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Nonlinear Koopman Modes and a Precursor to

Power System Swing Instabilities
Yoshihiko Susuki, Member, Igor Mezić, Member

Abstract—We suggest a precursor to phenomena of loss of tran-
sient stability in multi-machine power systems. This precursor
is based on discovery of [Y. Susuki, I. Mezić, and T. Hikihara,
J. Nonlinear Sci., vol. 21, no. 3, pp. 403–439, June 2011.], an
emergent transmission path of energy from many oscillatory
modes to one oscillatory mode that represents an instability
phenomenon of interest. The pathway from high frequency
modes to the lowest frequency mode is called the Coherent
Swing Instability (CSI). The modes are extracted from sensor
data or data provided by simulation outputs of power system
oscillations by using the Koopman Mode Analysis that is based
on a fully nonlinear spectral theory and represents an extension
of linear oscillatory mode analysis. The CSI transmission path is
identified by computation of the so-called action transfer operator
that is derived by refining a mathematical model of transient
stability using the Koopman Mode Analysis. This provides a
new technique for monitoring the loss of transient stability by
a combination of practical data, mathematical modeling, and
computation.

Index Terms—power system, transient stability, precursor to
instability, Koopman mode, energy transfer, coherent swing
instability

I. INTRODUCTION

WE STUDY PRECURSORS to power system dynamic

phenomena. The notion of precursor used here is a

diagnostic phenomenon that can occur before the dynamic

phenomenon of interest emerges in power systems. Our pur-

pose is to identify a precursor to instabilities in short-term

swing dynamics by using numerical simulations (possibly, data

sampled in practice) and mathematical models, so that system

operator can monitor, analyze, and control the phenomena of

interest.

Monitoring dynamic phenomena of the power system has

received a considerable attention in recent years: see e.g. [1].

The so-called Smart Grid vision aims to synthesize the next ar-

chitecture of power system that operates in an energy-efficient

way, handles renewable energy sources, and archives robust

electricity supply against cyber-security attacks and physical

instabilities [2]. Examples of the physical instabilities include

Manuscript received November 21, 2010; revised May 3 and November 4,
2011; accepted December 19, 2011. This work was supported in part by JSPS
Postdoctoral Fellowships for Research Abroad and in part NICT Research
Project ICE-IT (Integrated Technology of Information, Communications, and
Energy).
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Engineering, University of California, Santa Barbara, CA 93106–5370 United
States.

I. Mezić is with the Department of Mechanical Engineering, Univer-
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mezic@engineering.ucsb.edu).

the U.S. and Canada blackout on August 14, 2003 [3]. It has

been widely accepted that the lack of accuracy of measurement

of power system (dynamic) states is one important cause

of such blackouts of the existing power system. Monitoring

dynamic phenomena, especially instabilities, is an essential

step in developing tools necessary for analysis and control of

the next power system. In this paper, as a dynamical basis

of monitoring process, we study a precursor to instabilities in

short-term coupled swing dynamics.

Related Work.—In [4], [5], the authors explained a mech-

anism of long-term swing instability as an internal resonance

of two oscillatory modes coupled with system nonlinearity.

The authors use the classical notion of linear modes and

derive a reduced order model that represents the envelope of

long-term swing such as inter-area one. In [6] the authors

considered how changes in power system parameters could

cause low frequency inter-area oscillations. Consider two

damped oscillatory modes for a system of linearized power

system models. In an ideal situation the two linear modes

coincide exactly: the coincidence is called a 1:1 resonance.

If the linearization is not diagonalizable at the resonance, the

resonance is called a strong resonance. The authors show the

strong modal resonance is a precursor to the oscillatory insta-

bility. In [7] the authors considered a signal-based approach

for real-time estimation of the distance to instability. Based on

the notion of noisy precursors of bifurcations [8], the authors

adopt, as precursors, impending instability features of power

spectrum density of a measured output that are obtained by

excitation of additive white Gaussian noise. Optimal output for

identifying the precursors is determined by the input-to-state

participation factors for linear systems.

