.
Lightweight security 80-bit security, with a protocol avoiding related keys. Tight param-
eters: 6 steps, Safe parameters: 8 steps.
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Single-key security 128-bit security, with a protocol avoiding related keys. Tight param-
eters: 8 steps, Safe parameters: 10 steps.
Related-key security 128-bit security, with possible related keys. Tight parameters: 10
steps, Safe parameters: 12 steps.
More precisely, designers order their recommended sets of parameters as follows:

– First set of recommendations: SCREAM with 10 steps, single-key security.
– Second set of recommendations: SCREAM with 12 steps, related-key security.

4.2. Nonlinear Invariant for Scream

The L-box of Scream is chosen as an orthogonal matrix. Therefore, there is a nonlinear
invariant for the LS-function fromTheorem1 if we can find a quadratic Boolean function
gS : F8

2 → F2 which is a nonlinear invariant for the S-box S.
Let x ∈ F

8
2 and y ∈ F

8
2 be the input and output of the S-box S, respectively. Moreover,

x[ j] ∈ F2 and y[ j] ∈ F2 denote the j th bits of x and y, respectively. Then, the Scream
S-box has the following property

(x[1] ∧ x[2]) ⊕ x[0] ⊕ x[2] ⊕ x[5] = (y[1] ∧ y[2]) ⊕ y[0] ⊕ y[2] ⊕ y[5] ⊕ 1.

Let gS : F8
2 → F2 be a quadratic Boolean function, where

gS(x) = (x[1] ∧ x[2]) ⊕ x[0] ⊕ x[2] ⊕ x[5].
Then, the function gS is a quadratic nonlinear invariant for S because

gS(x) ⊕ gS(S(x)) = gS(x) ⊕ gS(x) ⊕ 1 = 1.

Therefore, due to Theorem1, the Boolean function

g(x) =
15⊕

j=0

gS(x[�, j]) =
15⊕

j=0

(
x[1, j] ∧ x[2, j] ⊕ x[0, j] ⊕ x[2, j] ⊕ x[5, j]

)

is a nonlinear invariant for the round function of Scream. Note that this nonlinear
invariant g is clearly balanced, as it is linear (and not constant) in parts of its input.

Next, we show that this Boolean function is also a nonlinear invariant for the constant
addition and tweakey addition. The round constant RC(r) is XORed with only x[0, �].
Since RC(r) linearly affects the output of the function g,

g(x ⊕ RC(r)) = g(x) ⊕ g(RC(r))

for any x . The tweakey T K (σ ) is defined as

T K (σ = 3i) = K ⊕ (T0‖T1),
T K (σ = 3i + 1) = K ⊕ (T0 ⊕ T1‖T1),
T K (σ = 3i + 2) = K ⊕ (T1‖T0 ⊕ T1),
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where T = T0‖T1. Therefore, if we restrict the key and tweak by fixing

K [1, �] = K [2, �] = 0,

T [1, �] = T [2, �] = T [5, �] = T [6, �] = 0,

T K (σ )[1, �] and T K (σ )[2, �] are always zero vectors. Then, since the tweakey linearly
affects the output of the function g,

g(x ⊕ T K (σ )) = g(y) ⊕ g(T K (σ )),

and all those keys are weak. Therefore, the density of weak keys is 2−32, i.e., there are
296 weak keys.
Let P and C be the plaintext and ciphertext of Scream, respectively. In Ns-step

Scream, the relationship between P and C is represented as

g(P) = g(C) ⊕
2Ns⊕

r=1

g
(
RC(r)

) ⊕
Ns⊕

σ=0

g
(
T K (σ )

)

= g(C) ⊕
2Ns⊕

r=1

g
(
RC(r)

) ⊕ gT (Ns, T ) ⊕ gK (Ns, K ),

where gT (Ns, T ) and gK (Ns, K ) are defined as

gT (Ns, T ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(T0‖T1) Ns = 0 mod 6,

g(T1‖0) Ns = 1 mod 6,

g(0‖T0 ⊕ T1) Ns = 2 mod 6,

g(T0‖T0) Ns = 3 mod 6,

g(T1‖T0 ⊕ T1) Ns = 4 mod 6,

0 Ns = 5 mod 6,

and

gK (Ns, K ) =
{
g(K ) Ns = 0 mod 2,

0 Ns = 1 mod 2,

respectively. When the master key belongs to the class of weak keys, g(P) ⊕ g(C) ⊕
gT (Ns, T ) is constant for all plaintexts and a given key. When the key does not belong
to the weak-key class, the probability that the output is constant is about 2−h+1 given
h known plaintexts. Therefore, we can easily distinguish whether or not the using key
belongs to the weak-key class. Note that all recommended numbers of rounds are even
number. Therefore, from
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Fig. 5. Tweak mapping.

g(K ) = g(P) ⊕ g(C) ⊕
2Ns⊕

r=1

g
(
RC(r)

) ⊕ gT (Ns, T ),

we can recover one bit of information about the secret key K .

