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Abstract.

This paper investigates the dynamics of an ion confined in a nonlinear Paul trap. The

equation of motion for the ion is shown to be consistent with the equation describing a damped,

forced Duffing oscillator. All perturbing factors are taken into consideration in the approach.

Moreover, the ion is considered to undergo interaction with an external electromagnetic field.

The method is based on numerical integration of the equation of motion, as the sytem under

investigation is highly nonlinear. Phase portraits and Poincaré sections show that chaos is

present in the associated dynamics. The system of interest exhibits fractal properties and

strange attractors. The bifurcation diagrams emphasize qualitative changes of the dynamics

and the onset of chaos.
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1. Introduction

Quadrupole ion traps [1, 2] have proven to be an extremely versatile tool in atomic physics,

high-precision spectroscopy, fundamental tests on quantum mechanics concepts [3], quantum

metrology, physics of quantum information, studies of chaos and integrability for dynamical

systems, mass spectrometry [4], quantum optics and studies of non-neutral plasmas [5, 6, 7, 8].

Deterministic chaos deals with long-time evolution of a system in time. A system

evolving in time is a dynamical system. Chaos is related to the study of the dynamical systems

theory [9, 10] or nonlinear dynamics [11, 12, 13, 14]. Dynamical systems can be either

conservative, case when no friction is present and the system does not loose energy in time,

or dissipative, when it loses energy in time thus approaching some asymptotic or limiting

condition [15]. That asymptotic or limiting state, under certain conditions, is where chaos

occurs. We can ascertain that chaos occurs in deterministic, nonlinear, dynamical systems.

Other chaos-related geometric objects, such as the boundary between periodic and chaotic

motions in phase space, also may have fractal properties.

A nonlinear chaotic system, the parametrically kicked nonlinear oscillator, may be

realised in the dynamics of a trapped, laser-cooled ion, interacting with a sequence of standing

wave pulses [16]. We investigated ion dynamics in a nonlinear quadrupole Paul trap with

octupole anharmonicity. The system is dissipative. Ion dynamics is described by a nonlinear

Mathieu equation. All perturbing contributions have been taken into account (damping,

multipole terms of the potential, harmonic excitation force). In order to complicate the picture

and approach real conditions, we have also considered that the ion undergoes interaction with

a laser field. The resultant equation of motion can be considered as a perturbed Duffing type

equation, which is a generalization of the linear differential equation that describes damped

and forced harmonic motion.

2. Equation of motion for an ion confined in a nonlinear trap

We studied the case of an ion confined in a quadrupole nonlinear Paul trap, which we treated as

a time-periodic differential dynamical system. Dissipation in such system is very low, which

leads to a number of interesting phenomena. The equation of motion along the x direction, for

a particle of electrical charge Q and mass M , which undergoes interaction with a laser field

in a quartic potential V (u) = µu4, µ > 0 and in presence of damping [17], can be expressed

as
d2u

dτ 2
+ γ

du

dτ
+ [a− 2q cos (2τ)] u+ µu3 + α sin u = F cosω0t , (1)

where u = kx, τ = Ωt/2, α = 2k2Ω0 cos θ/MΩ2, γ and µ are the damping and the

anharmonicity coefficient respectively, while the adimensional parameters are expressed as

a = −8QU0/MΩ2d and q = 4QV0/MΩ2d, with d = r2
0
+ 2z2

0
. For a typical Paul Trap

a = 0.1 and q = 0.7. The micromotion frequency is denoted by Ω, U0 and V0 are the static

and time-varying trapping voltages, r0 and z0 are the trap semiaxes, while Ω0 is the Rabi

frequency for the ion-laser interaction and cos θ is the expectation value of the x projection
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spin operator for the two level system with respect to a Bloch coherent state. The expression

F cosω0t stands for the driving force, an external excitation at frequency ω0.

Eq. 1 can also be viewed, in a good approximation, as Newton’s law for a particle in a

double-well potential. The force F cosωt is an inertial force that arises from the oscillation

of the coordinate system. The mathematical analysis of the Eq. 1 (which is dimensionless)

requires some advanced techniques from global bifurcation theory [9, 10, 11, 12, 13, 14].

Our modest goal was to gain some insight into Eq. 1 through numerical simulations.

The dynamical behavior of the equation of motion we considered is studied numerically

by varying the damping and the driving frequency parameters, as well as the amplitude

parameter. We finally discuss the possibility of observing chaos in such a nonlinear system

[18]. Chaotic regions in the parameter space can be identified by means of Poincaré sections

[9, 10, 12, 13, 15].

