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Nonlinear Joint Angle Control for Artificially
Stimulated Muscle

Peter H. Veltink, Member, IEEE, Howard J. Chizeck, Member, IEEE, Patrick E. Crago, Member, IEEE, and
Ahmed El-Bialy

Abstract—Designs of both open- and closed-loop controllers
of electrically stimulated muscle that explicitly depend on a
nonlinear mathematical model of muscle input-output prop-
erties are presented and evaluated. The muscle model consists
of three factors: a muscle activation dynamics factor, an angle-
torque relationship factor, and an angular velocity torque rela-
tionship factor. These factors are multiplied to relate output
torque to input stimulation and joint angle. An experimental
method for the determination of the parameters of this model
was designed, implemented, and evaluated. An open-loop non-
linear compensator, based upon this model, was tested in an
animal model. Its performance in the control of joint angle in
the presence of a known load was compared with a PID con-
troller, and with a combination of the PID controller and the
nonlinear compensator. The performance of the nonlinear
compensator appeared to be strongly dependent on modeling
errors. Its performance was roughly equivalent to that of the
PID controller alone: somewhat better when the model was ac-
curate, and somewhat worse when it was inaccurate. Combin-
ing the nonlinear open loop compensator with the PID feedback
controller improved performance when the model was accu-
rate.

INTRODUCTION

IN principle, the contraction of an electrically stimulated
muscle can be controlled on the basis of a model of the
muscle dynamics. However, although many control strat-
egies for electrically stimulated muscle have been re-
ported in the literature [1]-[10], none have been based on
extensive nonlinear muscle models, such as those re-
ported in [11]-[33]. The work reported in this paper is
based on the hypothesis that the performance of control
strategies can be improved by using more realistic nonlin-
ear models of muscle dynamics. Controllers that are ex-
plicitly based upon a nonlinear model of muscle are in-
vestigated.
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The motivating application of this work is the use of
electrical stimulation to restore function of paralyzed
limbs. Control of the stimulation has been studied by sev-
eral authors [1]-[10]. For example, digital fixed param-
eter PI and PID controllers have been used to obtain ro-
bust control of isometric muscle force in animal models
[7] and in the human upper [8] and lower [9] extremities.
Adaptive controllers based on a linear model of muscle
dynamics have also been reported {1], [2]. They did not
model the nonlinearities of muscle explicitly, but used
linear auto regressive moving average (ARMA) models
[34], which were recursively identified. Hausdorff and
Durfee reported on the control of knee joint angle of a
freely swinging leg, stimulating quadriceps and ham-
strings in healthy subjects [35]. They tested an open-loop
controller, which compensated for the recruitment char-
acteristics of stimulation and the angle dependence of
torque (both nonlinear), and the dynamics of muscle (lin-
ear model). They found that taking into account the non-
linearities improved open-loop joint position tracking.

Many muscle models in the literature have been based
on the classical work of Hill [11] and Wilkie [12]. These
models represent muscle dynamics by a contractile com-
ponent and nonlinear series and parallel viscoelastic ele-
ments [17]-[22]. The force generated by the nonlinear
contractile component depends on the neural activation
input, and is also length and velocity dependent. Simpler
linear dynamic models were found to be sufficient for iso-
metric contraction [25]-[27], or for a specific range of use
[23]-[24]. However, Joyce, Rack, and Westbury could
only explain their detailed studies of the dynamic behav-
ior of cat soleus muscles under different circumstances
[14]-[16] by the model proposed by Huxley [13], [28],
which is based on knowledge of the contractile mecha-
nisms of muscle.

The nonlinear model of muscle dynamics used for joint
angle control in this study is a modified discrete time ver-
sion of the Hill model, with the time step equal to the
interval between the electrical stimulus pulses. Active
muscle force depends on neural activation, muscle length
and the velocity of shortening or lengthening [11]-[20].
The model is formulated as a function of joint angle and
angular velocity rather than muscle length and velocity.
The relations between muscle length and joint angle and
between velocity and angular velocity are determined by
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the joint angle-dependent moment arm. No series elastic-
ity is incorporated. Therefore, the model consists of a
muscle activation factor, an angle-torque factor and an
angular velocity-torque factor.

THEORY
A. Model of the Muscle-Skeleton-Load System

We consider the cat’s ankle joint, connected to a sec-
ond order linear external load, as shown in Fig. 1. The
joint angle is controlled by stimulation of the sciatic nerve,
which innervates the soleus muscle. As a first approxi-
mation, the activation dynamics, angle dependence and
angular velocity dependence were assumed to be indepen-
dent. The discrete time model has its time step equal to
the stimulus period T,, which was taken to be constant.
The three-factor model is

M, = A(uk)f¢(‘pk)f¢(§bk) (1

M, is the torque generated by the muscle contraction; ¢,
is the ankle joint angle at time k; A(w,) is the (normalized)
activation dependence; u, is the input recruitment level
(which depends on the stimulus amplitude and pulse
width); f, is the angle dependence and f;, is the (normal-
ized) angular velocity dependence.

A previous study [36] indicated that model (1) can pre-
dict the muscle torque with 85-90% accuracy during
simultaneous independent pseudorandom variations of re-
cruitment, angle, and angular velocity.