4.3. Practical Attack on SCREAM

4.3.1. Known-Plaintext Attack

We exploit the encryption step of SCREAM (see Fig. 4). The nonlinear invariant
attack is a chosen-tweak attack under the weak-key setting. First, let us consider the
class of weak tweaks. In the encryption step, the tweak Tctr = (N‖ctr‖00000000) is
used, where we assume that nb = 11. Figure5 shows the structure of Tctr . From the
condition of the nonlinear invariant attack, the following Tctr

Tctr [1, �] = Tctr [2, �] = Tctr [5, �] = Tctr [6, �] = 0

are weak tweaks. Namely, we choose N whose 3rd, 4th, 5th, 6th, and 11th bytes are zero.
Then, if the counter is less than 256, i.e., from T0 to T255, the tweak fulfills the condition.
Moreover, the actual nonce fulfills the needs of the tweak if the nonce is implemented
as a counter increment, which seems to occur in practice. If the master key belongs
to the weak-key class, we can recover one bit of information about the secret key by
using only one known plaintext. Moreover, by using h known plaintexts, the probability
that the output is constant is about 2−h+1 when the key does not belong to weak-key
class. Therefore, an attacker can distinguish whether or not the used key belongs to the
weak-key class.

4.3.2. Ciphertext-Only Message-Recovery Attack

The interesting application of the nonlinear invariant attack is a ciphertext-only attack.
This setting is more practical than the known-plaintext attack.
We focus on the procedure of the final block. The input of Scream is the bitlength

of Pm−1, and the bitlength is encrypted to generate a mask. Then the mask is truncated
to the partial block size and XORed with Pm−1. Therefore, the ciphertext length is the
same as the plaintext length. In the ciphertext-only attack, we cannot know Pm−1. On
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the other hand, we know ciphertextCm−1 and the bitlength |Pm−1| can be obtained from
|Cm−1|. Therefore, we guess Pm−1 and evaluate

g(|Pm−1|) ⊕ g(Pm−1 ⊕ Cm−1) ⊕ gT (Ns, T ),

and the above value is always constant for any weak tweaks T . Therefore, from two
ciphertexts corresponding to the same final plaintext block encrypted by distinct tweaks,
we create a linear equation as

g(Pm−1 ⊕ Cm−1) ⊕ g(Pm−1 ⊕ C ′
m−1) = gT (Ns, T ) ⊕ gT (Ns, T

′). (3)

We can compute the right side of Eq. (3). Moreover, we regard the function g as

g(X) = f (X) ⊕ �(X),

where

f (X) =
15⊕

j=0

(
X [1, j] ∧ X [2, j]

)
,

�(X) =
15⊕

j=0

X [0, j] ⊕ X [2, j] ⊕ X [5, j].

Then,

g(Pm−1 ⊕ Cm−1) ⊕ g(Pm−1 ⊕ C ′
m−1)

= f (Pm−1 ⊕ Cm−1) ⊕ f (Pm−1 ⊕ C ′
m−1) ⊕ �(Cm−1) ⊕ �(C ′

m−1)

=
15⊕

j=0

(
Cm−1[1, j]Pm−1[2, j] ⊕ Pm−1[1, j]Cm−1[2, j] ⊕ Cm−1[1, j]Cm−1[2, j]

)

15⊕

j=0

(
C ′
m−1[1, j]Pm−1[2, j] ⊕ Pm−1[1, j]C ′

m−1[2, j] ⊕ C ′
m−1[1, j]C ′

m−1[2, j]
)

⊕ �(Cm−1) ⊕ �(C ′
m−1).

The equation above is actually a linear equation in 32 unknown bits, Pm−1[1, j] and
Pm−1[2, j], as all other terms are known. Therefore, we can create h linear equations
by collecting h + 1 ciphertexts encrypted by distinct tweaks. We can recover 32 bits,
Pm−1[1, j] and Pm−1[2, j], by solving this system as soon as the corresponding system
has full rank. Assuming that the system behaves like a randomly generated system of
linear equations, we can expect that the system has full rank already when taking slightly
more than 33 equations. The time complexity for solving this system is negligible.
Note that the system involves four 16-bit words,Cm−1[0, j],Cm−1[1, j],Cm−1[2, j],

and Cm−1[5, j]. Since the bitlength of Cm−1 is equal to that of Pm−1, we cannot solve
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Table 2. The success probability of recovering the correct 32 plaintext bits on SCREAM .

# nonces (h + 1) 33 34 35 36 37 38 39 40 41 42 43

Experimental 0.289 0.571 0.762 0.885 0.942 0.976 0.991 0.995 0.998 0.999 1
Theoretical 0.289 0.578 0.770 0.880 0.939 0.969 0.984 0.992 0.996 0.998 0.999

this system if |Pm−1| < 96. Therefore, the necessary condition of this attack is 96 ≤
|Pm−1| < 128.

4.3.3. Experimental Results

In order to verify our findings and in particular to verify that the system indeed behaves
like a random system of linear equations, we implemented our ciphertext-only message-
recovery attack for SCREAM. In our experiment, the key is randomly chosen from the
weak-key class. Moreover, we use h distinct nonces such that the corresponding tweak
is weak, and collect h corresponding ciphertexts. We repeated our attack 1000 times.
Table2 summarizes the success probability of recovering the correct 32 bits.Moreover, in
the table we compare the experimental success probability to the theoretically expected
probability in the case of a randomly generated system of linear equations. As can be
seen, the deviation of the experimental results to the theoretically expected results is
very small.