3. Phase space orbits for the nonlinear parametric oscillator. Poincaré sections. Chaos

and attractors

The ion can be considered as a forced harmonic oscillator, described by a nonautonomous or

time-dependent equation of motion. Forced oscillators have many of the properties associated

with nonlinear systems. Most nonlinear systems are impossible to solve analitycally. The

trajectory represents the solution of the differential equation starting from an initial condition.

A picture which shows all the qualitatively different trajectories of the system, is called a

phase portrait. The appearance of the phase portrait is controlled by the fixed points. In

terms of the original differential equation, fixed points represent equilibrium solutions. An

equilibrium is considered as stable if all sufficiently small disturbances away from it damp

out in time.

We have performed a numerical integration of the equation of motion, using the fourth

order Runge-Kutta method [19]. In order to illustrate the dynamics of the trapped ion we

have represented the trajectories in the two-dimensional phase space (phase portraits) [19]

and extended phase space as seen in Fig. 1, with an aim to emphasize the regular and chaotic

orbits.

Studying the associated phase portraits we observe that the cubic term -µu3 provides a

nonlinear restoring force at large x, while the linear term pushes away from the origin. In

addition, there is the usual velocity-proportional damping. The potential for this oscillator

has a double-well structure. For certain initial conditions, there is an unstable equilibrium

point at x = 0, and given some damping the particle has to fall into one side of the well or

the other if it approaches the equilibrium point with just enough energy to move over it. The

homogeneous problem (non-driven oscillator) has no surprises in it. Given an initial condition

there is a unique phase-space trajectory that leads to the particle winding up at the bottom of

one of the two wells after the mechanical energy is converted to heat. When the oscillator

is driven by a periodic force the system can reach a limit cycle, where as much mechanical

energy is lost per cycle as is dumped into the system by the crank. Chaos appears as a result

of the two wells connected by the unstable equilibrium point.
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Figure 1. Phase space orbits for an ion confined within a nonlinear trap

The phase portraits clearly reflect the existence of one or two attractors and of fractal

basin boundaries for the trapped ion, assimilated with a periodically forced double well

oscillator. For some of the parameter values presented in Fig. 1, the system has two periodic

attractors, corresponding to forced oscillations confined to the left or right well. Depending on

the initial conditions, the system can converge rapidly to one of the two attractors. Frequency

doubling is also present, which represents a stage in the passage from ordered dynamics to a

chaotic one. The basins of attraction generally have a complicated shape, and the boundary

between them is fractal [20]. As it can be seen, there are cases when the dynamics exhibits

periodicity.
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Figure 2. Poincaré sections for an ion confined within a nonlinear trap

The Poincaré sections are represented in Fig. 2. As it can be seen, depending on the

values of the control parameters we choose, the Poincaré sections describe regular motion,

the transition from chaos to order or reflect the existence of chaos, in a large number of cases.

We emphasize on the appearance of what we consider to be strange attractors. A strange

attractor represents the limiting set of points to which the trajectory tends (after the initial

transient) every period of the driving force. Figs. 2 a − d describe regular motion, we have

points or cluster of points, or a fractal set in case e. The structure that appears in the Poincaré

section in cases e and g case can be proven to be a complicated curve, namely a fractal. This

leads to the name strange attractor for this oscillator, which is an indication that the system is

chaotic. Chaos prevails too in the other cases, but the system exhibits periodic orbits.

From calculus, we can ascertain that the frontiers of the stability diagram are shifted
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towards negative regions of the a axis in the plan of the control parameters (a, q) as already

reported by Sevugarajan [21].

In order to ease understanding of the phenomena involved, we have represented the phase

portraits, Poincaré sections and bifurcation diagrams for the driven, damped Duffing oscillator

in Fig. 3 as well as for an ion confined in the trap, both in absence and presence of laser field,

as seen in Fig. 4, Fig. 5 and Fig. 6. In case of the damped Duffing oscillator, plots of x(t)

and y(t) show that both exhibit aperiodic appearance. The system is chaotic, at least for the

chosen initial conditions. x(t) changes sign frequently, which means that the particle crosses

the hump repeatedly, as expected for strong forcing. Due to the fact that we deal with a non-

autonomous system, Fig. 3 is not a true phase portrait. The state of the system is described

by the triplet (x, y, t), not only (x, y) alone. In order to compute the system’s subsequent

evolution, all three variables are required. The associated phase portrait should be regarded

as a two-dimensional projection of a three-dimensional trajectory. The tangled appearance of

the projection is typical for non-autonomous systems, the basins of attraction are evident [12].