The activation dynamics were assumed to be a linear
second-order critically damped system, expressed by

Ay =2aA,_, —dA,_, + (1 = 2a + dPuy_,. Q)

Recruitment input u,_, is determined by the electrical
stimulus at time k — 1. The steady state value of the nor-
malized activation dynamics equals . The assumption of
critical damping of the activation dynamics is supported
by several studies [25]-[27], [37]. Because of this as-
sumption the activation dynamics can be described by the
single parameter a.

In this study, recruitment level u was varied through
modulation of the width T, of rectangular cathodic stim-
ulus pulses [38], [39]. The stimulus period T;, was chosen
to produce a near fused contraction (100 ms in our study).
We define recruitment level u as the isometric steady-state
muscle force generated by stimulation at the chosen stim-
ulus period Ty, divided by the maximal isometric steady
state muscle force at that 7,,. Therefore, 0 = u < 1. We
call the relation between T}, and u the recruitment curve
R., which is a monotonically inreasing nonlinear relation
with a threshold and saturation:

u = RAT,,). 3

The functions f, and f, were approximated by linear
interpolation between a limited number of measurement
points. The angular velocity ¢, at time step k was approx-

sciatic
nerve

servo controlled
rotational motor

2nd order load

Fig. 1. Schematic representation of the ankle joint of a cat connected to
an external load, with stimulation of the soleus muscle. Angle ¢ and torque
M are defined in this figure.

imated from the joint angle at moments k and k — 1:
b = P — Pr-1
k - .

Ty

@)

In the isometric case (¢ = 0) the model (1), (2) is the
second order linear discrete time model of muscle dynam-
ics described in [25]. The torque-angle and torque-angu-
lar velocity functions have been described in the literature
as part of the contractile component of the Hill model
(e.g., [11]-[20]).

Fig. 2 is a schematic of the total model of muscle dy-
namics and load. The torque on the load, M, is balanced
by the torque M, actively generated by the stimulated
muscle (1), and by the passive torque M, contributed by
passive elastic properties of soleus, unstimulated muscles
and other passive tissues of the cat’s ankle joint:

Mk = Ma,k + Mp,k' (5)

The passive torque was modeled as a linear compliance
C, and an offset torque M, for ¢ = O:

M, = My — qok/Cp. 6)

The external load, which was a second-order linear sys-
tem in this study, determines the relation between torque
and angle:

©Y — Pnom

M=1Is + By +
(2 @ C

(7
Here I is the inertia, B the damping, and C the compliance
of the load. These parameters determine the natural fre-
quency f, and damping ratio { of the load [40]. The nom-
inal angle ¢, is the angle at which the steady state torque
equals zero. For the controllers, a discrete time approxi-
mation (ARMA-model: [34]) of the load was used:

o = hewoy + Loy + LM,
+ (1 - ll - lZ)wnom (8)

The discrete time load parameters /i, [,, and I; were
obtained from a continuous time description of the load
by an impulse response invariant transformation [40]. The
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Fig. 2. Total model of muscle dynamics and load. The muscle dynamics
are described by a three-factor model [see (1)] and a linear model of the
passive torque characteristics [see (6)].

torque signal M was integrated by Euler integration (M is
assumed to be constant between stimulus pulses).

B. Design of the Control Strategies

The Nonlinear Open-Loop Compensator: An open-loop
nonlinear controller can be derived by inversion of the
muscle-load model (1)-(6), (8), and substitution of the
angle ¢, by the reference angle input ¢, . This results in

_ Ak+1 - 2aAk + azAk_l

M 1—2a+d ©
with
M, — M,
A =22l o Lk k+ 1 (10
fw(‘pr,i)f¢(§0r,i)
and
M, = Privt = heri = bherioi = (4 = i = b)uom
2 L
(11)
‘pr,i
My = Mo = G (12)

The pulse width T, can be determined from the required
recruitment level u, using the inverse of the monotoni-
cally increasing recruitment curve (3):

Toue = RZ'(wp). (13)

The resulting compensation block can be used in series
with the actual system (Fig. 3) to create an overall linear
(zero-order) system. Note that there is a two time steps
delay between the reference signal ¢, and the actual an-
gle ¢,, when the reference angle is not known ahead of
time. However, when the reference angle is known at least
two time steps ahead of time, the compensation can be
done without a time delay.

The PID Controller: The performance of the open-loop
nonlinear compensator was compared to the performance
of a PID controller (Fig. 4). In discrete time the PID con-
troller can be described by a second order difference equa-

#rk uy inverse |T,y|muscle-| ¢
—>-compensator recruitment load >
curve system

Fig. 3. Block diagram of the open loop nonlinear compensator for control
of joint angle. The recruitment level u, at each time step & is determined
from the reference angle ¢, via the nonlinear compensator, which consists
of the inverse of the model of the muscle-load system. The recruitment
level is transformed to a stimulation pulse width T, via the inverse of the
recruitment curve.

muscle-
load
system

Pre + & uy | inverse |T,
PID recruitment
- curve

3
~
R

Fig. 4. The PID feedback controller. The error ¢, between the reference
angle ¢, and the actual angle ¢, is the input of the controller. The output
is the recruitment level at each time step &, which is transformed to a stim-
ulation pulse width 7, via the inverse recruitment curve.

tion [41]:
e =y + Klep — (21 + 261 + 21226 -2)  (14)

where ¢, is the difference between the reference angle
¢, and the actual angle ¢;; z; and z, are the zeros of the
PID controller; K is the gain. The recruitment u at time-
step k, as calculated by the PID controller, depends on
the previous recruitment value, and on the current and two
previous error values. In the z-domain, the PID controller
is given by the following transfer function [41]:

uz) K@z - 2)@z = )
€(2) 2z — 1)