4.4. Application to iSCREAM

The authenticated encryption scheme iSCREAM also has a similar structure to
SCREAM, and the L-box of Scream is chosen as an orthogonal matrix. The full spec-
ification is referred to “AppendixC.” There is a nonlinear invariant for the LS-function
from Theorem1 if we can find a quadratic Boolean function gS : F8

2 → F2 which is a
nonlinear invariant for the S-box S.
Let x ∈ F

8
2 and y ∈ F

8
2 be the input and output of the S-box S, respectively. Moreover,

x[ j] ∈ F2 and y[ j] ∈ F2 denote the j th bits of x and y, respectively. We first searched
for bases of nonlinear invariants and found six bases of quadratic nonlinear invariants.
Found six bases are shown in “AppendixA.2.” Since round constants are XORed with
x[0], the following bases of quadratic nonlinear invariants are available.

gS(x) = x[2] ⊕ (x[5] ∧ x[6]) ⊕ x[5] ⊕ x[6] ⊕ x[7],
gS(x) = x[0] ⊕ (x[4] ∧ x[5]) ⊕ x[6].

Due to Theorem1, the following 2 Boolean functions

g(x) =
15⊕

j=0

gS(x[�, j]) =
15⊕

j=0

(
x[2, j] ⊕ (x[5, j] ∧ x[6, j]) ⊕ x[5, j] ⊕ x[6, j] ⊕ x[7, j]

)
,

g(x) =
15⊕

j=0

gS(x[�, j]) =
15⊕

j=0

(
x[0, j] ⊕ (x[4, j] ∧ x[5, j]) ⊕ x[6, j]

)
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are nonlinear invariants for the round function of iScream. Note that this nonlinear
invariant g is clearly balanced, as it is linear (and not constant) in parts of its input.
Moreover, all linear combinations of two bases become nonlinear invariants. Therefore,
there are 3 (= 22 − 1) nonlinear invariants for the S-box of iScream.

We omit the detailed attack procedure against authenticated encryption scheme
iSCREAM because it is similar to the attack against SCREAM. Note that the num-
ber of weak keys is 2 × 296 because we have two independent nonlinear invariants.

5. Practical Attack on Midori64

5.1. Specification of Midori64

Midori is a lightweight block cipher recently proposed by Banik et al. [1], which is
particularly optimized for low-energy consumption. There are two versions depending
on the block size;Midori64 for 64-bit block and Midori128 for 128-bit block. Both use
128-bit key. The nonlinear invariant attack can be applied to Midori64; thus, we only
explain the specification of Midori64 briefly.

Midori64 adopts an SPN structure with a non-MDSmatrix and a very light key sched-
ule. The state is represented by a 4×4-nibble array. At first the plaintext is loaded to the
state, then the key whitening is performed. The state is updated with a round function 16
times, and a final key whitening is performed. The resulting state is the ciphertext. The
overall structure is illustrated in Fig. 6. More details on each operation will be given in
the following paragraphs.

5.1.1. Key Schedule Function

A user-provided 128-bit key is divided into two 64-bit key states K0 and K1. Then, a
whitening key WK and 15 round keys RKi , i = 0, 1. . . . , 14 are generated as follows.

WK ← K0 ⊕ K1, RKi ← Ki mod 2 ⊕ αi ,

where αi are fixed 64-bit constants. The round constants αi are binary for each nibble,
i.e., any nibble in αi is either 0000 or 0001. Using such constants is beneficial to keep

Fig. 6. Computation structure of Midori64.
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Table 3. Examples of round constant αi .

α0 α1 α2 α3 α4 α5

0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 0
0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0
1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0

the energy consumption low. The exact values of αi are given in Table 3 for the first 6
rounds. We refer to [1] for the complete specification.

5.1.2. Round Function

The round function consists of four operations: SubCell, ShuffleCell, MixColumn, and
KeyAdd. Each operation is explained in the following.

SubCell The 4-bit S-box S defined below is applied to each nibble in the state.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C A D 3 E B F 7 8 9 1 5 0 2 4 6

ShuffleCell Each cell of the state is permuted as ShiftRows in AES. Let s0, s1, s2, s3 be
four nibbles in the first row. Let s4, . . . , s15 be the other 12 nibbles similarly
defined. Then, the cell permutation is specified as follows.

(s0, s1, . . . , s15) ← (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8)

Note that our nonlinear invariant attack would actually work in exactly the
same way for any other cell permutation as well.

MixColumn The following 4×4 orthogonal binarymatrixM is applied to every column
of the state.

M =

⎛

⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟⎟⎠

KeyAdd The round key RKi is XORed to the state in round i .

In the last round, only SubCell (followed by the post-whitening) is performed.

5.2. Nonlinear Invariant for Midori64

The matrix used in MixColumn is a binary and orthogonal matrix. Thus, Theorem1
implies that any quadratic Boolean function gS : F4

2 → F2, which is a nonlinear invariant
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for the S-box S, allows us to find nonlinear invariant for the entire round function.
Similarly to the previous section, we use the notation x[ j] ∈ F2 and y[ j] ∈ F2 to denote
the j th bits of 4-bit S-box input x and 4-bit S-box output y, respectively.
We searched for gS such that gS(x) = gS(S(x)) and found four bases of quadratic

nonlinear invariants. Found four bases are shown in “AppendixA.2.” Therefore, there
are 15(= 24 − 1) nonlinear invariants for the S-box of Midori64. We then pick up these
ones that are also nonlinear invariant for the key addition RKi , which is computed by
RKi ← Ki mod 2 ⊕ αi . Here, αi takes 0000 or 0001 in each nibble, i.e., the second,
third, and fourth bits are always 0. Thus, we need to avoid gS in which the first bit
is included in the nonlinear component, i.e., gS cannot involve x[0] and y[0] in their
nonlinear component. Among the 15 choices, only one can satisfy this condition. The
picked S-box property of Midori64 is as follows.

x[0] ⊕ x[1] ⊕ (x[2] ∧ x[3]) ⊕ x[2] = y[0] ⊕ y[1] ⊕ (y[2] ∧ y[3]) ⊕ y[2].

