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Abstract. Since all ocean wave components contribute to the second-order scattering 
of a high-frequency radio wave by the sea surface, it is theoretically possible to 
estimate the ocean wave spectrum from first- and second-order scattering in the 
Doppler spectrum measured with an HF ocean radar. To extract the wave spectral 
information, however, it is necessary to solve a nonlinear integral equation. This paper 
describes in detail how to solve the nonlinear integral equation without linearization or 
approximation. We show that the problem of solving the nonlinear integral equation 
can be converted into a nonlinear optimization problem. An algorithm to find the 
optimal solution is described. Examples of the algorithm applied to simulated data and 
measured data are shown. The wave frequency spectrum can be estimated even if the 
Doppler spectrum is available in only a single direction. In this case, however, the 
solution of the two-dimensional wavenumber spectrum tends to converge to a spectrum 
that is symmetrical to the beam direction. Even if the wave spectrum is dominant in a 
single direction, the solution may give two peaks in the wavenumber spectrum. One of 
them is the true peak and the other is the mirror image of it with respect to the beam 
direction. This ambiguity can be avoided by using Doppler spectra measured in at least 
two different directions. Although there is still some room for improvement in the 
practical application of this method, it can be applied to estimate the wave directional 
spectrum up to a rather high frequency, or Bragg frequency. 

1. Introduction 

Ocean waves can be expressed by a superposi- 

tion of linear fundamental waves as the first approx- 

imation. Consequently, they are usually described 

in terms of an ocean wave spectrum. Since wave 

frequency spectra can be measured rather easily, 

there have been many studies on wave frequency 

spectra and their characteristics [e.g., Kahma, 

1992]. 

On the other hand, because it is difficult to 

measure directional spectra, there are only a few 

studies of two-dimensional wavenumber spectra, 

even though the measurement of two-dimensional 

wave spectra is essential in revealing the nature of 
wind waves. Demands for the measurement of 

directional spectra are not limited to scientific stud- 

ies but also can be found in many marine activities 

such as vessel navigation and in engineering 

projects. Remote sensing is one technique to esti- 

mate ocean wave spectra, and a high-frequency 

Copyright 1996 by the American Geophysical Union. 

Paper number 95RS02439. 
0048-6604/96/95 R S-02439508.00 

25 

(HF) ocean radar has the potential to routinely 

measure directional spectra. 

To estimate an ocean wave spectrum from HF 

radar data, it is necessary to solve a complicated 

two-dimensional nonlinear integral equation. This 

inversion problem has been studied by a number of 

researchers [e.g., Lipa, 1977, 1978; Wyatt, 1990; 

Howell and Walsh, 1993]. In these studies the 

linearization or approximation of the integral equa- 

tion is used because of the difficulty in solving such 

a complicated, large-scale, nonlinear integral equa- 

tion, and because previous studies aim at tractabil- 

ity in the estimation of a wave spectrum. 

Lipa [1977, 1978] was the first to demonstrate that 

a directional spectrum can be estimated from a 

second-order echo. However, she concentrated on 

estimating directional information only for short 

saturated waves and assumed that directional prop- 

erties are not dependent on wave frequencies for 

long unsaturated waves. However, this assumption 

is not generally valid both when swell components 

are present and when only wind waves are present 

[e.g., Mitsuyasu et al., 1975]. Wyatt [1990] explic- 

itly assumes a wave spectral form at high frequen- 
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cies, and the nonlinear integral equation is then 

modified into a linear integral equation which can be 

solved by the relaxation method. Her method fails 

when the explicitly assumed wave spectral form at 

high frequencies is not representative of the true 

wave spectrum. Howell and Walsh [1993] linearized 

the integral equation by removing one of the direc- 

tional spectral product factors in the integrand as a 

spectral value at a certain wavenumber vector. The 

linearized integral equation was then modified into a 

matrix equation, and the matrix equation was 

solved by a singular value decomposition. Their 

approximation is valid only for much longer waves 

compared with radio wavelength. 

Accordingly, a method without linearization or 

approximation needs to be developed. Full nonlin- 

ear inversion is the ultimate goal of HF ocean radar 

researchers [Wyatt and Holden, 1992]. In this paper 
we describe a method in detail to solve the nonlin- 

ear integral equation to estimate the ocean wave 

spectrum from HF radar data. To my knowledge, 

this is the first approach of this kind to the problem 
in this field. In section 2 the formulation of HF radio 

wave scattering by the sea surface is reviewed. In 

the following section the formulation of the nonlin- 

ear optimization problem is presented. An algo- 

rithm to solve this large-scale nonlinear optimiza- 

tion problem is proposed and summarized in section 

4. Numerical examples of the estimation of direc- 
tional spectra are presented in section 5 for simu- 

lated and measured Doppler spectra. The conclu- 

sions, significance of this study, and subjects for the 

future study are summarized in section 6. 

2. Backscattering of HF Radio Waves 

by the Sea Surface 

Sea surface waves can be expressed by superpos- 

ing fundamental (linear) waves as the first approxi- 

mation and by superposing bound waves as the 

second approximation. Bound waves are general- 

ized Stokes-type harmonics. A bound wave compo- 
nent is the product of a nonlinear coupling by two 

fundamental wave components [e.g., Weber and 
Barrick, 1977]. Both fundamental waves and bound 

waves contribute to the scattering of HF radio 
waves. 