Contributions.—The main contribution of this paper is to

identify a precursor to phenomena in loss of short-term swing

stability, the so-called transient stability in multi-machine

power systems. Loss of transient stability is associated with

non-local dynamics of a power system, in the sense that it does

not happen upon an infinitesimally small perturbation around

an equilibrium of the system (see Sec. II for definition). It

compasses the situation when the system escapes a predefined

set around the equilibrium. In this way the loss of transient

stability is nonlocal. A technique taking into nonlinear natures

of the phenomenon is required for identifying precursors

to such nonlocal phenomena. In this paper, we employ the

Koopman Mode (KM) that is a nonlinear extension of linear

oscillatory mode and is introduced in [9]–[11]. Koopman

pioneered the use of linear transformations on Hilbert space

to analyze (nonlinear) Hamiltonian systems by introducing

the so-called Koopman operator and studying its spectrum
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[12]. This linear, infinite-dimensional operator is defined for

any nonlinear dynamical systems [13], [14]. Even if the

governing dynamics of a system are finite-dimensional, the

Koopman operator is infinite-dimensional and does not rely

on linearization: indeed, it captures the full information of

the nonlinear dynamical system. In [15] the authors identified

a relationship between generalized Fourier analysis [16] and

eigen-functions of the Koopman operator. In [9] the author

showed via spectral analysis of the Koopman operator that

single-frequency modes can be embedded in highly nonlinear,

spatiotemporal dynamics. These modes are later named the

KMs [10]. In this reference, the authors provide an algorithm

for computing KMs from numerical and experimental data.

In this paper, we show that the KM Analysis provides a

precursor to one type of loss of transient stability, Coherent

Swing Instability (CSI) [17], [18]. CSI is an emergent and

undesirable phenomenon of synchronous machines in a power

system, in which a group of machines in the system coherently

loses synchronism with the rest of the system after being

subjected to a finite, possibly local disturbance. The dynamical

mechanism of CSI explains how local plant mode oscillations,

inter-area mode instability, and multi-swing instability interact

to destabilize a power system. The full analysis of CSI is

presented in [18]. The precursor which we identify in this

paper is an emergent transmission path of energy from high

KMs to the lowest KM with flat basis vector, which we term

the coherent KM (see Sec. V). The lowest mode corresponds

to the collective mode described by the well-known Center-Of-

Angle (COA) variables. This result is consistent with that in

[19] that analyzes dynamics of high-dimensional oscillatory

systems with strong local linear interconnections and weak

long-range nonlinear forces. The current result is more general,

because it is obtained for a set of KMs embedded in dynamics

of a high-dimensional oscillatory system with nonlinear local

interconnections. In this paper, we develop analysis tools that

enable us to derive mathematical models relevant to analysis

of instability phenomena (see Sec. IV). The tools include 1)

model reduction based on the KM and Petrov-Galerkin projec-

tive approximation, and 2) a linear, finite-dimensional operator

quantifying a transmission path of energy between different

KMs, to which we refer as the action transfer operator. Their

development is the other contribution of this paper.

Note that the precursor identified in this paper is different

from that of impending instability discussed in [6], [7]. The

precursors in [6], [7] are intended to evaluate small-signal

stability before its loss due to the change of system parameters.

On the other hand, if the precursor of this paper is detected

in a power system, then the system is regarded as already

unstable in terms of the traditional all-or-nothing (that is,

stable v.s. unstable) concept. In this paper, we are interested

of how to monitor the course of short-term coupled swings

leading to the loss of transient stability. For example, the

CSI phenomenon which we address in this paper happens in

multiple regimes: after a single disturbance to a power system,

a group of synchronous generators in the system exhibits

bounded, incoherent swings and then begins to coherently

lose in synchronism with the rest of the system. In order

to analyze and control this multi-scale phenomenon, it is

inevitable to monitor the course of coupled swings before

the de-synchronization is observed. For this purpose, the

traditional all-or-nothing concept of transient stability is not

effective. This is why we define a precursor to the loss of

transient stability as an emergent transmission path of energy

to one KM that represents the phenomenon of interest. This

precursor gives a new measure for transient stability that can

capture the course of short-term coupled swings.