Then, the following gS : F4
2 → F is a nonlinear invariant for S;

gS(x) = x[0] ⊕ x[1] ⊕ (x[2] ∧ x[3]) ⊕ x[2].

Here, ShuffleCell does not affect the nonlinear invariant. Therefore, from Theorem1,
the following Boolean function

g(x) =
15⊕

i=0

gS(xi )

is a nonlinear invariant for the round function of Midori64. Note, as for SCREAM, the
Boolean function g is actually balanced.

5.3. Distinguishing Attack

Asmentioned in Sect. 2, the simple distinguishing attack can be mounted against a weak
key. Let � : F64

2 → F2 be a linear part of g, namely �(x) = ⊕15
i=0(xi [2]⊕ xi [1]⊕ xi [0]).

We have g(P) ⊕ g(C) = c, where c is a linear part of the values injected to round
function during the encryption process;

c = �(WK ) ⊕ �(RK0) ⊕ �(RK1) ⊕ · · · ⊕ �(RK14) ⊕ �(WK ),

= �(RK0) ⊕ �(RK1) ⊕ · · · ⊕ �(RK14).

Given RKi = Ki mod 2 ⊕ αi , the above equation is further converted as

c = �(K1) ⊕ �(α0) ⊕ �(α1) ⊕ · · · ⊕ �(α14).



Nonlinear Invariant Attack 1409

Table 4. The success probability of recovering the correct 32 bits on Midori64-CBC.

# blocks (h + 1) 33 34 35 36 37 38 39 40 41 42 43

Experimental 0.279 0.574 0.753 0.883 0.931 0.968 0.988 0.991 0.999 0.997 1
Theoretical 0.289 0.578 0.770 0.880 0.939 0.969 0.984 0.992 0.996 0.998 0.999

As αi [2] = αi [1] = 0 for any i , it can be simply written as

c = �(K1) ⊕
14⊕

i=0

15⊕

j=0

αi, j ,

where αi, j is the j th nibble of αi . We confirmed that the total number of 1 in all αi is
even, thus

⊕14
i=0

⊕15
j=0 αi, j = 0. In the end, g(P) ⊕ g(C) = �(K1) always holds for

Midori64, while this holds with probability 1/2 for a random permutation.

5.4. Experimental Results

As mentioned in Sect. 2, the above property can reveal 32 bits (the two most significant
bits from each nibble) of an unknown plaintext block in the weak-key setting when
Midori64 is used in well-known block cipher modes.

We implemented our ciphertext-only message-recovery attack for Midori64 in the
CBC mode. In our experiment, the key and IV are chosen uniformly at random from
the weak-key space and the entire IV space. We also choose a 64-bit plaintext block P ,
uniformly at random, and assume that P is iterated over h blocks, where 33 ≤ h ≤ 43.
We executed our attack of repeating 1000 times, and Table4 summarizes the success
probability of recovering the correct 32 bits. Similarly to the case of SCREAM the
system of equations behaves very much like a random system of equation in the sense
that the probability that it has full rank is very close to the corresponding probability for
a random system with the same dimensions.

6. Extending Weak-Key Classes for Nonlinear Invariant

Recall Sect. 2.1. Without loss of generality, input bits are separated into two parts as

g : (F
N f
2 × F

N�

2 ) → F2, where the last N� bits are only linearly involved in the
nonlinear invariant g. Then

g(x, y) = f (x) ⊕ �(x, y)

where f is the nonlinear part of g, and � is the linear part of g. As the class of weak
keys, we considered a round key such that its first N f bits are zero as (0, k′) because
the nonlinear invariant is preserved for such a weak key.
Now we extend a class of weak keys for the nonlinear invariant, where a nonzero

constant is accepted even if it is XORed to the nonlinear term of g. We explain such a
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case by using a simple example. Assume that the following Boolean function

gS(x[3], x[2], x[1], x[0]) = x[0]x[3] ⊕ x[0] ⊕ x[2]x[3] ⊕ x[3]

is nonlinear invariant for a 4-bit S-box. In the class ofweakkeys described above, nonzero
constants are only accepted for x[1] because x[0], x[2], and x[3] are nonlinearly involved
in gS . Namely, the class of weak keys is {0000, 0010}. Here we observe that when
constant bits corresponding to x[0] and x[2] are 1 at the same time, i.e., 0101, the
nonlinear invariant is preserved because

gS(x ⊕ 0101) = (x[0] ⊕ 1)x[3] ⊕ (x[0] ⊕ 1) ⊕ (x[2] ⊕ 1)x[3] ⊕ x[3],
= x[0]x[3] ⊕ x[3] ⊕ x[0] ⊕ 1 ⊕ x[2]x[3] ⊕ x[3] ⊕ x[3],
= x[0]x[3] ⊕ x[0] ⊕ x[2]x[3] ⊕ x[3] ⊕ 1 = gS(x) ⊕ 1.

Therefore, the weak class is extended to {0000, 0010, 0101, 0111} from {0000,
0010}.
As another example, assume that a following Boolean function

gS(x[3], x[2], x[1], x[0]) = x[0]x[1] ⊕ x[1]x[2] ⊕ x[2]x[3] ⊕ x[3]x[0]

is nonlinear invariant for a 4-bit S-box. Since all bits are nonlinearly involved, the weak
key can only be0000 by the approach in the previous section.However, a constant1111
is also weak because gS(x ⊕ 1111) = gS(x). Therefore, the weak class is extended to
{0000, 1111}.