For linear systems, the gains, poles, and zeros of the
system and controller determine the response character-
istics of the closed-loop system [41]. We chose the two
zeros of the controller (z; and z,) inside the unit circle at
the two outmost pole positions of the (approximate) linear
activation dynamics and load models [(2) and (8)]. For a
truly linear system, this pole-zero cancellation would re-
sult in a relatively fast response (Root Locus Analysis
[41]). The gain K was experimentally adjusted on the ba-
sis of the overshoot in the response to a step input signal.
A small step of 5° was used in order to prevent saturation
of recruitment. The overshoot was adjusted to a value be-
tween 15 and 25%.

PID (z) = (15)
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Fig. 5. Combined controller consisting of the open-loop nonlinear com-
pensator and the feedback PID controller. The PID controller was added
to compensate for remaining model errors.

Combination of the Nonlinear Compensator and the
PID Controller: The third controller considered is a com-
bination of the nonlinear open-loop compensator and the
PID controller (Fig. 5). The closed-loop PID controller
was added to the nonlinear compensator in order to com-
pensate for model errors and external disturbances not re-
moved by the inversion. The gain K of the PID controller
was set at a lower value than for the PID controller alone,
in order to favor the integrative part of the controller. An
overshoot of less than 15% was experimentally sought
during tuning of only the PID controller part.

METHODS

A. Experimental Method

System identification and control strategies were tested
in seven acute cat experiments. The first three experi-
ments were used to develop the strategies for identifica-
tion and control. The last four experiments concentrated
on the evaluation of these strategies. Anesthesia was in-
duced with Ketamine initially (30 mg per kg body mass)
and was maintained by intravenous injections of sodium
pentobarbitol. The initial dose of sodium pentobarbitol
was 10 mg per kg body mass. Subsequent doses were ti-
trated to get adequate depth of anesthesia, which was
judged on the basis of the absence of reflex withdrawal in
response to squeezing the opposite paw and the absence
of the eye blink reflex. Atropine was given prior to anes-
thesia (0.044 mg per kg body mass) to reduce salivation.
After 6 h a second injection was given at half the initial
dose.

The soleus muscle was stimulated via the sciatic nerve
using a monopolar spiral cuff electrode [42]. The cuff
electrode was placed around the sciatic nerve at the level
of the sciatic notch near the hip of the cat, before the tibial
and peroneal nerves branch. A hypodermic needle in-
serted under the skin in the back of the cat served as the
reference electrode. Branches of the sciatic nerve to other
muscles were cut, and the sciatic nerve was crushed prox-
imally to the site of stimulation to prevent reflex activa-
tion.

The distal tendons of the medial gastrocnemius and
plantaris muscles, and other connective tissue, were cut
to reduce the passive torque at the ankle. The leg was then
closed and sutured, both at the muscle site and at the site
of the stimulation electrode.

Fig. 6. Cat hind limb mounted in the rotary motor frame. Output torque
is measured by semiconductor strain gauges on the cantilever beam. The
ankle angle corresponds to the shaft angle of the motor, which is measured
using a potentiometer (from reference [2]).

During the experiment the cat lay on a heating pad. A
heating lamp was used to maintain (by manual adjust-
ment) the temperature in the hind limb near 34°C. Muscle
temperature was monitored by a temperature sensor im-
planted near the soleus.

The stimulus pulses were mono phasic [39]. The stim-
ulus period T, was constant at 100 ms. Recruitment u; at
every stimulus period 7, was modulated by varying the
pulse width Tj,, in the range of 50-200 us. The pulse am-
plitude had a constant value between 300 and 400 pA.

The cat’s paw was connected to a servo controlled ro-
tational motor system (as in [2]). The cat’s hind limb was
clamped at the ankle and knee joints. The foot was
strapped to a cantilever beam equipped with semiconduc-
tor strain gauges, measuring angle joint torque (Fig. 6).
The shaft angle, corresponding to the ankle joint angle,
was measured by a potentiometer. The rotary motor was
controlled by a servo with feedback from angle, velocity,
and torque sensors (bandwidth about 25 Hz). A second-
order linear load was implemented by real-time compu-
tation of the desired angle from the torque signal, and
setting this angle via the servo system (as was described

" in [43] for a linear motor system). The load model was

computed in real time (100 times per second), in parallel
with the program controlling the experiment on a PDP
11/73 computer. The angle computed by the load model
was transferred to the reference angle input of the servo
control system via an analog output of the computer and
a fourth-order low pass reconstruction filter with a cutoff
frequency of 50 Hz. This filter reconstructed a smooth
reference angle signal from the step like analog output
signal. The torque signal M was low-pass filtered with a
cutoff frequency of 30 Hz, prior to sampling via a 12-bit
AD converter. The actual shaft angle, as measured by the
potentiometer, was also sampled, but no presampling fil-
ter was used, because this signal’s bandwidth was small
(below 20 Hz). The load implementation appeared to be
accurate and stable for the critically and supercritically
damped loads used in this study (natural frequency less
than 5 Hz).
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B. Identification

Before applying the nonlinear compensator, the recruit-
ment curve, the angle dependent function f, and the an-
gular velocity dependent function f, were estimated ex-
plicitly in the range of operation of the controller:

1) The isometric recruitment curve R, was determined
from responses to a constant pulse train (7, = 100
ms). The pulse width 7, was varied, in successive
trains of 5 to 7 steps, between threshold and satu-
ration. The ankle joint angle ¢ was 90°.