Organization.—Sec. II poses two questions towards the goal

of this paper. Sec. III reviews the existing theory of Koopman

operator for nonlinear dynamical systems, including the defi-

nition of KM and its computation. Sec. IV develops analysis

tools for the precursor identification: a new treatment of model

reduction based on the KM and the action transfer operator.

In Sec. V we apply the KM and action transfer operator to

analysis of CSI in the New England 39-bus test system, and

we demonstrate that they enable the identification of precursor

to CSI. Sec. VI concludes this paper with a brief summary

and remarks. A method for instability monitoring based on

the results is described there.

Notation.—All vectors are viewed as columns. For a matrix

A, we denote by [A]ij the matrix entry in the i-th row and j-th

column. The symbol |z| stands for the magnitude of complex-

valued variable z, zc the complex conjugate of z, ||x|| the

norm of vector x, xT the transpose of x, and x† the complex-

conjugate transpose of x. We use R>0 := {x : x ∈ R, x > 0}
and Z≥0 := {0} ∪ N.

II. TWO QUESTIONS TOWARDS THE GOAL

To set the goal of this paper, we pose two questions. Before

this, we reconcile the notion of oscillatory instabilities used in

power system studies [20], [21] with the context of classical

mechanics. This paper deals with the loss of transient stability,

and hence we do not consider instabilities of power system

swing dynamics due to the change of system parameters which

are discussed in [4]–[7]. Practical experience suggests that the

dynamics of power system have a finite number of clean peaks

in frequency spectrum, that is, it can be represented with a

finite number of oscillatory modes. A relevant mathematical

model is thus the dynamical system with a finite number N
of oscillatory modes, described by

dri

dt
= fi(r1, . . . , rN , θ1, . . . , θN ),

dθi

dt
= Ω i + gi(r1, . . . , rN , θ1, . . . , θN ),















(1)

where i = 1, . . . , N denotes the integer label of modes, ri

the amplitude of oscillatory mode i, θi its rotating phase,

and Ωi its angular frequency. The functions fi and gi define

the interaction between different modes. The model (1) is

one type of perturbations on N degree of freedom integrable

Hamiltonian systems [22]. With this model, we mathematically

interpret the loss of transient stability. Since the dynamical

system (1) is nonlinear, different initial conditions possibly

induce different asymptotic behaviors. In particular, we may

find that for one or some modes, the amplitudes grow in

an unbounded way. This corresponds to the development of

oscillatory instabilities (the growth of amplitudes of local,
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inter-machine, and inter-area mode oscillations; multi-swing

instability; CSI, and so on) following a large but finite dis-

turbance. The model (1) describes the connection between

oscillatory instabilities and modal interactions, and hence it

helps us to investigate precursors to the oscillatory instabilities.

When attacking precursor issues using (1), we need to answer

the two questions:

(Q1) How do we derive the model (1) for a practical

power system model, in particular, when we consider

dynamics that are far from a stable equilibrium in the

model?

(Q2) How do we identify and monitor the emergence of

an oscillatory instability using (1)?

Note that it is easy to obtain (1) for a linearized power system

model using the standard modal matrix. In the rest of this

paper, we will answer them for a nonlinear power system

model, thereby suggesting a precursor to phenomena in loss

of transient stability.

III. NONLINEAR KOOPMAN MODES

We provide an introduction to the theory of Koopman

operator and Koopman Modes (KMs) for nonlinear dynamical

systems. The contents here are based on [9]–[11]. The defini-

tions of the Koopman operator and the KM are presented. The

definition of coherency in the context of KM is also presented.

A. Koopman Operator, Eigenvalue, and Mode

In this section, we begin our argument by introducing

the following continuous-time system evolving on a n-

dimensional manifold M : for x ∈ M ,

dx

dt
= f(x), (2)

where f is a nonlinear function defined on M . We assume that

f belongs to C1(M), and its analytical expression is given.

Here let us define a finite time-h map Φ
t+h
t for (2) as

Φ
t+h
t : M → M ; x(t) 7→ x(t) +

∫ t+h

t

f(x(τ))dτ. (3)

Since (2) is autonomous, this map is time-invariant. Thus the

discrete-time system on M for constant time interval h is

defined as follows: for x[k] := x(tk) and h := tk+1 − tk,

x[k + 1] = Φ
h
0 (x[k]), k ∈ Z≥0. (4)

We introduce the Koopman operator for the discrete-time

system (4). The Koopman operator is a linear operator U that

acts on scalar-valued functions on M in the following manner:

for any scalar-valued function g : M → R, U maps g into a

new function Ug given by

Ug(x) = g ◦Φ
h
0 (x).