In both example, new weak keys having 1 in quadratic terms are detected, and they
expand the attack targets that are vulnerable against the nonlinear invariant attack.

6.1. Application to Modified Midori64

To demonstrate the effectiveness of the new class of weak keys for the nonlinear invariant
attack, we first modify the round constant of Midori64 so that the attack in Sect. 5 is
prevented and then show that even this modified version can be attacked by using the
extended weak-key class.
Recall that gS used to attack Midori64 in Sect. 5 is gS(x) = x[0] ⊕ x[1] ⊕ (x[2] ∧

x[3]) ⊕ x[2]; thus, the weak keys are {0000, 0001, 0010, 0011}. Hence, we
replace the generation of the i th round key by RKi ← Ki mod 2 ⊕ αi in the original
Midori64 with RKi ← Ki mod 2 ⊕ (0x5 · αi ). In other words, any nibble in αi is either
0000 or 0101 in the modified Midori64. Obviously, the usage of 0101 prevents the
attack in Sect. 5.

On the other hand, the S-box has another nonlinear invariant

gS(x) = x[0]x[3] ⊕ x[0] ⊕ x[2]x[3] ⊕ x[3],
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where0101 belongs to the (extended) class ofweak keys of this gS(x). Since ShuffleCell
does not affect the nonlinear invariant, the following Boolean function

g(x) =
15⊕

i=0

gS(xi )

is a nonlinear invariant for the round function of the modifiedMidori64 from Theorem1.
Note that this Boolean function g is also balanced.

In summary, we can attack modified Midori64 by exploiting the new class of weak
keys for the nonlinear invariant attack. Note that Ki should be chosen from weak keys,
where key bits corresponding to x[3] in every S-boxmust be 0 and key bits corresponding
to (x[0], x[2]) in every S-box must be 00 or 11. As a result, the density of weak keys
is 2−64.

7. Extensions and Future Work

In this section, we outline some extensions to the previously described attacks. Fur-
thermore, we give some additional insights into the structure of nonlinear invariants in
general. Finally, we explain how invariant subspace attacks can be seen as a special, cho-
sen plaintext, variant of nonlinear invariant attacks. It is important to point out that none
of the observations in this section lead to any attacks. But we feel that those explanations
provide good starting points for future investigations.

7.1. More General Nonlinear Invariant

We continue to use the notation that we fixed in Sect. 3. First recall Proposition 1,
that allowed to construct nonlinear invariants for the whole S-box layer by linearly
combining nonlinear invariants for each single S-box. This proposition can actually be
easily extended. Instead of only linearly combining the nonlinear invariants for each S-
box, any combination by using an arbitrary Boolean function results in an invariant for
the whole S-box layer as well. The following proposition summarizes this observation.

Proposition 2. Given any Boolean function f : Ft
2 → F2 and t elements

g0, . . . , gt−1 : Fn
2 → F2

from U (S) it holds that

gṠ : (
F
n
2

)t → F2

gṠ(xt−1, . . . , x0) = f (gt−1(xt−1), . . . , g0(x0))

is an element of U (Ṡ)
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Note that the special case of f being linear actually corresponds to the choice made in
Proposition 1.

While this generalization potentially allows a much larger variety of invariants, and
therefore potential attacks, we like to mention that the restriction made in Proposition 1
has two crucial advantages. First, the choice is small enough, so that it can be handled
exhaustively and second, the invariants generated by Proposition 1 are usually balanced
when gi is balanced, while this is not necessarily the case for the generalization.
At first sight, one might be tempted to assume that the above construction actually

covers all invariants for the S-box layer. However, in general, this is not the case.
One counter-example, that is a nonlinear invariant not covered by this construction,

can easily be identified as follows: For simplicity, consider an S-box layer consisting of
two identical n-bit S-boxes only. If the two inputs to those two S-boxes are equal, so are
the outputs. Thus, the function

gṠ : Fn
2 × F

n
2 → F2

gṠ(x, y) =
{
1 if x = y
0 else

is an nonlinear invariant of the S-box layer as

gṠ(x, y) = 1 ⇔ x = y ⇔ S(x) = S(y) ⇔ gṠ(S(x), S(y)) = 1.

Moreover, this nonlinear invariant can certainly not be generated by Proposition 2.

7.2. Cycle Structure

Actually, there is a nice, and potentially applicable way, of describing all nonlinear
invariants for a given permutation F by considering its cycles. Recall that a cycle of F
being a set

Cx := {Fi (x) | i ∈ N}

for a value x ∈ F
n
2. Actually, one can show that a mapping g is contained inU (F) if and

only if g is either constant on all cycles of F or alternating along the cycles of F . The
later case corresponds to nonlinear invariants such that

g(x) + g(F(x)) = 1.

This is because g(x) = g(F(x)) implies

g(x) = g(F(x)) = g(F(F(x))) = · · · = g(Fi (x)).

Thus, looking at the cycle structure of F , we can assign to each cycle one value the
function g should evaluate to on this cycle. That view point also shows that the number
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of invariant functions g is equal to

|U (F)| = 2(# cycles of F),

in the case where there exists at least one cycle of odd length or

|U (F)| = 2(# cycles of F)+1,

in the case where all cycles of F have even length. This perspective allows to actually
compute a basis of U (F) very efficiently, and “AppendixA.1” shows its sage code.
Consider, for simplicity, the case were not all cycles are of even length. Then, a basis of
U (F) clearly consists of the set of all indicator functions of Cx , i.e.,

U (F) = span{δCa | a ∈ F
n
2}.