The scattering of HF radio waves by the sea 

surface is caused by Bragg scattering [Crombie, 

1955]. Figure 1 is an example of a Doppler spectrum 
of scattered radio waves by the sea surface at a 
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Figure 1. An example of a Doppler spectrum obtained 
by the HF ocean radar. 

grazing incidence. There are two large peaks at 

about 0.5 Hz in this figure. These are called first- 

order scattering and are caused by the fundamental 

ocean wave components whose wavenumber vec- 

tors are plus or minus 2k0. Without considering 
ocean currents, the Doppler frequency of the peak 

is called the Bragg frequency. Since the first-order 

scattering is caused by Bragg scattering of funda- 

mental (linear) wave components, the Bragg fre- 

quency •oB is obtained by the linear dispersion 
relation as 

•oB = [2•7k0 tanh (2kod)] 1/2, (1) 

where •7 is the gravitational acceleration, d is the 

water depth, and k0 is the magnitude of k0. The 
fundamental wave components whose wave fre- 

quency is •oB and wave vector is plus or minus 2k0 
are termed "Bragg wave components." There are 

also smaller peaks surrounding the first-order peaks 

in Figure 1. They are called second-order scatter- 

ing. They are primarily caused by bound waves 

whose wavenumber vectors are plus or minus 2k0 
[Hisaki and Tokuda, 1995a]. All fundamental wave 

components contribute to the bound waves whose 

wavenumber vectors are plus or minus 2k0; that is, 
all fundamental wave components contribute to 
first- or second-order scattering. Therefore it is 

theoretically possible to estimate a wave spectrum 

composed of fundamental waves from the Doppler 

spectrum at a single radio frequency by using first- 
and second-order scattering. The Doppler spectral 

density P(•o•9) at Doppler frequency •o•9 is propor- 
tional to the radar cross section per unit frequency 

a(•o•9); that is, 
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Pi(OOD) = Arri(tOD) i = 1, 2, 

P(OaD) = P1 (O•D) + P2(O•D), 

rV(•D) = rvi(•D) q- rv2(•D) , (2) 

where PI(WD) and P2(WD) are the first- and second- 
order Doppler spectral densities and A is an un- 

known factor. If we normalize the frequency and 

wavenumber by o• and 2k0, the normalized first- 
and second-order radar cross sections rriN(•OON) = 

•oarri(•o o) (i = 1, 2) can be written in the normalized 
form, as follows [e.g., Lipa and Barrick, 1986; 

Holden and Wyatt, 1992; HisaM and Tokuda, 
1995a]: 

rrlN(tODN ) = 47rSN(--m21qO•(tODN -- m2), (3) 

rr2N(t. ODN) 

-- 87r I"•W 2SN(mlklN)SN(m2k2N ) 
j-o• JO 

ß •(OaDN -- hs) dpN dqN, 

where 

(4) 

= i. 1/2 rl/2 x hs coth 1/2 dN(ml,•d•N + m2tCd2NI, 

hs = mlOOlN + m2oo2N (5) 

and lql is a unit vector defined as lql = 2k0/(2k0). 
Here, the normalized spatial wavenumber PN is 

defined along the radar beam, qN is perpendicular 
to it, and lql = (1, 0) r in the PN-qN plane; o•ON ---- 
O•o/O• a is the normalized wave frequency, dN = 
2kod is the normalized water depth, and the sign 
(m 1 , m2) is determined from the range of the 
normalized Doppler frequency o•ON as 

(m•, m2) = (-1, -1) for OODN < -1 

(ml, m2) = (1, -1) for -1 < OODN < 0 

(ml, m2) = (- 1, 1) for 0 < OODN < 1 

(m•, m2)= (1, 1) for OODN > 1. (6) 

The sub script N denotes normalization in this man- 
ner, and details of the normalization are described 

by Lipa and Barrick [ 1986] and Hisaki and Tokuda 
[1995a]. 

SN(kN) is the wave vector spectrum composed of 
fundamental waves for wavenumber vector kN. 

Here, kiN, kdiN, and WiN (i = 1, 2) are expressed as 
follows for KN = (PN, qN); 

11q q- (3 - 2i)KN, kin = --• (7) 

kdi N = tanh (kiNdN)kiN , (8) 

WiN = [kin coth (dN) tanh (kiNdN)] 1/2, (9) 

and wavenumbers kin = IkiNI and kdi N = IkdiNI. 
Equation (9) shows the linear dispersion relation 

and is satisfied by arbitrary fundamental wave com- 

ponents. 

By symmetry, the integral in (4) is taken only 

over PN --> O, and the inequality klN --< k2N is 
satisfied. F•N is called the coupling coefficient, and 
it is expressed as follows; 

= FEN- II"HN (10) 

F]/N and F}N are called the hydrodynamic and 
electromagnetic coupling coefficients, respectively. 

The former represents the effects of bound waves 

and the latter represents the effects of double Bragg 

scattering [e.g., Hisaki and Tokuda, 1995a]. The 

double Bragg scattering is due to double scattering 

of radio waves by a pair of fundamental ocean 
waves whose wavenumber vectors are written as 

(7). F]/N and F/• N are expressed as follows: 

I'N-- • kdlNq-kd2Nq- mlm2(kdlNkd2N)l/2 --OODN / 

1.3/2 cosech2(klNdN)+m2k•2Ncosech2(k2NdN)]} 
øø DN[m l •'dl N 

(11) 

(klN' lql)(k2N ' lq) -- 2klN ß k2N.] (12) 

where A is the normalized surface impedance. 

The expression of the first-order radar cross 
section (3) is modified in terms of the frequency 

directional spectrum G(•o, 0) for the numerical cal- 
culation and takes the following form for an arbi- 

trary beam direction •: 

O'IN(OODN) = CfGN(1, Ob 
m2+l 

,7r) •(O•DN -- m2), 
(13) 



28 HISAKI' INVERSION TO ESTIMATE WAVE SPECTRA FROM HF RADAR 

where GN(tON, 0) = (2k0) 2 toBG(•o, 0) is the normal- 
ized frequency directional spectrum, and 

spectra and remove the unknown factor A, (13) and 
(18) can be written from (2) as 

Ok/v 
(14) 