2) The angular range of operation of the muscle-skel-
eton-load system was determined from a constant
stimulus train response at maximal recruitment (u
= 1), with the load attached.

3) The passive compliance C, was determined from the
average slope of the angle-torque relation during
passive 0.5 Hz sinusoidal angle perturbation, in the
angular range of operation. The offser M, was de-
termined separately from the rest torque and angle,
with the load attached and the muscle not stimulated
(in order to minimize the offset of the nonlinear
compensator for the rest angle).

The angle-torque function f, and the angular velocity-
torque function f, were determined in two ways.

First, the angle-torque and angular velocity-torque re-
lations were determined from isometric and isokinetic
trials:

4) Isometric angle-torque relation: The maximal ac-
tive torque was determined from constant stimula-
tion contractions, at six angles over a range of 50°.

5) The angular velocity-torque function for shortening
muscle (increasing angle) was determined from iso-
kinetic responses: after 2 s initial isometric stimu-
lation, the angle was ramped, at constant shortening
velocity, over a 40° range (starting at an ankle angle
of 85° or 95°). This was repeated for several an-
gular velocities in the range to be used for the eval-
uation of the control strategies. The passive re-
sponse to the same shortening ramps was subtracted
from these responses. For each ramp the resulting
torque was averaged over 10° in the middle of the
angle range. The torque values were normalized by
the isometric response at maximal recruitment in the
middle of the 10° angle range.

Secondly, f, and f, were identified from constant stim-
ulation responses with the load attached (in which the an-
gle, angular velocity and activation were varied simulta-
neously).

6) The angle-torque function f, was determined from
responses to constant stimulus trains at five recruit-
ment levels u’, ranging from O to 1, with the load
attached. The torque and angle signals were aver-
aged over the last 2 s of the 5 s stimulation trains.
In the static case, at a recruitment level u, the dy-

namic model (1) reduces to
M, = uf,. (16)

The active torques were found by subtracting the
modeled passive torque (6). Therefore, in steady
state f,, is given by

fo =

7) The angular velocity-torque function f,, for positive
¢ (shortening muscle) was determined from the re-
sponse at maximal recruitment (¥ = 1). For every
stimulus period a value for f, was determined using
(1), (5), and (6):

M, — M,(0)

y —_
Jodl®) = 4 e

To be a single-valued function, the relation between
¢ and f;, ; should not have hysteresis. Hysteresis ef-
fects were fully attributed to the activation dynam-
ics. Therefore, parameter ‘a’ of the activation dy-
namics (2) was adjusted until minimal hysteresis in
the relation between ¢, and f,, was obtained. We
represented the function f;, for shortening muscle by
a piece wise linear approximation found by linear
regression from the sets of points (¢, f,.4)-

M, - M,
_—_u .

17

(18)

The second set of angle-torque and angular velocity-
torque functions [6) and 7)] were in first instance used in
the compensator, because they were identified with the
load attached, which corresponded best with the control-
ler tests.

8) For lengthening muscle (decreasing angle ¢) f; was
taken equal to 1. We did not investigate the angular
velocity-torque function for these eccentric con-
tractions, which were relatively brief during the
controller tests.

In the above identification steps, the constant stimulus
trains lasted 5 or 6 s, and torque and/or angle signals were
averaged over the last 2 s of these bursts. A rest period of
at least 60 s was used between stimulus trains, and be-
tween trials of the controllers. This appeared to be suffi-
cient to prevent fatigue during the course of the experi-
ment.

Each of the four controller evaluation experiments con-
sisted of four or five sequences of trials, starting with an
identification sequence and then with tests of the control-
lers. The sequences were repeated twice for two loads. In
most sequences, the system response was quite stable.
Only in a few cases, a part of a sequence had to be dis-
carded, because the response of the open-loop compen-
sator had changed markedly, which was checked several
times during a sequence.

RESULTS
A. Muscle Model Identification

Table I summarizes the model parameter values ob-
tained from the four experimental trials.
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TABLE 1
PARAMETER VALUES OF THE FOUR EVALUATED EXPERIMENTS

A: Values of the Applied Load Parameters

C * 107
Exp. # [ ° } "
# Trials N:'m e [Hz]
I 2 2 2 1
2 1 2 3
1I 2 4 2 1
2 4 2 3
111 3 2 1 1
1 2 2 4
1 2 1 3
v 2 2 2 1
2 4 2 3
1 4 2 1
B: Averages and Standard Deviations of Some Identified Parameter Values
Linearization
C, * 10° e
Exp. # Mo+ 1072 { ° hy hy fn
# Trials [N - m] N-'m h, [s/°] [s/°] [Hz] 7 [s]
I 4 11 +2 6+3 0.78 + 0.02 0.003 + 0.003 0.03 + 0.01 24402 -
11 4 2.6 £0.5 10 + 2 0.67 + 0.06 0.001 + 0.002 0.03 £ 0.01 24 +£0.1 —
111 5 3.4 + 0.6 20+ 8 0.60 + 0.01 0.000 + 0.002 0.04 + 0.01 2.3+0.2 1.09 + 0.05
v 5 54 +0.3 10 +3 0.71 £ 0.03 —0.004 + 0.004 0.05 + 0.01 3.6 £0.7 0.9 +£0.2
226, 224
!
M ! M
[¥102 N.m] ‘ [¥102 N.m]
i
2.4J 3.0
0.0 t[s] 6.0 0.0 t[s] 6.0
129.8
2
91.4
0.0 ts} 6.0 0.0 tfs] 6.0
(a) (b)

Fig. 7. Two typical examples of burst responses for different loads. The
torque registrations are shown in the upper graphs, the angle ¢ registrations
in the bottom graphs: (a) C = 2.10° °/N-m;{=1;f,=1Hz. (b) C =

2.10*°/N m; ¢ = 1; f, = 3 Hz.