Although the discrete-time system (4) can be given as a

nonlinear map and evolve on a finite-dimensional manifold M ,

the Koopman operator U is linear, but infinite-dimensional.

The eigenfunctions and eigenvalues of U are defined in the

following manner: for scalar-valued functions ϕi : M → C

and constants λi ∈ C,

Uϕi(x) = λiϕi(x), i = 1, 2, . . .

We will refer to ϕi as Koopman eigenfunctions and to λi as

the associated Koopman Eigenvalues (KEs).

The idea in [9] is to analyze nonlinear dynamics represented

by (4), using the (linear) Koopman operator U . By definition,

the linear operator U does not rely on linearization and

captures the full information of the nonlinear dynamics. To

this end, consider a vector-valued observable g : M → R
p.

The function g(x) corresponds to a vector of any quantities of

interest, such as frequencies and voltages metered at various

points in a power system. In [9] the author shows that if the

dynamical system (4) possesses a smooth invariant measure, or

the initial condition x0 of (4) is on any (ergodic) attractor, then

g(x[k]) = (g1(x[k]), . . . , gp(x[k]))T is exactly represented as

follows:

g(x[k]) =
∞
∑

j=1

λk
j ϕj(x[0])vj

+















∫ 2π

0

eikθdE(θ)g1(x[0])

...
∫ 2π

0

eikθdE(θ)gp(x[0])















, (5)

where E(θ) is a continuous, complex spectral measure. The

modulus of KEs λi is identically one, because U is a unitary

operator in the above situation. In (5) we refer to the vectors

vj as Koopman Modes (KMs) of the system (4), corresponding

to g. On the right-hand side of (5), the first term represents

the contribution of KEs (namely, discrete spectra of U) to

the time evolution {g(x[k])} and describes the average and

quasi-periodic parts of {g(x[k])}. On the other hand, the last

term represents the contribution of continuous spectrum of

U and describes the aperiodic part of {g(x[k])}. Hence, if

the dynamics observed in (4) have no continuous spectrum in

frequency domain (practical experience suggests this situation

in power system analysis), then the dynamics are exactly

represented as

g(x[k]) =
∞
∑

j=1

λk
j ϕj(x[0])vj . (6)

In [9], [15], the authors show that the terms ϕj(x[0])vj are

defined and computed with a projection operation associated

with U applied to the observable g. Define a family of

operators Pν : for g : M → R,

Pνg(x[0]) = lim
n→∞

1

n

n−1
∑

k=0

e−i2πkνg(x[k]),

where ν ∈ [−1/2, 1/2). When the initial condition x[0] is on

an (ergodic) attractor of (4), a nonzero Pν is the orthogonal

projection operator onto the eigenspace of U associated with

the KE λ = ei2πν . The projections of the p components
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g1, . . . , gp of g on the j-th eigenspace are obtained:






Pνj g1(x[0])
...

Pνj gp(x[0])






= ϕj(x[0])vj , (7)

where νj = Im[lnλj ]/2π. This formula (7) associates

ϕj(x[0])vj with the projection operation based on the non-

zero operator Pν . The left-hand sides of (7) are generalized

Fourier transforms of observations {g(x[0]), g(x[1]), . . .}, and

hence the terms ϕj(x[0])vj are directly computed. This im-

plies that projections of any time series of nonlinear dynamics

are obtained by generalized Fourier transforms at frequencies

corresponding to the discrete spectra of U . In this way, what

we do here is not a simple FFT.