Here, for a subset V ⊆ F
n
2, the function δV denotes the indicator function of the set V,

i.e.,

δV(x) =
{
1 if x ∈ V

0 else

Example 3. Consider the function F : F2
2 → F

2
2 with

x 0 1 2 3
F(x) 1 2 0 3

The cycle composition of F is

(0, 1, 2)(3).

Thus, we have two cycles of odd length. Following the above, any nonlinear invariant
of F is constant on those cycles. In this case, we have the following invariants

g1(x) = δ{0,1,2}(x)
g2(x) = δ{3}(x)

or, more explicitly

x 0 1 2 3
g1(x) 1 1 1 0

and

x 0 1 2 3
g2(x) 0 0 0 1
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together with the trivial invariants, that is the identical zero or identical one functions.
So in total F has 4 invariants.

7.3. Relation to Invariant Subspace Attack

Along the same lines, one can also see the invariant subspace attack as a special case of
a nonlinear invariant. Recall that a subspace V ⊆ F

n
2 is called invariant under (a block

cipher) F if

F(x) ∈ V

for all x ∈ V. That is, the set V is mapped to itself by the function F . Note that the
complement V̄ is alsomapped to itself because the function F is permutation. Thismeans
nothing else than that the nonlinear Boolean function δV(x) is a nonlinear invariant for
F as

δV(x) = 1 ⇔ x ∈ V ⇔ F(x) ∈ V ⇔ δV(F(x)) = 1,

δV(x) = 0 ⇔ x ∈ V̄ ⇔ F(x) ∈ V̄ ⇔ δV(F(x)) = 0.

In other words, invariant subspace attacks are nonlinear invariant attacks where the
support of the nonlinear invariant is a subspace of Fn

2. And as such, nonlinear invariant
attacks could be called invariant set attacks, as the function g splits in the inputs into
two sets, the support of g and its complement, that are invariant under F .

7.4. Further Research

Other interesting directions for further research include the generalization of the non-
linear invariant to the case where one does not consider the same function g in every
round, but rather a sequence of functions that can be chained together. In fact, we also
found quadratic Boolean function g′

S : F
4
2 → F2 such that gS(x) = g′

S(S(x)) for
Midori64. Owing to the involution property of the S-box, gS(x) = g′

S(S(x)) always
implies g′

S(x) = gS(S(x)). Combining with the alternative use of K0 and K1 in the key
schedule, such gS, g′

S may be exploited in the attack. Unfortunately, since such Boolean
functions are not nonlinear invariant for the constant addition in Midori64, we cannot
exploit them in real cryptanalysis. However, it is clearly worth discussing this extension.
And last but not least, even so it seems notoriously difficult, it would be nice to be able
to use a statistical variant of the attack described here, i.e., consider nonlinear functions
such that g(F(x)) = g(x) for many—but not necessarily for all—inputs x .

7.5. Countermeasure against Nonlinear Invariant Attacks

Designers in future might be asked to argue that a new cipher is resistant to nonlin-
ear invariant attacks. However, the number of potential nonlinear invariants for a given
round function might be huge. It is therefore of interest to have at hand simple and/or
efficiently verifiable conditions that allow to argue about the resistance. Intuitively, for
strong resistance, the use of some complicated round constant is helpful. As a follow-
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up work of our conference version, Beierle et al. proposed a way how to choose round
constants for obtaining provable security [3]. On the other hand, currently exploited non-
linear invariants are limited to quadratic ones, and adopting a binary orthogonal matrix
is a necessary condition to overcome the linear layer. It is difficult to avoid quadratic
nonlinear invariant when 4-bit S-boxes are used. Therefore, it is a reasonable counter-
measure to avoid the use of binary orthogonal matrices. Note that orthogonality is often
useful to guarantee the security against both differential and linear attacks. If designers
want to use an orthogonal matrix, non-binary ones are recommended. Moreover, when
8-bit S-boxes are used, it is easy to choose S-boxes that do not have quadratic nonlinear
invariants.
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A. Algorithm to Solve Basis of U (S)

Let gS ∈ U (S), where S denotes an n-bit S-box. Then the algebraic normal form (ANF)
is expressed as

gS(x) =
⊕

u∈Fn2
λux

u,

where λu ∈ F2 are the coefficients to be determined and xu denotes
∏

xuii . From the
definition of the nonlinear invariant, the following equation

⊕

u∈Fn2
λux

u =
⊕

u∈Fn2
λu S(x)u

holds for any x ∈ F
n
2. We define gS,u(x) as

gS,u(x) = xu ⊕ S(x)u =
⊕

v∈Fn2
λu,vx

v.

Our goal is to find the ANF coefficient λu such that

⊕

u∈Fn2
λu · gS,u(x) =

⊕

u∈Fn2
λu ·

⊕

v∈Fn2
λu,vx

v
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is constant for any x ∈ F
n
2. Then, we prepare a matrix [I‖M], where I is a (2n × 2n)

identical matrix and coefficients of M are computed as

M[u, v] = λu,v

Then, by some computation similar to Gaussian elimination, we compute matrix M ′ =
[M ′

1‖M ′
2]. If rows of M ′

2 are [0, 0, . . . , 0] or [1, 0, 0, . . . , 0], the corresponding row of
M ′

1 is the basis ofU (S). In particular, for commonly used S-box sizes of up to 8 bit, the
space U (S) can be computed in less than a second on a standard PC.