The Influence of the Load Parameters on Responses to
Constant Stimulus Trains: Responses to maximal stimu-
lation bursts were determined for a number of loads, with
different compliance, natural frequency f, and damping
ratio ¢ (summarized in Table I-A). Two typical responses
are shown in Fig. 7.

The nominal angle for the load ¢, (7), (8) was cho-
sen, so that the passive torque was small, and the active
torque was high (ankle angle ¢ between about 85° to

130°). The compliance of the load C was chosen such that
an angular excursion of about 35° could be reached by
stimulation between zero and full recruitment. The loads
were critically or supercritically damped (¢ = 1 or 2) be-
cause of limitations in the load implementation. In every
experiment, at least two natural frequencies f, were used,
typically 1 and 3 Hz. For lower f, an overshoot occurred
in the torque response while the angular velocity was still
low, indicating that the load was slow compared to the
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activation dynamics of the muscle. This initial overshoot
was followed by a torque decrease during shortening be-
cause of the angular velocity dependence, and finally a
slow increase to the final torque and angle. For higher f,
the initial overshoot was less or absent because the an-
gular velocity increased quickly.

When stimulation stopped at the end of the burst, active
torque fell off very quickly. The following torque over-
shoot [Fig. 7(a), Fig. 9(c)] cannot be attributed to inertia,
because it was less apparent for fast loads [higher f,, lower
¢ Fig. 7(b)]. It was caused by the angle dependent pas-
sive torque.

Recruitment Curve: Fig. 8 shows a sample recruitment
curve and the burst responses from which it was deter-
mined. The burst responses also illustrate the fusion ob-
tained at a stimulus rate of 10 pulses /s ( T, = 100 ms).

Passive Torque Characteristics: The linear passive
model (6) is not very accurate due to nonlinearity, hys-
teresis, and dependence of the passive properties on the
history of stimulation and movement [Fig. 9(a)]. Depen-
dence on movement history is illustrated by the deviating
response in the first half cycle of the sinusoidal angle per-
turbation [Fig. 9(a)]. This illustrates the viscoelastic
properties of the muscle. The influence of inertia of the
muscle and joint did not appear to contribute greatly to
the passive response: increasing the perturbation fre-
quency fourfold (to 2 Hz over a 30° range) did not in-
crease hysteresis and tended to slightly decrease the am-
plitude of the passive torque response. Dependence on
stimulation and movement history is further illustrated by
the finding that the passive torque during sinusoidal angle
perturbation [Fig. 9(a)] was generally higher than be-
tween isometric contractions at different angles [Fig. 9(b),
(d)], except for the first half cycle of the sinusoidal per-
turbation.

The offset M, of the linear passive model (6) was taken

such that the rest angle and torque were the same as be- -

tween contractions against the load. This minimized the
offset of the nonlinear compensator for the rest angle. The
passive compliance C, (6) was derived by linear regres-
sion from the average slope of the passive sinusoidal per-
turbation response. The resulting linear passive angle-
torque relation of the model has higher torques in the mid-
dle of the angle range than the exponentially shaped an-
gle-torque responses from the sinusoidal perturbation
[Fig. 9(a)]. However, at the low and high ends of the
range, the error was relatively small. This resulted in low
steady-state model errors during the constant parts of the
reference inputs of the controllers (Figs. 11 to 14), which
were positioned in the low and the high ends of the angle
range.

Active Angle-Torque Relation: Fig. 9(d) shows typical
active angle-torque relations. These relations were deter-
mined from isometric responses at different angles [Fig.
9(b)] and from responses with loads at different recruit-
ment levels [Fig. 9(c)]. Under load (Fig. 9(d), registra-

8.7

M
[¥102 N.m]

6.3

0.0 1] 6.0
(a)

|/
00 l/
79 T 18] 150
(b)
Fig. 8. Typical recruitment curve, determined from isometric burst re-
sponses at seven equally spaced pulse widths between threshold and satu-

ration. (a) Isometric constant stimulation responses at 90° ankle angle. (b)
Recruitment curve, as determined from these responses.

tions 4 and 6), the torque was lower than in the isomet-
rically measured angle-torque relations (registration 3).
This was especially apparent at small angles, at which the
errors in passive torque are divided by a small recruitment
value u (17). This might in part be due to inaccuracies in
the linear passive model (6). The maximal effect was es-
timated by calculating the angle-torque relation from the
responses with load, using the passive angle-torque re-
lation from the isometric angle-torque measurements
(Fig. 9(d), registrations 5 and 7). The resulting angle-
torque relations are much closer to the isometrically mea-
sured angle-torque characteristic (registration 3).