In the last paragraph, we have assumed that the dynamics

of (4) are on an attractor. Even if this is not the case, that

is, we consider dynamics off attractors of (4), the KM modes

oscillate with a single frequency. If each of the p components

of g lies within the span of eigenfunctions ϕj , then, as in

[10], we may expand the vector-valued g in terms of these

eigenfunctions as

g(x) =
∞
∑

j=1

ϕj(x)vj ,

where vj are also regarded as the coefficient vector in the

expansion. The time evolution {g(x[k])} starting at g(x[0])
is identically given by (6):

g(x[k]) =
∞
∑

j=1

ϕj(x[k])vj =
∞
∑

j=1

Ukϕj(x[0])vj

=
∞
∑

j=1

λk
j ϕj(x[0])vj . (8)

Thus we can refer to vj as the KM which oscillates with a

single frequency. If the dynamics observed here have only a

finite number of discrete spectra in frequency domain, then

we can expect that the expansion gives a good approximation

of the dynamics. For dynamics off attractors, the KE λj char-

acterizes the temporal behavior of the corresponding KM vj :

the phase of λj determines its frequency, and the magnitude

determines the growth rate.

B. Coherency in terms of Koopman Modes

We define the notion of coherency in the context of KM.

The case of oscillatory KM, in which the KE has a non-zero

imaginary part, is addressed, because the study on coherency

identification in power systems normally deals with oscillatory

responses following a disturbance. For an oscillatory KM vi,

called Mode i, with the KE λi = |λi|e
i2πνi and its complex

conjugate λc
i = |λi|e

−i2πνi , the associated modal dynamics

gi(x[k]) are given by

gi(x[k]) = λk
i ϕi(x[0])vi + (λc

i )
k{ϕi(x[0])vi}

c

= 2|λi|
k







Ai1 cos(2πkνi + αi1)
...

Aip cos(2πkνi + αip)






, (9)

where

Aij := |[ϕi(x[0])vi]j |, αij := Arg([ϕi(x[0])vi]j). (10)

Thus we can say that a set of oscillatory components I ⊆
{1, . . . ,m} is coherent with respect to Mode i if the amplitude

coefficients Aij are the same for all j ∈ I, and the initial

phases αij are also the same. Note that the definition is

strict compared with the definitions of slow-coherency [23],

[24] and near-coherency [25], because it does not admit any

finite, constant phase difference of oscillations along system

evolution.

IV. ANALYSIS TOOLS

We develop analysis tools for the identification of precur-

sors to instabilities of power systems. Tools include model

reduction based on the Koopman Mode (KM) and Petrov-

Galerkin projective approximation (Sec. IV-A), action-angle

representation of the reduced-order model (Sec. IV-B), and

the action transfer operator quantifying transmission paths

of energy between different KMs (Sec. IV-C). The way of

deriving the action-angle representation gives the answer for

(Q1).

A. Petrov-Galerkin Projective Approximation

We approximate the original dynamical system (4) by

projecting the dynamics onto a low-dimensional subspace

spanned by a small number of KMs. This will provide a

reduced-order model for (4). Assume that the inverse of the

observable g exists, denoted as g−1. This assumption is a

mathematical generalization of observables available in power

systems: indeed, it is sufficient that all of the states of a

mathematical model are available (directly measured), namely,

g is the identity. We use V i := ϕi(x[0])vi and view λk
i as

a time-dependent, complex-valued variable zi[k] below. The

truncation of (8) after the first m (< ∞) KMs gives

g(x[k]) =

m
∑

i=1

zi[k]V i +

∞
∑

i=m+1

zi[k]V i

≈
m
∑

i=1

zi[k]V i

= Vmzm[k], (11)

where Vm := (V 1, . . . ,V m) ∈ C
p×m and zm :=

(z1, . . . , zm)T ∈ C
m. By substituting (11) into (4), we re-

write (4) as

m
∑

i=1

zi[k + 1]V i = (g ◦Φ
h
0 ◦ g−1)(Vmzm[k]), (12)

and by multiplying each side of (12) by V
†
j we have

m
∑

i=1

zi[k + 1]V †
jV i = V

†
j(g ◦Φ

h
0 ◦ g−1)(Vmzm[k]),

=: Tj(z
m[k]), (13)

where j = 1, . . . , m, or

Emzm[k + 1] = T m(zm[k]), (14)
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where Em := V
†
mVm ∈ C

m×m and T m(zm) :=
(T1(z

m), . . . , Tm(zm))T ∈ C
m. This discrete-time system

(14) defined on C
m gives a reduced-order system of (4) in

terms of the first m KMs. This reduction can be done by a

combination of practical data or simulation outputs to compute

KMs and of a mathematical model.