Since the spectra are composed of fundamental 
waves, the relation 

10to N 

S/v(k/v) = k--• Ok-•- G/v(to/v, O) (15) and 

G/v(1, ½0 - 

GN(1, ½b -- vt') + GN(1, 

f l © P l /v ( to o /v ) d to o /v 

f _' • P l /v ( to o /v ) d to o /v 
(22) 

is satisfied. From (9), 

Oto N 1 

• = 5[k/v tanh (k/vd/v) tanh (d/v)] -1/2 

ß [tanh (k/vd/v) + k/vd/v sech 2 (d/v)]; (16) 

therefore, (14) is modified to 

Cf = 2rr(1 + 2d/v cosech (2d/v)). (17) 

On the other hand, (4) is modified to 

•2•(,oo•) 

or + •0 = KI(toDN, Ob)GN(tolN, OI)GN(to2N, 02)dO. 
d 

(18) 

0'2N(toDN) 

Cf[G/v(1, ½t, - vt') + G/v(1, 

P2N(toDN) 
(23) 

where Piiv(wo•v) = Pi(O•D) (i = 1, 2). The fight sides 
of (22) and (23) are estimated from a measured 

Doppler spectrum. To estimate the ocean wave 
spectrum from HF radar, we must solve the nonlin- 
ear integral equations (18), (22), and (23). 

For the numerical integration of (18), wi/v and Oi 

(i = 1, 2) are calculated for a given •oo/v and 0(1) = 
0(= 00 + ½0) as 

k•/v = y.2, (24) 

where 00( = 0 - $0) is the direction relative to the 
beam direction; Or is determined from the condition 
that there exists kEN which satisfies kEN -- kin = 
k2m, hs = 0, and kEN > 1/2 [Lipa and Barrick, 
1986]. If 

2 

too/v> , (19) 
1 + sech (d/v) 

then 

k2N = (k•2/v + 2kl/v cos 0t, + 1)1/2, (25) 

0 i '- O(i)--• (mi- 1), (i = 1, 2) (26) 

kin 0(2) = -rr + arcsin [• sin 0o + •o, (27) 
and y, = y,(wo/v, 0t,) is the solution of the equation 

0r=rr-arccos 2 

where kEN satisfies the equation 

(20) 

2 

to DN 

kœ/v tanh (kœ/vd/v)= tanh d/v. (21) 
4 

Otherwise, Or = rr. In the examples presented in 
this paper Or = rr. To combine measured Doppler 

tooiv - hs = 0, (28) 

for y -= k•, where hs = hs(y, Or,) is defined in (5). 
Wave frequencies O)iN (i = 1, 2) are calculated from 

kin by (9). Wave directions 0(1) = 0, 0(2), 0•, and 02 
are the respective directions of wave vectors k lN, 

k2N, mlklN, and m2k2N in (4). Equations (25) and 
(27) are derived from (7). Equation (28) is solved 

numerically using the Newton-Raphson method. 

The integral kernel Ki(O•DN, Ob) is written as 
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Kl(WON, Or,) 

= 16z- 12y3 
Oy 

klN 
OOOlN 1 0OO2N ] 
51• k2N ok-•}7'Jy=y,' 

(29) 

and from (5), (24), and (25), 

_ 
Oy OklN OOOlN Ok2N 0OO2N 

= ml + m2 
Ohs Oy OklN Oy Ok2N 

-1 

Oy 

Ohs •= 2y(ml 0001N y2 + COS 0t, • + m2 .... , (30) 
Oklm k2m Ok2m 

where OtOiN/OkiN (i = 1, 2) is calculated from (16). 

3. Formulation to the Nonlinear Optimal 
Problem 

3.1. Fundamental Wave Components 

All of the fundamental wave components are 

related to the Doppler spectra. However, the com- 

ponents in the wave spectrum that can be estimated 
are limited, because of the low signal-to-noise (SN) 
ratio and of the limitations of second-order scatter- 

ing theory [Hisaki and Tokuda, 1995b] at high 

Doppler frequencies in high wave conditions. 

Therefore only the second-order peaks surrounding 
the first-order echoes, which are related to the 

energetic region of the wave spectrum, can be used 

for the calculation. The first step of the algorithm to 

estimate ocean wave spectra from HF radar data is 
to determine fundamental wave components from 

the range of Doppler frequencies in the algorithm. 

The relations between the Doppler frequency (tODN) 

and the wave component ((wliv, 01) or (w2i v, 02)) 
are expressed in (9) and (25)-(28). Let us consider 

these relations. If the wave component corresponds 

to the (w•iv, 0•) wave component (from now on, we 
will refer to (w•iv, 0•) as the "kl wave" and (w22v, 
02) as the "k2 wave"), k•iv is obtained from the 
linear dispersion relation (9), and k2N is calculated 
from 

k2N = (k12N + 2mlklN cos 0t, + 1) 1/2. (31) 

Since k• 2v < k2N, 

2mlkllv cos 00 + 1 > 0 (32) 

must be satisfied. Here, the relation between (wiv, 

0) of the kl wave and woiv is considered. That is to 

say, we consider m 1 k• iv instead of k• iv in (4); hence 
(31) is slightly different from (25). The 0• in (26) 

corresponds to 0 (= 00 + ½0) in (31). Similarly, if 
the wave component is a k2 wave, k2N is obtained 
from the linear dispersion relation (9) in the same 

manner, and k•iv is calculated from 

klN= (k22N + 2m2k2N cos 0t, + 1)1/2. (33) 

In this case, 

2m2k2N cos 0t, + 1 < 0 (34) 

must be satisfied. The relation between (tON, 0) of 
the ki wave (i = 1, 2) and WON can be written for 
deep water as follows' 

for the kl wave, 

OODN = mlooN + m2[to/•/+ 2ml•o2N COS (0 -- ½0) + 1] TM, 

(35) 

and for the k2 wave, 

wON = ml[•O/•/+ 2m2•o2N COS (0 -- el,) + 1] TM + m2ooN, 

(36) 

from (5), (9), (28), (31), and (33). Figure 2 shows 

Doppler frequency contours to wave components 

for div = m, ½0 = 0, and WDiv > 0 as expressed by 
(35) and (36). The figure is symmetrical to 0 ø, and if 

tODN • 0, it is symmetrical to 90 ø. The k2 wave 
components are confined around (1, ___ 180 ø) for woiv 
of about 1. Therefore the linear approximation of 

the integral equation may be justified, if the Doppler 

frequency range used in the inversion calculation is 
limited near the first order scattering peaks. How- 

ever, the limit of the applicability of the lineariza- 

tion is not clear. Nonlinear inversion is especially 

effective when the SN ratio of the Doppler spec- 

trum is high enough to allow us to estimate the wave 

spectrum up to a fairly high frequency. 