A.1. Sage Code to Detect Basis of Nonlinear Invariants

As shown in Sect. 7, nonlinear invariants are also found by analyzing the cycle structure.
The following sage code detects the basis of nonlinear invariant up to degree d.

from sage.crypto.boolean_function import BooleanFunction

# returns the Hamming Weight of v
def hamming_weight (v):

w = 0
for i in v:

if (i != 0):
w = w+1

return w

# returns 1 if the vector a is smaller than or equal to v
in the lex def is_smaller_equal(a,v):

r = 1
for i in range(len(v)):

if (a[i] > v[i]):
r = 0

return r

# input: the subspace of anf coefficient vectors
# computes the basis of boolean functions from anf
coefficient vector space def basis_from_anfspace (V):

BV = V.basis ()
bitlength_S = int(log(len(BV[0]) ,2))
R = []
W = VectorSpace(GF(2), bitlength_S)
for v in BV:

b_value_vector = []
for k in range(len(W)):

value = 0
for i in range(len(BV [0])):

if (is_smaller_equal(W[i], W[k])):
value = value + v[i]

value = (value % 2)
b_value_vector .append(value)

R.append(BooleanFunction(b_value_vector ))
return R

# returns a basis of all invariants (g(x) = g(S(x))) for the
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Sbox S.
# x0 will be the LSB (rightmost bit of input)
def basis_invariants(S):

all_even = 1
R = []
# represent the S-box in cycle notation (all elements

are +1)
Cl = Permutation ([x+1 for x in S]). to_cycles ()
for L in Cl:

if (len(L) % 2 == 1):
all_even = 0

# initialze list of len(S)
% that will identify the boolean function in the basis
B = [0] * len(S)
for l in L:

B[l-1] = 1
R.append(BooleanFunction(B))

# if all cycles are even ,
# there exists one more basis element which is alternating

on the cycles
if (all_even ):

B = [0] * len(S)
for L in Cl:

value = 0
for i in range(len(L)):

B[L[i]-1] = value
value = (value + 1) % 2

R.append(BooleanFunction(B))
return R

# returns all boolean functions given by basis B_S
def all_from_basis (B_S):

L = []
bitlength_S = B_S [0]. nvariables ()
V = VectorSpace(GF(2),len(B_S))
for v in V:

B = BooleanFunction ([0] * 2^ bitlength_S)
for i in range(len(B_S)):

if (v[i] == 1):
B = B + B_S[i]

L.append(B)
return L

# return coefficient vector of ANF polynomial of boolean
function b.

# The coefficient a_u is at the same position as the vector
u in the lex def coefficient_vector_ANF(b):

V = VectorSpace(GF(2),b.nvariables ())
# Mobius transform
r = vector(GF(2) ,2**(b.nvariables ()))
for i in range(len(V)):

value = 0
for a in V:

if (is_smaller_equal(a,V[i])):
value = value + b(list(a))
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r[i] = (value % 2)
return r

# returns all basis of invariants for S upto degree d
def all_invariants_upto_degree (S, d):

B_S = basis_invariants(S)
bitlength_S = B_S [0]. nvariables ()
B = []
W = VectorSpace(GF(2), bitlength_S)
for b in B_S:

B.append(coefficient_vector_ANF(b))
VS = span(B, GF(2))
C = []
for i in range (2** bitlength_S ):

if (hamming_weight(W[i]) <= d):
v = [0] * i
v = v + [1]
v = v + ([0] * ((2** bitlength_S )-1-i))
C.append(vector(v))

V = span(C,GF(2))
R = V.intersection(VS)
return basis_from_anfspace (R)

A.2. List of Bases of Nonlinear Invariants

Let x ∈ F
n
2 and y ∈ F

n
2 be the input and output of an S-box, respectively. Moreover, xi

and yi denote the i th bits of x and y, where x0 and xn−1 are LSB andMSB, respectively.

A.2.1. Scream S-Box

Table5 in “AppendixB” shows the table representation of Scream S-box. We executed
the algorithm shown in “AppendixA.1.” As a result, we found that the dimension of
U (S) is 12 and the following one base

g(x) = x0 ⊕ x1x2 ⊕ x2 ⊕ x5

is only quadratic nonlinear invariant.

A.2.2. iScream S-Box

Table6 in “AppendixC” shows the table representation of iScream S-box. We executed
the algorithm shown in “AppendixA.1.” As a result, we found that the dimension of
U (S) is 135. Moreover, the following 6 Boolean functions

g1(x) = x0 ⊕ x4x5 ⊕ x6,

g2(x) = x2 ⊕ x5x6 ⊕ x5 ⊕ x6 ⊕ x7,

g3(x) = x0x6 ⊕ x1x7 ⊕ x1 ⊕ x2x5 ⊕ x2x7 ⊕ x3x4 ⊕ x3x5 ⊕ x3x6
⊕ x3x7 ⊕ x4x7 ⊕ x5x7 ⊕ x5 ⊕ x6x7 ⊕ x7,

g4(x) = x0x5 ⊕ x0x6 ⊕ x0x7 ⊕ x1x6 ⊕ x2x4 ⊕ x2x6 ⊕ x2x7 ⊕ x3x4
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⊕ x3x5 ⊕ x3 ⊕ x4x5 ⊕ x4x7 ⊕ x5x7 ⊕ x5,

g5(x) = x0x4 ⊕ x0x5 ⊕ x0x6 ⊕ x1x5 ⊕ x2x4 ⊕ x2x6 ⊕ x3x7 ⊕ x5x6,

g6(x) = x0x5 ⊕ x0x6 ⊕ x1x4 ⊕ x1x5 ⊕ x1x6 ⊕ x2x5 ⊕ x2x6 ⊕ x2x7
⊕ x3x4 ⊕ x3x5 ⊕ x3x7 ⊕ x4x5 ⊕ x6x7 ⊕ x7,

are the basis of quadratic nonlinear invariants.