B. Action-Angle Representation

When KMs are obtained from any set of observations, the

KMs are completely isolated by definition and provide single-

frequency units of motion. This dynamically relevant property

of KM is consistent with integrable Hamiltonian systems. Now

we introduce the action-angle variables for the reduced-order

system (14). For a regular Em, by defining zj = rje
iθj where

(rj , θj) ∈ R>0 × T for j = 1, . . . , m, we re-write (14) as

rj [k + 1]eiθj [k+1] = T̃j(r[k],θ[k]),

where r := (r1, . . . , rm)T ∈ R
m
>0, θ := (θ1, . . . , θm)T ∈ T

m,

and

T̃j(r,θ) :=
m
∑

i=1

[E−1
m ]jiTi(r1e

iθ1 , . . . , rmeiθm).

The variable rj corresponds to the action variable in the

Hamiltonian mechanics, and θj the angle variable. In fact, we

can re-write (14) as

rj [k + 1] =
√

T̃ c
j (r[k],θ[k])T̃j(r[k], θ[k])

=: Fj(r[k], θ[k]),

θj [k + 1] = Arg T̃j(r[k], θ[k])

=: Gj(r[k], θ[k]),































(15)

or simply,

r[k + 1] = F (r[k], θ[k]),

θ[k + 1] = G(r[k], θ[k]),

}

where F (r, θ) := (F1(r, θ), . . . , Fm(r, θ))T and G(r, θ) :=
(G1(r,θ), . . . , Gm(r, θ))T. For the data on dynamics of (4)

used for computation of the KMs, the action variables rj does

not change as time goes on, and the angle variables θj rotate

with constant speeds νi given by the KEs. In this way, we

can regard the right-hand sides of (15) as terms in an action-

angle formulation of perturbed Hamiltonian systems [22]. The

model (15) is the analog of (1) for the nonlinear discrete-time

system (4). Thus we have the answer for (Q1).

C. Action Transfer Operator

In [19] the authors gave an insight into the transmission

paths of energy in a nearly-integrable Hamiltonian system

by linearizing the action-angle representation of the system.

The linearized system provides the time-dependent operator

as the system evolves. In this paper we term this operator

the action transfer operator that can quantify the change of

action variables and will be defined below. Now we apply the

approach developed in [19] to the discrete-time system (15)

and show that by means of KM, the action transfer operator is

4
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Fig. 1. The New England 39-bus test system [26], [27]

defined for arbitrary dynamical systems. The linearizd system

of (15) around a point (r∗,θ∗) is given by

[

r[k + 1]
θ[k + 1]

]

=

[

DrF DθF

DrG DθG

]
∣

∣

∣

∣

(r∗,θ∗

)

[

r[k]
θ[k]

]

.

Since the action variables are often associated with amount of

energy contained in every KMs, the sub-matrix DrF (r∗, θ∗)
provides a quantitative index of the model interaction via

energy. For simplicity we assume g(x) = x. Then we can

define the Jacobi matrix J(x[k]) that describes the infinitesimal

change of r[k] at a point x[k]:

J(x[k]) := DrF (x[k]) − Im, (16)

where Im is the identity matrix of size m. The right-hand side

of (16) can be computed numerically: see Appendix for details.

The Jacobi matrix is a time-dependent operator and quantifies

the change of action variables for the m KMs. We term the

Jacobi matrix the action transfer operator for the KMs. In the

next section, by using a concrete example of power system

analysis, we will illustrate that the action transfer operator

works for the identification of precursor to loss of transient

stability.

V. A PRECURSOR TO LOSS OF TRANSIENT STABILITY

We apply the Koopman Mode (KM) Analysis and tools

developed in Sec. IV to analysis of coupled swings in the

New England 39-bus test system (NE system) [26], [27]. The

NE system is shown in Fig. 1 and consists of 10 synchronous

generators, 39 buses, loads, and AC transmission lines. Here

we focus on one important type of loss of transient stability,

the Coherent Swing Instability (CSI) (see Sec. I for definition

and Sec. V-A for phenomenology). We show that the CSI

phenomenon follows an emergent transmission path of energy

from high-frequency KMs to the lowest KM with flat basis

vector, and that the emergent transmission path can be detected

by computation of the action transfer operator. This is the

answer for (Q2) and corresponds to the main result of this

paper.
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A. Coherent Swing Instability

We introduce the equations of motion for the NE system.