3.2. Discretization of Integral Equation 

We first discretize the frequency angle (wN-O) 
plane. It is not necessary that the discretized grid 

points in the wN-O plane be uniform along the 
frequency direction. However, the inversion is eas- 

ier if WN = 1 is included. On the other hand, the grid 
points along the angle direction must be uniform, 

and the discretized angles are expressed as 
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(o) Contour mop of Doppler frequencies (O<f•DN<I) 
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Figure 2. Doppler frequency contour map to wave components for deep water for (a) 0 < tODN < 
1 and (b) tODN > 1. Solid line, contour for the kl wave; dashed line, contour for the k2 wave. The 
contour interval is 0.05. 

27/' 

0t,=-rr+--k k=0,'",M-1 (37) 
M 

Each grid point is evaluated as to whether it is a 

wave component that corresponds to the given 
Doppler frequency region. If the point lies within 

the given Doppler frequency region, the point is 
numbered. Moreover, the neighboring grid points 

are also judged to be wave components that must be 

estimated. Even when a grid lies out of the Doppler 

frequency region, if there exists a neighboring grid 

that lies within the region, the outside grid is also 
numbered because it also construct the discretized 

integral equation that is presented later (41). These 

numbers are termed "wave component numbers." 

Figure 3, which is a magnification of Figure 2, 

illustrates schematically how the evaluation is 

done. Solid circles are the grid points of wave 

components to be estimated and are numbered, and 

the open circles are grid points which are not used 

in the calculation and need not be numbered. Equa- 

tions (5), (9), (28), and (31) (or (33)) are used for the 
evaluation. 

A wave spectrum GN(•ON, 0) at an arbitrary point 

(•ON, O) is expressed by the linear interpolation of 
spectral values at the four surrounding grid points. 
Let us consider numerical integration of (18) along a 

Doppler frequency contour in the a,N-O plane for the 
ki wave (i = 1, 2). Figure 4, which is also a 

/ 

II II 

I 

Wave frequency 

Figure 3. Schematic diagram for the determining 
whether a wave component is a k l wave or a k2 wave. 
The shaded area is the region of the Doppler frequency 
range for the calculation. A thick curve is the boundary, 
and it corresponds to the upper (or lower) Doppler 
frequency contour. 
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Figure 4. Schematic illustration of the interpolation of 
spectral values at quadrature points for the numerical 
integration of (18). 

magnification of Figure 2, illustrates schematically 

the interpolation of spectral values at quadrature 

points for the numerical integration •of (18). The 
spectral value at a quadrature point which is on a 

Doppler frequency contour is expressed by the 

interpolation of spectral values at the four (or two) 

surrounding grid points. For example, for quadra- 

ture point Q1, the spectral value at the point is 

interpolated by the spectral values at the four grid 
points A1-A4. On the other hand, if a quadrature 

point is on a grid line, as Q2 is, the spectral value at 

the point is expressed by the spectral values at the 

two grid points A5 and A6. If a quadrature point is 
on a grid point, as Q3 is, it is not necessary to 

interpolate the spectral value at that point. In this 

interpolation, (22) is discretized in the following 
form: 

Bi •0 +ø• PiN(•ODN ) d•ODN 

B 1 q- B 2 f_+• PIN(rODN) drODN 
(38) 

where B n (n = 1, 2) indicates the interpolated 
spectral values for the Bragg wave components, 

and n = 1 denotes the Bragg wave component for 

Ob = -180 ø (or 0 = -rr + Co), and n = 2 denotes 
that for Ob = 0 ø (or 0 = ½b). The interpolated 
spectral values for Bragg wave components B n are 
written as 

, p))XjB(n,p ) n = 1, 2, (39) 

where NB indicates the number of wave compo- 
nents used to interpolate the spectral value of Bragg 

wave components. NB takes the value 1, 2, or 4 
depending on where the point (•o N, 0) is located. 
The point for the Bragg wave component in the 

tON-O plane is (1, -rr + CO) or (1, CO), and if the 
point is located on a discretized grid point, NB = 1. 
In this case it is not necessary to interpolate the 

spectral value for the Bragg wave component by 

spectral values at surrounding grid points. If the 

point is located on a grid line, N e = 2. Here, jB(n, 
p) is the wave component number of the Bragg 

wave component (for N e = 1) or of neighboring 
grids to the Bragg wave component (N e = 2, 4), 

Xje(n,p ) is a spectral value for wave component 
numberjB(n, p), and we(jB(n, p)) is a weight for the 
linear interpolation and satisfies 

NB 

Z w:a(jB(n 
p=l 

, p)) = 1. (40) 

On the other hand, (23) is discretized in the 

following form for OL = rr: 

M-I 

277 E [K!(OIDN' Obk)glg2] 
k=0 P2N(WDN) 

M(B 1 q- B2)C f •_-o• PIN(rODN) drODN 
(41) 

where R i (i - 1, 2) indicates interpolated spectral 
values for the ki wave at a quadrature point which is 

on a Doppler frequency contour in the O•N-O plane, 
and 

00k = Ok - ½0. (42) 

The interpolated spectral values R i are written as 

2i 

Ri = E w(j(i, k, P))Xj(i,k,p) 
p=l 

i- 1, 2, (43) 

where j(i, k, p) is the wave component number of 

the four (or two) surrounding grid points in the •ON-0 

plane for the ki wave (i = 1,2), xj(i,k,p) is the spectral 
value for the j(i, k, p) wave component number, and 
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w(j(i, k, p)) is a weight of the linear interpolation by 

spectral values at the grid points, which satisfies 

2i 

E w(j(i, k, p))= 1 i= 1, 2. (44) 
p=l 

The number of spectral values used for the interpo- 
lation is 2i for the ki wave (i = 1, 2). The difference 

between the integral variable 0 in (18) and 01 which 
is the direction of the k l wave is 0 or •r (see (26)). 