A more detailed insight results from the Poincaré section, which results by plottting

(x(t), y(t)) whenever t is an integer multiple of 2π. Practically, we strobe the system at the

same phase for each drive cycle. Looking at the Poincaré section, we observe that the points

fall on a fractal set, which we interprete as a cross section of a strange attractor for Eq. 1. The

successive points x(t), y(t) are found to hop erratically over the attractor, while the system

exhibits sensitive dependence on the initial conditions, which is the signature of chaos.

Figure 3. Phase portrait, Poincaré sections and bifurcation diagram for the Duffing oscillator.

The values of the parameters are γ = 0.3, ω = 1.25, F = 0.5, α = 1. The bifurcation diagram

corresponds to 0 < F < 0.5

Figure 4 refers to an ion trapped in absence of the laser radiation. The phase portrait

clearly depictures the existence of what seems to be a stable equilibrium (an attractor) and

break of symmetry. The Poincaré section is made of a few dispersed points, chaos is

absent. From the bifurcation diagrams, we can observe a period-doubling bifurcation, when

increasing the value of the kicking term F ≥ 0.63. Practically, frequency doubling is the route

to chaos. When 0.85 ≤ F ≤ 1.8 we have a mixture of order and chaos, with chaos prevailing.

For F > 1.9 the system is no longer chaotic.
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Figure 4. Phase portrait, Poincaré section and bifurcation diagrams for an ion confined in

a nonlinear Paul trap. The values of the control parameters in Eq. (1) are γ = 0.3, ω =

1.25, F = 0.5, µ = 1, α = 0. The first bifurcation diagram corresponds to 0 < F < 1 while

for the second diagram 0 < F < 5

Figure 5. Phase portrait, Poincaré section and bifurcation diagram for an ion confined in a

nonlinear Paul trap, in presence of laser radiation. The values of the control parameters in Eq.

(1) are γ = 0.3, ω = 1.25, F = 2, µ = 1, α = 0.3. The bifurcation diagram corresponds to

0 < F < 4
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Figure 6. Phase portrait, Poincaré section for an ion confined in a nonlinear Paul trap, in

presence of laser radiation. The values of the control parameters in Eq. (1) are γ = 0.3, ω =

1.25, F = 3, µ = 1, α = 0.3.

In case of a trapped ion in presence of laser radiation, shown in Fig. 5, the phase portrait

illustrates the existence of two attractors, which seem to be periodic. We can discuss about

forced oscillations confined to the right or left well, because two basins of attraction appear.

The points on the Poincareé section fall on a fractal set, which again is the signature of chaos.

Thus, laser radiation renders the motion chaotic. The bifurcation diagram shows a period-

doubling bifurcation for F ≈ 0.7 and a mixture of order and chaos for 0.85 ≤ F ≤ 1.9. For

larger values of the kicking term, ion dynamics is ordered. The system exhibits dependence

on the initial conditions, which is reflected in Fig. 6, where the phase portrait reflects the

existence two attractors (two basins of attraction). The Poincaré section shows the dynamics

to be periodic and ordered, without presence of chaos.

4. Conclusions

We have perfomed a qualitative investigation on the dynamical stability of an ion confined

within a nonlinear quadrupole Paul trap, with anharmonicities resulting from the presence of

higher order terms in the series expansion of the electric potential. The system exhibits a

strongly nonlinear character. Damping and interaction with laser radiation were taken into

account. A periodic kicking term was also considered. The stability of this dynamical system

was investigated using numerical simulations and graphical illustrations. Phase portraits

(orbits in the phase space) and Poincaré sections were obtained. Regular and chaotic regions

of motion are thus emphasized in ion dynamics. System dynamics is chaotic when long-term

behaviour is aperiodic.

For particular initial conditions, some of the solutions obtained present a certain degree

of periodicity, although the dynamics is irregular. We show that the damped parametrical

oscilator exhibits fractal properties and complex chaotic orbits. This problem can also be

related to the subject of deterministic chaos, as fully deterministic systems can provide chaotic

behaviour. Chaotic (fractal) attractors were identified for particular solutions of the equation

of motion. The motion on the strange attractor exhibits sensitive dependence on initial
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conditions. This means that two trajectories starting very close together will rapidly diverge

from each other, and will show utterly different behaviour thereafter. Strange attractors are

often fractal sets.

It is often more meaningful to characterize systems possessing complex dynamics

through certain quantities involving asymptotic time averages of trajectories. Examples

of such quantities are power spectra, generalized dimensions, Liapunov exponents and

Kolmogorov entropy. Under certain conditions such quantities can be calculated in terms

of averages of periodic orbits.
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[20] Moon F C 1992 Chaotic and Fractal Dynamics (Wiley, New York)

[21] Sevugarajan S and Menon A G 2002 Int. J. Mass Spectr. 218 181