Angular Velocity-Torque Relation

Examples of the angular velocity-torque relations f,
identified from isokinetic ramp responses and from a burst
response with load are displayed in Fig. 10. There are
significant differences between them. The shape of the an-
gular velocity-torque relation for positive ¢ (concentric
contraction) obtained from the isokinetic ramp trials (reg-
istration 1), is similar to those reported by Joyce er al.
[15] for comparable conditions. As explained, the angular
velocity-torque functions used in the nonlinear compen-
sator were obtained from a burst response with load (e.g.,
Fig. 7), taking into account the passive torque character-
istics, the angle-torque relation and the activation dynam-
ics (18). The angular velocity-torque functions obtained
in this way can roughly be divided into two linear parts,
as is illustrated in Fig. 10. The steep linear part (at low
@) corresponds to the later part of the burst response (e.g.
Fig. 7), where torque and angle gradually approach their
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Fig. 9. Passive and active angle-torque relations. (a) Passive angle-torque relation determined from sinusoidal angle pertur-
bations (three periods at a frequency of 0.5 Hz). The estimated linear angle-torque relation is indicated by the dashed line: the
linear compliance C, was determined by linear regression of the response to the second and third period. The offset M, was
determined from angle ¢ and torque M in rest. (b) Isometric constant stimulation contractions at several angles, from which the
isometric angle-torque relation was determined (torque: upper graph, angle: bottom graph). (c) Constant stimulation contrac-
tions with load at several recruitment levels. The load characteristics of this example were: C = 4,10 °/N - m; { = 2; f, =
1 Hz (torque: upper graph, angle: bottom graph). (d) Identification of the angle-torque relations: the relation between angle ¢
and passive torque M,,: 1) determined from the passive sinusoidal perturbation trial (a). 2) obtained from the isometric trial (b).
The relation f, between angle ¢ and active torque M,: 3) f, obtained from isometric constant stimulation responses at full
recruitment (b). 4)-7) £, obtained from the constant stimulation contractions with load at several recruitment levels [using (17)}
[4), 5) load and registrations of (c); 6), 7) other load: C = 2.10°°/N - m; { =2; f, = 1 Hz]: 4), 6) fo M, determined from
sinusoidal contractions: reg. 11. 5), 7) f,, [M, determined from isometric contractions: reg. 2].
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final values. This part intersects with the ¢ = 0 axis at 1,
and its slope is called k3. The shallow linear part at higher
¢ corresponds to the fast changes in torque and angle in
the first part of the burst response. It has a small slope 4,
and intersects the ¢ = 0 axis at a value h;(h; < 1).
Typically, the angular velocity-torque curve from the
burst response is multivalued near the point where the two

linear approximations meet. This corresponds to a small
temporal decrease of angular velocity, which can also be
seen in the burst responses (e.g., Fig. 7).

Activation Dynamics

Average values of the natural frequency f,, of the ac-
tivation dynamics (found by minimizing the angular ve-
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Fig. 10. Angular velocity-torque relations f,: 1) From isokinetic ramp re-
sponses. 2) Determined from a constant stimulation response at maximal
stimulation with attached load (load: C = 4.10°°/N - m; { = 2;f, = 3
Hz). 3) Piece wise linear approximation of registration 2.

locity-torque hysteresis) are listed in Table I-B. They are
relatively high compared to values found by Bernotas et
al. [25] and Baratta et al. [26].

B. Controller Performance

Controller strategies were evaluated using a reference
signal consisting of two isokinetic ramps, divided by a
constant part (Figs. 11-14). Relatively slow ramp veloc-
ities were chosen; so that no saturation of recruitment oc-
curred. From an examination of the response of the open-
loop nonlinear compensator and from the isokinetically
determined velocity-torque function, a modification of the
velocity factor f, was developed.

The responses of the open-loop nonlinear compensator
(e.g., Fig. 11) were typically too large during the first
ramp (concentric contraction) with a large undershoot in
torque when the reference angular velocity ¢, goes to zero.
The first aspect points to an underestimate of the angular
velocity function at the ramp velocity (typically about
10° /s). This is seen systematically at that velocity (Fig.
10). However, increasing the angular velocity function
for the ramp velocity (to the value derived in the isoki-
netic trials) results in a good response to the first ramp,
but does not eliminate the undershoot when the velocity
goes to zero.

A possible explanation of this undershoot is that it takes
some time to generate the maximal torque at zero angular
velocity. This can be understood from the sliding filament
theory, which is the basis of the Huxley model [13]: it
takes some time before the maximal number of bonds at
zero velocity have been formed. Joyce et al. [15], [16],
explained similar observations this way. This means that
the slow rise of the torque to its maximum in the burst
contractions of Fig. 7, corresponding to the steep part of
the angular velocity-torque relation, should be modeled
by a dynamic process, and not by an instantaneous an-
gular velocity function.

We modified the angular velocity-torque factor f;,, de-
scribing the steep slope of the angular velocity-torque re-
lation in Fig..9 by a first order dynamic process with time
constant 7, which was identified from the slow rise of the
torque response to the maximal torque in the burst re-
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Fig. 11. Typical response of the nonlinear open loop compensator (load:
C=4.102°/N - m; { = 2; f, = 3 Hz; original f, relation): rms-error =
2.7°. (a) Recruitment u. b) Torque M. (c) Actual angle (solid line) and
reference angle (dashed line). The reference angle was plotted two time
steps delayed.
sponses (Fig. 7):

1@y = hy — e
=h + (1 —exp[—@)(l - hy)

if0 < o < o

if @ > oy

19)

@ 18 the threshold angular velocity between the linear
parts of the angular-velocity torque function (Fig. 10),
and t, is the time at which this threshold was reached
last.