Therefore, if M is an even number so that there 

exists k which satisfy 0• = 0, and if we choose 
quadrature points for the numerical integration of 

(18) so that the points are on discretized grid lines 

parallel to the to N axis, the points (tO•N, 0•) are also 
on grid lines. Hence the number of spectral values 

used for the interpolation is 2 for the k l wave. On 

the other hand, the relation between 0 and 02, which 
is the direction of the k2 wave, is nonlinear (see (26) 

and (27)). Therefore the points for the k2 wave 

(tO2N, 02) are not on discretized grid points or lines 
in general. Hence the number of spectral values 

used for the interpolation is 4 for the k2 wave. 

Equations (38) and (41) are the discretized forms of 

(22) and (23), respectively, and the equations must 

be solved to estimate the ocean wave spectrum 
from HF radar data. 

The calculation of the left sides of (38) and (41) 

are as follows. First, jB(n, p) and wa(jB(n, p)) are 

determined. Second, (W•N, 0•), (tO2N, 02), and 
Ki(WON, Ook) are calculated by (9), (24)-(28), and 

(29) for each quadrature point (WON, 00•). Third, 
two (or four) neighboring grid points in the wN-O 
plane are determined. Finally, the wave component 

numbersjB(n, p) andj(i, k, p) and weights wB(jB(n, 
p)) and w(j(i, k, p)) are obtained. 

Equations (38) and (41) are formally written in the 
form of 

F•(x) = e•, (45) 

where F I = (F 1 , ß .., Fœœ)r is a discretized form of 
(38) and (41), x = (x•,..., XNN) r is the wave 
spectrum to be estimated, and e• = (e•, ..., e•) r 
is the error vector. 

3.3. Linear and Nonlinear Constraints 

for the Ill-Posed Problem 

Solutions to (45) are generally unstable. There- 
fore some constraints for solutions are needed. The 

additional constraints used in this paper are as 
follows: 

Constraint 1 (C1). Fi(x) = A3x I = 0. Spectral 
values at to N = 0 are close to zero, and I denotes the 
wave component numbers which are closest to zero 

frequency. The wave components closest to zero 

frequency are constrained. 

Constraint 2 (C2). Fi(x) = A4(5)(SlX l - x m q- 
S2Xn) = 0(sl + s2 = 1). Solutions change "smooth- 
ly" with frequency (or angle) for the kl wave. Here, 

(l, m, n) denotes the frequency (or angle) neighbor- 

ing wave component numbers. The "smooth 

change" along the frequency direction in the wN-O 
plane is for tOF1 •< to N •< tOF2 (for angles, t0A1 •< 
WN < WA2), and s• and s2 are determined by the grid 
interval of the discretization. 

Constraint 3 (C3). Fi(x) = A6(7)(rix I - Xm) = O. 
Solutions change "continuously" with frequency 

(or angle) for the k l wave. The frequency regions 

for "continuous change" along the frequency direc- 

tion are WN < we• or WN > tOF2 (for angles, WN < 
WA• or w m > WA2); r i is determined by I and m. In 
this calculation, r i is set as proportional to w• 5 for 
"continuous change" constraints along the fre- 

quency direction at Wm > mr2. Otherwise, r i = 1. 

Constraint 4 (C4). Fi(x) = A8(9) (rix I - Xm)/(rix l 
+ Xm) = 0. As for (C3), but for the k2 wave. 

Constraint 5 (C5). Fi(x) = AlO(Xl/ (X l q- Xm) - ti) 
= 0. The ratio of the k2 wave spectra whose angular 
difference is 180 ø is close to the ratio of the first- 

order echoes. Here, (l, m) denotes the 180 ø different 

k2 wave component numbers (l is closer to 0o = 
-180ø), and t i is defined as 

GN(1, 01) 

ti = GN(1 ' Ol ) + GN(1 ' Ol + Jr) ' (46) 

where Ol is the angle for the/th wave component 

number. Here, t i is calculated from the first-order 
echos with the assumed directional model. For 

example, if the cos2S(0/2) directional form is as- 
sumed, and s and the mean wave direction 00 are 
estimated from the first-order echoes, t i is written 
as 

ti = 
cos 2s [(0f - 00)/2] 

cos 2s [(Of - 00)/2] + sin TM [(Of - 00)/2] 

Constraint 6 (C6). Fi(x) = All(S1Xl - x m q- S2Xn) 
= 0(s• + s2 = 1). Solutions change "smoothly" 
with frequency (or angle) between the kl wave and 

the k2 wave for the frequency direction in the WN-0 
plane. In this calculation, four wave components 
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(two groups) at 00 -• -180 ø and 00 •- 0 ø are selected 
to construct this relation; therefore four constraints 

are added per beam direction. 