Assume that bus 39 is the infinite bus. The short-term swing

dynamics of generators 2–10 are represented by the swing

equations [20], [27]:

Hi

πfs

d2δi

dt2
+ Di

dδi

dt
= Pmi − GiiE

2
i −

10
∑

j=1,j 6=i

EiEj ·

·{Gij cos(δi − δj)

+Bij sin(δi − δj)}, (17)

where the integer label i = 2, . . . , 10 denotes generator i. The

variable δi is the angular position of rotor in generator i with

respect to bus 1 and is in radian. We set the variable δ1 to

a constant because bus 1 is assumed to be the infinite bus.

The parameters fs, Hi, Di, Pmi, Ei, Gii, Gij , and Bij are in

per unit system except for Hi and Di in second, and for fs

in Hertz. The mechanical input power Pmi to generator i and

the internal voltage Ei of generator i are normally constant for

transient stability analysis [20]. The parameter Hi is the per

unit time inertia constant of generator i, and Di its damping

coefficient. The parameter Gii is the internal conductance, and

Gij +iBij is the transfer admittance between generators i and

j. Electrical loads are modeled as lumped admittances in order

to derive (17).

The setting of numerical simulation is as follows. The

voltage Ei and a stable equilibrium (δ∗i , ω∗
i = 0) for generator

i are fixed using power flow computation [20]. The constants

Hi, Pmi, and power loads are the same as in [27]. The

parameter Di is fixed at 0 s, and fb at 60 Hz. We will consider

a case of non-zero dissipation in Sec. V-D. The elements Gii,

Gij , and Bij are calculated using the data in [27] and the

power flow computation. All numerical simulations discussed

in this section were performed using MATLAB: the function

ode45 is used for integration of (17).

We present an example of coupled swings in the NE system.

Fig. 2 shows the time responses of angular positions δi of 9

generators in the NE system under the two initial conditions:

for ωi = dδi/dt,

(δi(0), ωi(0)) =

{

(δ∗i + 1.000 rad, 3 rad/s) i = 8,

(δ∗i , 0 rad/s) else,
(18)

and

(δi(0), ωi(0)) =

{

(δ∗i + 1.575 rad, 3 rad/s) i = 8,

(δ∗i , 0 rad/s) else.
(19)

The initial conditions physically correspond to local distur-

bances at generator 8. Note that the initial perturbations are

artificial, but we can find by the use of short circuit the

same phenomenon as in Fig. 2(b) (see [18]). In Fig. 2(a) the

generators do not show any stepping-out, that is, they do not

show any loss of transient stability for the selected disturbance.

Generators 2, 3, 6, and 7 show a coherent swing excited by the

local disturbance. We call these generators the coherent group

(see [11]). The other generators show incoherent swings in

Fig. 2(a). Generator 9 shows a swing similar in frequency and

phase to the coherent group, but the swing amplitude is a little
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Fig. 2. Coupled swings and instability observed in in the New England
39-bus test system (Di = 0): (a) the initial condition (18) and (b) the initial
condition (19). The angular positions δi only are displayed.

larger. Generators 8 and 10 have swings of larger amplitudes

than the others, because the initial conditions are localized at

generator 8, and the two generators are electrically close. On

the other hand, in Fig. 2(b) they are bounded during the period

from t = 0 s to 7 s and then begin to grow coherently. Every

generator loses synchronism with the infinite bus at the same

time. This corresponds to the growth of amplitude of inter-

area mode oscillation between the NE system and the infinite

bus, namely, the outside of the system. This is typical of the

CSI phenomenon.