Increasing f;, at the ramp velocity to the value obtained
from the isokinetic trials, and the addition of the dynamic
process for the constant reference angle part, systemati-
cally improved the tracking performance of the nonlinear
open-loop compensator (Fig. 12; Table II). Note that the
recruitment signal gradually decreases in the zero velocity
section, instead of remaining constant as in Fig. 11.

The performance of the PID controller alone is illus-
trated in Fig. 13. Changes in the recruitment signal are
not as fast as with the nonlinear open-loop compensator,
because the PID controller does not incorporate a model
of the system. Steady-state errors and ramp tracking ap-
peared to be good, however.

When the model was accurate, a combination of the PID
controller and the nonlinear compensator improved



VELTINK e¢f al.: JOINT ANGLE CONTROL FOR ARTIFICIALLY STIMULATED MUSCLE 377

0.75

0.03
0.0 ifs)
@
104
M
[¥102 N.m]
A2
00 tfs] 7.0
(b
126
@, el

101

0.0 U[s] 7.0

(©
Fig. 12. Typical response of the nonlinear open loop compensator with
modified f, relation (19). Same load as in Fig. 11; (a)-(c): see Fig. 11;
rms-error = 1.0°.

TABLE 11
AVERAGE VALUES AND STANDARD DEVIATIONS OF THE rms-ERRORS
OF THE CONTROLLERS

Controller
A B C D
Number of trials n 18 10 18 9
Number of experiments 4 2 4
) o mean 2.7 1.6 1.5 1.0
rms-error [°] SD. 1.0 0.8
Controller
A Original nonlinear compensator [original f, description].
B Modified nonlinear compensator [modified f,, description (19)].
C PID controller.
D Combination of modified compensator and PID controller.

tracking performance (Fig. 14; Table II). Fast recruit-
ment changes based on the dynamic model (in the nonlin-
ear compensator) are combined with the capability of the
PID feedback controller to obtain the low steady-state er-
rors.

Comparison of the Controller Performances: We eval-
uated the performance of the control strategies on the ba-
sis of the rms errors between the reference angle (delayed
two time steps) ¢, —, and the actual angle ¢, for all con-
troller trials (Table II). Performance differences were
tested statistically, using the nonparametric sign test [44]
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Fig. 13. Typical response of the PID controller. Same load as in Fig. 11;
(a)-(c): see Fig. 11; rms-error = 1.7°.
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Fig. 14. Typical response of the combined PID controller and nonlinear
compensator with modified f, relation (19). Same load as in Fig. 11; (a)-
(c): see Fig. 11; rms-error = 0.8°,
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with significance level « = 5%. The rms errors of the
controllers were compared in pairs within each sequence
of controller trials. The test was performed over all se-
quences in the last four experiments. The performance of
the compensator with the modified f, was significantly
better than the performance of the compensator with the
original f, description. Neither the PID controller nor the
modified nonlinear compensator was significantly better
than the other. The combination of the modified compen-
sator and the PID controller was significantly better than
each of them separately.

Discussion

A. The Model of the Muscle-Skeleton-Load System

The three factor structure of the model assumes an in-
dependence between 4,, f, and f,. This is supported by
studies of Houk er al. [31], [32], who showed that re-
cruitment scaled the length-tension relation of cat soleus
in steady state [31] and under dynamic conditions [32].
No clear evidence of the independence between f, and f,
appears in the literature.

Discarding the series elastic component is justified
when this component is stiff compared to the compliance
of the load attached to the muscle. Rack and Westbury
[33] found that the compliance of the entire tendinous
component of the cat soleus varies from 5.10™* m/N at
low force to 4.107°> m /N at a high force (11 N). Assum-
ing a moment arm of 102 m, this results in a compliance
of about 2.9 - 10> °/N - m at low torque (<1072 N -
m)to23°/N - mat 11.107%2 N - m. This indicates that,
except for low torques (below 10% of maximal torque),
this compliance is low compared to the compliance of the
external load (1.10% to 4.10* ° /N - m).

Critically Damped Activation Dynamics: In the iso-
metric case the assumption of critically damped second
order linear activation dynamics seems reasonable, con-
sidering the findings of [25] and [26]. Baratta et al. [26]
determined the dynamic responses of soleus at an ankle
angle ¢ of 90°. For several methods of recruitment and
firing rate modulation they found that cat soleus muscle
behaved as a second-order critically damped system with
a natural frequency of 1.85 Hz. Bernotas et al. [25] iden-
tified a second-order discrete time model of isometric
muscle contraction. Using an impuise invariant transfor-
mation we calculated that the characteristic frequencies in
[25] vary in a wide range (mainly between 1 and 3 Hz),
depending on length and stimulus frequency.