Here A1 and A2 are the weights for (38) and (41), 
respectively. These constraints are not always 
ideal. There is room to improve them. The La- 

grange multiplier A i is set arbitrarily here. The 
method of deciding the best parameters is a subject 
for future study. The nonlinear forms such as (C4) 

and (C$) are chosen to avoid a physically meaning- 
less convergence to zero which also satisfies the 

"continuous change condition." Constraints (45) 
and (C1)-(C6) can be written as 

F(x) = e, (47) 

where F - (F1,''', Fœœ,..., FMM)r((MM > 
LL)), and e = (el, ß ß ß , err, ß ß ß, eMM) •. Therefore 
the problem of solving the nonlinear integral equa- 
tion results in a nonlinear optimization problem to 
find x that minimizes the objective function U(x) 
defined as 

i MM 

U(x) -- •/•1 (Fi(x))2 (48) 

subject to xj >- 0 (j = 1, ..., NN). The concept of 
this method is the same as the regularization 

method for solving a linear Fredholm-type integral 
equation of the first kind [Twomey, 1963]. 

4. Algorithm for the Nonlinear Inversion 

4.1. Algorithm for the Nonlinear Optimization 
Problem 

The minimization of U(x) is solved numerically, 
and the algorithm is expressed in general as follows: 

dl = - Ht V U = - HtJFTF , (49) 

X (/+1) --X © q- Otld i, (50) 

where I indicates the step number, al is a positive 
constant which is adjusted in such a way that 

U(x (/+l)) < U(x(/)). Here, x © = (xt/), ... , Xn(/)) r is 
x for/th step. The JF is the Jacobian matrix defined 
as 

OFi 

JF(i =Ox) !) i= 1,''', MM j = 1,''', NN. 
(51) 

I-It is a positive definite matrix. It can be expressed 
in several different ways depending on the method 

used. A few well-known examples are as follows: 

Steepest descent method 

H! = I, (52) 

Gauss-Newton method 

H ! -- (JFTJF) -1, (53) 

Marquart method 

H! = (jFTjF q_ •Mqi)-l, (54) 

where A•q(>0) is called Marquart's parameter. 
Although these algorithms were originally devel- 
oped for an unconstrained optimization problem, 
they are still applicable here. Since we would like to 

estimate two-dimensional wave spectra, the scale of 
the optimization problem is large, that is, NN is 

large compared with computer memory capacity. In 
a large-scale optimization problem it may not be 

possible to cbmpute and store the positive definite 
matrix H l used in the Gauss-Newton or Marquart 
method because of its size. One way to avoid such 
a storage problem is to choose the matrix as fol- 
lows: 

Ht = [diag (Jet Jr)] -• (55) 

or 

I-It = [diag (JerJF) + I ] - 1. (56) 

The updating direction dt is written as 

dt = (d• , ß ß ß , dNN) T (57) 

where 

OFi /•__.•M (i9F i • 2 dj = • ri o'•j(t)/i__ • i=1 

j=I,...,NN 

(58) 

if (55) is adopted. Here, Jro' are calculated from 
(38), (39), (41), (43), and (C1)-(C5). 

In this method, the computer memory needed can 

be substantially reduced. Since the computing time 
needed by this method is much shorter than that 

needed by the Marquart method for each step, the 
convergence to the solution is faster than with the 

Marquart method, even though the number of steps 
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is larger. Conjugate gradient methods, such as the 

Fletcher-Reeves, Polak-Ribi•re algorithm [Shanno, 

1978], do not show good convergence in this prob- 

lem. The solutions are constrained as xj > 0 (j = 
1, ß ß ß, NN). If a negative value of xj is estimated in 
the process, it is replaced by a positive value which 

is very close to zero. This replacement is equivalent 

to a slight modification of H I. However, the modi- 
fied H l is still positive definite, and H l is switched 
back and forth between (55) and (56) if the conver- 

gence speed is slow. 

4.2. Summary of Nonlinear Inversion 

The nonlinear inversion algorithm is summarized 
as follows: 

1. Set parameters such as dN, O)DN for the 
calculation (Doppler frequency range) oovi, OOAi (i = 
1, 2), and the resolution of ocean wave frequency 

and wave direction (or M) and the Doppler fre- 
quency. LL is determined here. 

2. For each grid point in the •ON-0 plane, judge 
whether the point lies within the given Doppler 

frequency region and number the point if it is in the 
region. NN is determined here. 

3. For each Doppler frequency, search groups 

of wave component numbers (jB(n, p) andj(i, k, p)) 

that correspond to each term of the discretized 

integral equations (38) and (41) and calculate the 

weighting functions w•(jB(n, p)), w(j(i, k, p)) and 
the kernel Ki(WDN, Obk ). 

4. Search groups of wave component numbers 

(l, m, n) that correspond to additional conditions 

(C1)-(C6), and obtain r i, Sl, and s2. MM is deter- 
mined here. 

5. Provide an initial guess for x and set the 

remaining parameters, such as ,X•, -.-, ,X• and t i. 
6. Calculate U(x), V U(x), and d I. 
7. Update x according to (48) and (50). 

8. If the convergence criteria are not met, re- 

peat from step (6). 

Convergence is judged by monitoring IIvull or 
(y.p• Fi2)/2. In this algorithm, the computation by 
step (4) is taken beforehand, and the output data are 
stored in a file. 

5. Numerical Examples of the inversion 

5.1. Simulation of the Single-Beam Case 

Simulations are carried out to test the validity of 

the nonlinear inversion algorithm. In this simulation 

the model spectrum is assumed to be the true 

solution. We calculate the Doppler spectrum by the 

method of Lipa and Barrick [ 1982] and then retrieve 

the wave spectrum from the calculated Doppler 

spectrum. The calculated second-order Doppler 

spectrum by Lipa and Barrick's [1982] method is 

not exactly equal to the result of computation by 

(41), that is, ei % 0, because of the linear interpo- 
lations of spectral values in (41). Figures 5 and 6 are 

examples of the calculation for a single-beam case. 