A.2.3. Midori64 S-Box

We executed the algorithm shown in “AppendixA.1.” As a result, we found that the
dimension of U (S) is 9. Moreover, the following 4 Boolean functions

g1(x) = x0x3 ⊕ x0 ⊕ x2x3 ⊕ x3,

g2(x) = x0x3 ⊕ x1 ⊕ x2 ⊕ x3,

g3(x) = x0x1 ⊕ x1x2 ⊕ x2x3 ⊕ x2,

g4(x) = x0x2 ⊕ x0x3,

are the basis of quadratic nonlinear invariants. To avoid involving x0 to quadratic term,
quadratic Boolean function g1 ⊕ g2 is used to analyze full Midori64.

B. Specification of S-Box and L-Box of Scream

Table5 shows the table representation of Scream S-box. Let M be the binary represen-
tation of the L-box. Then M is defined as

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 0
1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0
1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0
1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 1
1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1
0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0
0 0 1 0 0 1 0 0 1 0 1 0 0 1 1 1
1 0 1 0 0 1 0 1 0 1 1 1 1 1 1 1
1 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0
1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1
0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0
0 1 0 0 1 0 0 0 1 1 1 0 0 1 1 0
1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 0
1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 0
1 0 0 0 1 1 0 1 0 1 0 1 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Table 5. Table representation of Scream S-box.

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 20 8D B2 DA 33 35 A6 FF 7A 52 6A C6 A4 A8 51 23
10 A2 96 30 AB C8 17 14 9E E8 F3 F8 DD 85 E2 4B D8
20 6C 01 0E 3D B6 39 4A 83 6F AA 86 6E 68 40 98 5F
30 37 13 05 87 04 82 31 89 24 38 9D 54 22 7B 63 BD
40 75 2C 47 E9 C2 60 43 AC 57 A1 1F 27 E7 AD 5C D2
50 0F 77 FD 08 79 3A 49 5D ED 90 65 7C 56 4F 2E 69
60 CD 44 3F 62 5B 88 6B C4 5E 2D 67 0B 9F 21 29 2A
70 D6 7E 74 E0 41 73 50 76 55 97 3C 09 7D 5A 92 70
80 84 B9 26 34 1D 81 32 2B 36 64 AE C0 00 EE 8F A7
90 BE 58 DC 7F EC 9B 78 10 CC 2F 94 F1 3B 9C 6D 16
A0 48 B5 CA 11 FA 0D 8E 07 B1 0C 12 28 4C 46 F4 8B
B0 A9 CF BB 03 A0 FC EF 25 80 F6 B3 BA 3E F7 D5 91
C0 C3 8A C1 45 DE 66 F5 0A C9 15 D9 A3 61 99 B0 E4
D0 D1 FB D3 4E BF D4 D7 71 CB 1E DB 02 1A 93 EA C5
E0 EB 72 F9 1C E5 CE 4D F2 42 19 E1 DF 59 95 B7 8C
F0 9A F0 18 E6 C7 AF BC B8 E3 1B D0 A5 53 B4 06 FE

Table 6. Table representation of iScream S-box.

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 00 85 65 D2 5B FF 7A CE 4D E2 2C 36 92 15 BD AD
10 57 F3 37 2D 88 0D AC BC 18 9F 7E CA 41 EE 61 D6
20 59 EC 78 D4 47 F9 26 A3 90 8B BF 30 0A 13 6F C0
30 2B AE 91 8A D8 74 0B 12 CC 63 FD 43 B2 3D E8 5D
40 B6 1C 83 3B C8 45 9D 24 52 DD E4 F4 AB 08 77 6D
50 F5 E5 48 C5 6C 76 BA 10 99 20 A7 04 87 3F D0 5F
60 A5 1E 9B 39 B0 02 EA 67 C6 DF 71 F6 54 4F 8D 2E
70 E7 6A C7 DE 35 97 55 4E 22 81 06 B4 7C FB 1A A1
80 D5 79 FC 42 84 01 E9 5C 14 93 33 29 C1 6E A8 B8
90 28 32 0C 89 B9 A9 D9 75 ED 58 CD 62 F8 46 9E 19
A0 CB 7F A2 27 D7 60 FE 5A 8E 95 E3 4C 16 0F 31 BE
B0 64 D3 3C B3 7B CF 40 EF 8F 94 56 F2 17 0E AF 2A
C0 2F 8C F1 E1 DC 53 68 72 44 C9 1B A0 38 9A 07 B5
D0 5E D1 03 B1 23 80 1F A4 34 96 E0 F0 C4 49 73 69
E0 DA C3 09 AA 4A 51 F7 70 3E 86 66 EB 21 98 1D B7
F0 DB C2 BB 11 4B 50 6B E6 9C 25 FA 7D 82 3A A6 05

C. Specification of S-Box and L-Box of iScream

Table6 shows the table representation of iScream S-box. Let M be the binary repre-
sentation of the L-box. Then M is defined as
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M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1
1 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0
1 0 1 0 0 0 0 1 1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1
1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1
1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1
1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0
1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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