A possible explanation of the comparatively high nat-
ural frequencies we found (Table I-B) is that the second-
order linear model not only describes the actual activation
dynamics, but also the effect of the series elasticity in the
muscle. This is supported by a study of Bawa et al. [27]:
the natural frequency of a second-order dynamic model
identified at a stimulus rate of 5 or 7 pulses /s was found
to be higher in the case of an elastic load (1.4 Hz for a
linear compliance equivalent to 1.10% ° /N - m, assuming

a moment arm of 107> m) than in the isometric case (0.8
Hz). In addition to the load effect, the estimation of the
natural frequency might be influenced by errors in the
identification of the passive angle-torque relation.

Linear Passive Angle-Torque Relation: The difference
between predicted and actual passive torques in the mid-
dle of the angle range was to up about 10% of the maxi-
mal active isometric torque. A different description of the
passive angle-torque relation (e.g., an exponential rela-
tion) might reduce this error. However, there is also a
history dependence that can result in errors of the same
magnitude as the linear approximation of the passive an-
gle-torque relation.

The Active Angle-Torque Relation f,: The active an-
gle-torque relations are similar to length-tension rela-
tions, as they are normally presented. Both abscissa and
ordinate are influenced by the moment arm, which de-
pends on the joint angle (see [14]).

The differences between the active angle-torque rela-
tions found from isometric bursts at several angles and
from burst contractions at several recruitment levels when
the system was attached to the load can, in part, be ex-
plained by the errors in the linear approximation of the
passive angle-torque relation. This is especially true at
lower recruitment levels because the errors are multiplied
by the inverse of the relative recruitment [see (17)].

The Angular Velocity-Torque Relation f,: Muscle ve-
locity and joint angular velocity are related by a factor,
which is equal to the moment arm (neglecting series elas-
ticity). We did not consider the influence of the joint an-
gle dependence of this moment arm [14].

Part of the observed differences between the angular
velocity-torque relations derived from the isokinetic
trials, and from constant stimulation contractions with
load, may be due to errors in the passive and active angle-
torque relations, in the middle of the angle range. These
differences might also be due to the limited information
used to determine the angular velocity curve from a single
constant stimulation contraction. As mentioned earlier,
Joyce et al. [15], [16] found different angular velocity-
torque relations from isokinetic than from isotonic exper-
iments (due to history dependence). They concluded that
the Hill model is not adequate to describe muscle dynam-
ics and proposed to use other, Huxley-type models [13]-
[16], [28]. The undershoot that we observed in the non-
linear open-loop compensator trials indicates a history de-
pendence for low angular velocity. This is supported by
the improvements obtained by the use of the modified
nonlinear compensator. It is unlikely that this undershoot
is caused by errors in the passive and active angle-torque
relations because it occurred at the end of the angle range
where both relations have small errors. It is also unlikely
that the undershoot was caused by inertia of the muscle-
skeleton system because there was no evidence of such
inertial influences in sinusoidal passive movements and in
response to constant stimulus trains (Fig. 7).

The nonlinear compensators showed good control dur-
ing the decreasing ramp portions of the reference signal.
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The lack of damping during active lengthening thus seems
justified in this situation. Further investigation of the
model during active lengthening is needed.

B. Control Strategies

It can be concluded that control of joint angle by in-
version of a nonlinear dynamic model of the muscle and
load is feasible in principle. However, the nonlinear com-
pensator performance compared favorably with a simple
PID controller only when it was based on an accurate
model of the whole system, including the load. This may
limit the use of such controllers to repetitive tasks where
loads are well known. Also, only slow, low inertia loads
were used, generating relatively slow movements, with-
out saturation of the control input.

In the control of hand grasp [8], movements are rela-
tively slow, and muscle contractions can be controlled
without saturation. However, loads may be unknown

when grasping an object. In such a case, the load must be .

identified continuously in an adaptive control scheme [1],
[2], or the control strategy must be robust to variations in
load. Regulation of the stiffness of a joint may be one way
to accomplish this, as has been reported in studies of
physiological motor control [45]. This principle can also
be applied in artificial control using electrical stimulation
18].

In the control of steady state paraplegic gait using elec-
trical stimulation [46], the load may be relatively well
known [47]. However, saturation of control should be
considered because full recruitment stimulation may be
required to generate the desired movements of the slow
inertial loads, considering the relatively small maximal
torques that can be generated by the stimulated muscles
[47], [48].

APPENDIX

SymsoL TABLE
ankle joint angle.
ankle joint angular velocity.
reference joint angle.
total ankle joint torque.
active ankle joint torque.
passive ankle joint torque.
stimulus period (constant at 100 ms).
stimulus pulse width.
recruitment level (between O and 1).
Compliance of the load.
Inertia of the load.
Damping of the load.
natural frequency of the load.
damping ratio of the load.
parameters of the discrete time description

of the external load (8).

C, passive internal load compliance.
My offset passive torque for ¢ = 0.

R. recruitment curve.

Ay Activation at time step k.

fo angle-torque relationship.

Js angular velocity-torque relationship.

S 8%

<

SNEEXR

=

£

V\r?‘sw‘\qﬂvﬂ

a parameter of activation dynamics (2).

San natural frequency of activation dynamics.

Grom nominal angle at which torque exerted by
load is zero.

€ error signal (input of the PID controller).

21, 2o zero’s of the PID controller.

K gain of the PID controller.

hy, hy, hy parameters of f, approximation in Fig. 10.

T time constant of dynamic process describ-
ing development of isometric torque (19).

Phr threshold angular velocity between the lin-

ear parts of the angular velocity-torque
function (19).

Linr time at which threshold angular velocity
@y Was last reached (19).
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