The assumed ocean wave spectrum has the Pieson- 

Moskowitz form, where the peak wave period is 10 
s, the peak wave direction relative to the beam 

direction for each wave frequency is not dependent 

on the wave frequency, and its value is 60 ø . The 

directional distribution has a cos 2s(0/2) form, where 
the s value obeys Mitusyasu's formula [Mitsuyasu 
et al., 1975]. Initial guesses are similar to the 

Pierson-Moskowitz form, but are proportional to 

o9• 4 at high frequencies. The initial peak period is 
7.5 s, the wave direction is 65 ø, and s = 0.5. The 

initial peak period can be estimated more accurately 
by the method of Forget et al. [1981]. The initial 
wave direction can be estimated from the first-order 

echoes. Since there is an ambiguity in the signs of 

wave direction relative to the beam direction, how- 

ever, other information is necessary in the single- 

beam direction case. The radar frequency is 24.515 

MHz; it is the frequency of our radar, and the Bragg 

frequency is 0.505 Hz for deep water [Hisaki and 

Tokuda, 1995b]. The parameters are set as dN = o•, 
(.eFt = 0, (.eF2 = 0.4, (.eAt = (.CA2 -- 0, A t -- A 2 -- A 3 = 
10, A 4 = A 5 = A 7 = A 9 = 0.1, A 6 = A 8 = At0 = 5, and 
,Xll = 1; the frequency resolution is 0.02 (in normal- 
ized form), and the angular resolution is 15 ø (M = 

24) in this example. The Doppler frequency resolu- 

tion is 0.02 (in normalized form) and the Doppler 
frequency range for the calculation is 0.66 -< 

INI-< 0,88 and 1.14 _< 1.36. The beam 
direction 6• is 0 ø. 

The retrieved frequency spectrum agrees well 

with the original true frequency spectrum in this 

example (Figure 5). Naturally, the calculated sec- 

ond-order Doppler spectrum from the retrieved 

wave spectrum also agrees with that from the 

original wave spectrum. This result shows that the 

frequency spectrum can be estimated from data 

taken only in a single-beam direction. Figure 6 

shows the comparison of the true and retrieved 

wave directional spectra. The spectral peak at 

(WN, 0) -- (0.2, 60 ø) is evident in both true and 
retrieved wave directional spectra. There is, how- 

ever, another spectral peak at (w N, 0) = (0.2, -60 ø) 
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(a)Wave frequency spectra (b)Comparison of Doppler spectra; ½b=00 deg 
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Figure 5. An example of inversion for simulated data in the single-beam case. (a) Comparison 
between true and retrieved frequency spectra (thin line, true solution; thick line, retrieved solution; 
dashed line, initial guess). (b) Comparison between true (simulated; dashed line) and retrieved (thick 
line) second-order Doppler spectra. 

in the retrieved wave directional spectrum. The 
cause of this peak is due to the ambiguity in the 
signs of wave direction relative to the beam direc- 

tion. Doppler spectra are the same for ocean wave 

fields whose configurations are symmetrical to the 

beam direction. Therefore the solutions by this 

algorithm tend to converge to a solution that is 

symmetrical with respect to the beam direction. 

5.2. Simulation for the Multiple-Beam Case 

One way to avoid ambiguity is to use multiple- 
beam directional data. Multiple-beam directional 

(a) Retrieved wove directional spectra (b) True wove directional spectra 

, , , , I , , , , I , , , , I , , , , I , , , , 

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 

Normalized wove frequency(c•N) Normalized wove frequency(c•N) 

Figure 6. Comparison of wave directional spectra as in the single-beam case. (a) Retrieved 
directional spectra and (b) true directional spectra. Thick dotted line, 2; thick dashed line, 3; thick 
solid line, 4. The contour interval is 0.5. 
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(a)Wave frequency spectra 
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Normalized wave frequency(coN) 

(b)Comparison of Doppler spectra; •b=00 deg 

Normalized Doppler frequency(coDN ) 

(c)Comparison of Doppler spectra; •b=90 deg 
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Figure 7. An example of inversion for simulated data in the dual-beam case (crossing angle is 90ø). 
(a) Comparison between true and retrieved frequency spectra (thin line, true solution; thick line, 
retrieved solution; dashed line, initial guess). (b) Comparison between true (simulated; dashed line) 
and retrieved (thick line) second-order Doppler spectra for beam direction $b = 0ø. (C) As in Figure 
7b for beam direction q•b = 90ø. 

data can be obtained by multiple radar systems or 
by changing beam directions assuming statistical 

homogeneity and stationarity of ocean waves. Fig- 
ures 7 and 8 are examples of the calculations for a 

dual-beam directional case. The crossing angle of 

the two beam directions is 90 ø, that is, $b = 0ø and 
$b = 90ø. The parameters are the same as for the 

single-beam case, and the Doppler frequency range 

for the calculation for $b = 90ø is 0.62 < I•ooNI < 
0.84 and 1.14 --< I•oDNI < 1.36. The true and initial 
wave spectra are the same as in the previous 
example for the single-beam case. As can be seen, 

the retrieved frequency spectrum agrees well with 

the true spectrum. Moreover, the true and retrieved 

(o) Retrieved wave directional spectra (b) True wave directional spectra 

._ 

I I 

j • • • I • • , , I .... I , , , , I .... , , , , I • • • • I • • • • I .... I , , , , 

0 0.1 0.2 0.5 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 

Normalized wave frequency(c•N) Normalized wave frequency(c•N) 

Figure 8. Comparison of wave directional spectra as in the dual-beam case. (a) Retrieved 
directional spectra and (b) true directional spectra. Thick dotted line, 2; thick dashed line, 3; thick 
solid line, 4. The contour interval is 0.5. 
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(a)Frequency spectra 0819JSTO7Mar. 1991 (b)Comparison of Doppler spectra 

0.2 0.3 0.4 0.5 0 0.1 -2 

Normalized wave frequency(wN) Normalized Doppler frequency(WDN ) 

Figure 9. An example of inversion for measured Doppler spectra in the single-beam case. (a) 
Comparison between true and retrieved frequency spectra (thin line, true solution; thick line, 
retrieved solution; dashed line, initial guess. (b) Comparison between true (measured; dashed line) 
and retrieved (thick line) second-order Doppler spectra. 

second-order Doppler spectra show a good agree- 

ment (Figure 7). There is no spectral peak at (WN, 0) 
= (0.2, --60 ø) in the retrieved wave in Figure 8. This 

shows that by using multiple-beam directional data, 

convergence to a spurious solution whose direc- 

tional distribution is symmetrical to the beam direc- 

tion can be avoided. However, we cannot in general 

determine the universal optimal crossing angle for a 

dual-beam direction case, since the optimal cross- 

ing angle depends upon the wave direction. For 
example, if the wave directional properties are 

symmetrical with respect to the beam direction, it is 

not necessary to use dual-beam directional data. In 

this case a crossing angle close to zero degrees is 

the optimal crossing angle. 

5.3. An Example of Retrieval 

From Measured Doppler Spectra 

The nonlinear inversion technique is applied to 

Doppler spectra measured in the Yura experiment. 

The experiment was undertaken in March 1991. The 

details of the experiment are described by Hisaki 
and Tokuda [1995b]. Since the accuracy of the 

measured directional spectra are poor, we compare 

only the frequency spectra. Therefore we use sin- 

gle-beam directional data. Figure 9 is an example of 

the comparison. The initial guess is the Pierson- 
Moskowitz form, the directional distribution is the 

cos 2s(0/2) form, and the wave direction and s value 

are estimated from the first-order echoes [Hisaki 

and Tokuda, 1995b]. The parameters are set as d = 

100 m, wel = 0.15, we2 = 0.3, fOAl = tOA2 = 0, A 1 = 

A 2 = A 3 = 10, A 4 = A 5 = 0.05, A 6 = A 7 = A8 = A9 = 
A10 = All = 1, and M = 20; the Doppler frequency 
resolution is •r/(64wa) in normalized form. 

The estimated frequency spectrum agrees well 

with the frequency spectrum measured with a buoy. 

The second-order Doppler spectrum measured by 

radar and the second-order Doppler spectrum re- 

trieved from the estimated wave spectrum also 

show agreement. However, the closeness between 

the measured and retrieved wave spectra depends 

on the initial parameters to some extent. The deter- 

mination of the parameters such as the Lagrange 

multipliers is a subject for future study. 

6. Conclusions 

A nonlinear inversion method of the integral 

equation for estimating a wave spectrum has been 

developed. The integral equation is modified to a 
discretized form, and the constraints are added to 
obtain a stable solution. These overdetermined 

equations are solved as a nonlinear optimization 

problem. A simple but fast algorithm is proposed to 

solve the large-scale nonlinear optimization prob- 

lem. The simulation results show that the frequency 
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spectrum can be estimated from a single-beam 
directional Doppler spectrum. On the other hand, 

the estimated directional spectrum tends to be sym- 
metrical to the beam direction. Multiple-beam di- 
rectional data should be used in order to estimate 

the wave directional spectrum. This method can be 
applied not only to simulated data but also to 

measured Doppler spectral data with a finite SN 
ratio. However, there are still some issues that must 
be resolved before this method can be used in 

practice: 

1. Comparison of directional spectra with in situ 
measurement. We need to verify the validity of this 
method and find under which oceanic conditions it 

is applicable. 

2. Optimization of parameters such as the La- 

grange multipliers A i (i = 1, ..., 11), OOAi , OOFi , (i = 
1, 2), etc. The solution of the nonlinear optimization 
problem shows dependence on these parameters. 
Therefore we must determine the optimal values of 
those parameters or develop a method of automat- 
ically optimizing the parameters. However, the 

nonlinear equation to extract the wave spectrum 
from the Doppler spectrum may contain many pa- 
rameters that cannot be determined from the data. 

That is to say, there are fewer equations for dis- 
cretized integral equations (38) and (41) than the 

number of unknowns. Consequently, the depen- 
dence of the solution on the choice of the parame- 
ters may be inevitable in the cases presented in this 
paper. To determine the parameters from the mea- 
sured data, we need to increase the number of 

independent measurements of the same area of the 

sea under different conditions. One possible solu- 
tion to this problem is to use multiple radar systems 
or to measure the Doppler spectrum in several 

directions assuming stationary and homogeneous 
sea waves. 

3. Elimination of noise in Doppler spectra. 
Since the second-order scattering signal is very 
small during calm sea conditions, it is difficult to 

estimate the wave spectrum of a calm sea. One 
method for avoiding this difficulty is to use several 

frequencies and select the frequency that gives the 
best SN ratio. This method, however, is not feasible 

in Japan because of the very limited allocation of 

radio frequencies for radar use. A method of reduc- 

ing noise should be developed. 

4. Development of a faster algorithm. The pro- 
posed algorithm is simpler and faster than the 
Marquart method or the conjugate gradient method. 

However, it takes about 10 min to process a typical 
example presented in this paper with a SPARC 
station ELC. A faster algorithm should be devel- 

oped. 

Although nonlinear inversion may not be as ef- 

fective when the Doppler frequency range for the 
calculation is limited because of a low SN ratio of 

the measured Doppler spectrum, the algorithm pre- 
sented here can contribute to the development of a 
new method for estimating the wave spectrum. 
Although linear and nonlinear inversion are not 

compared in this paper, they deserve future study. 
The effectiveness of the nonlinear inversion will be 

presented in the future, because the method can be 

easily extended to apply to multiple-frequency or 
multiple-beam radar systems. Furthermore, the 

ranges of Doppler frequencies used in the calcula- 

tion will be increased as computer capabilities im- 
prove and noise is reduced. Therefore with radar 

systems with improved SN ratios, HF ocean radar 

has the potential to become a powerful tool for 

estimating wave directional spectra, including 
higher frequencies, by making use of multiple- 
frequency radar systems and multiple-beam direc- 
tional Doppler spectra combining multiple radar 
systems and changing beam directions. In this case 
we can demonstrate the effectiveness of nonlinear 

inversion. 
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