In [18] we showed that CSI involves the divergent motion

in the projection of full-system dynamics onto the plane of

collective variables. The collective variables correspond to

the well-known COA (Center-Of-Angle) coordinates (see [26],

[27] for introduction). For the NE system, the COA δCOA and

its time derivative ωCOA are defined as

δCOA :=

10
∑

i=2

Hi

H
δi, ωCOA :=

dδCOA

dt
=

10
∑

i=2

Hi

H
ωi, (20)

where H :=
∑10

i=2 Hi. The variables δCOA and ωCOA describe

the averaged motion of all the generators in the system. Fig. 3

plots the trajectories of (17) shown in Fig. 2 on δCOA–ωCOA

plane. The trajectories start near the origin at time 0 s and

make a couple of almost periodic loops around the initial point.

In Fig. 3(a) the trajectory keeps executing bounded loops. In

Fig. 3(b) it escapes and finally diverges.

Here, based on [18], we briefly describe the dynamical

mechanism of CSI. This phenomenon occurs in a high-
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Fig. 3. Collective dynamics in the New England system (Di = 0): (a) the
initial condition (18) and (b) the initial condition (19). The Center-Of-Angle
(COA) coordinates are defined in (20).

dimensional oscillatory system with dominant inertia in which

the full dynamics are decomposed into many strong linear

oscillatory modes and one weak nonlinear mode. The modal

decomposition is possible by the classical linear analysis

for a nearly solvable loop power grid [18], and the proper

orthonormal decomposition and the KM Analysis for the NE

system [11]. Note that the dynamics of the weak nonlinear

mode are captured by the COA coordinates. Then strong linear

oscillations act as perturbations to the nonlinear collective

mode. This is analytically justified with partial averaging in a

similar oscillatory system [19]. Also the averaging technique

suggests that the effect of linear oscillations to the nonlinear

mode is from higher frequency to lower frequency modes.

This is why a precursor identified in this paper is generally

expected for this sort of instability.

B. Computation of Koopman Modes

We compute the KMs for the coupled swings shown in

Fig. 2(a). The computation of KMs is done with the Fourier-

based formula (7). For computation we need to choose the

observable g(x) where x = (δ2, . . . , δ10, ω2, . . . , ω10)
T. In

this paper we use the variable x as the observable, namely

g(x) = x. We use the simulation output shown in Fig. 2(a)

that extracts the data {x(nT )}N
n=0, where the uniform sam-

pling period T = 1/(50Hz) and the number of samples

N + 1 = 1001. Also, in order to use (7) for computing KMs,

we need to identify dominant frequencies in the course of

coupled swings. DFT (Discrete Fourier Transform) analysis

shows that the time responses in Fig. 2(a) have clean peaks at

the five frequencies, 0.40Hz, 0.90Hz, 1.00Hz, 1.25 Hz, and

1.45Hz.
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Fig. 4. Computation of Koopman modes (V i = ϕi(x[0])vi) using the
projection operator Pν under ν = (0.40Hz)T at i = 1, (0.90Hz)T at
i = 2, (1.00Hz)T at i = 3, (1.25Hz)T at i = 4, and (1.45Hz)T at
i = 5. Here the symbol T is the sampling period. The amplitude coefficients
Aji and initial phases αji, defined in (9), are also shown. These are obtained
for the waveform in Fig. 2(a).

Now we compute the terms ϕi(x[0])vi using the projection

operator Pν with the five frequencies: i = 1 for 0.40 Hz, 2

for 0.90 Hz, 3 for 1.00 Hz, 4 for 1.25 Hz, and 5 for 1.45 Hz.

We use the finite-time approximation of (7) from k = 0 to

N , where N + 1 is the number of samples. The numerical

results are shown in Fig. 4. The angular positions δi only are

displayed. The amplitude coefficients and initial phases, which

are defined in (9), are also shown. For 0.40 Hz, the values of

amplitude coefficients are close for each of the generators,

and their initial phases are also close. All the swings of the

9 generators are hence said to be coherent with respect to the

KM with 0.40 Hz. We call it the coherent KM. For 1.25 Hz

and 1.45 Hz, the amplitude coefficients for generators 8 and

10 are larger than the others. These two KMs capture the large

swings of generators 8 and 10 shown in Fig. 2(a). Thus we can

extract spatial modes oscillating with a single frequency.

C. A Precursor to Coherent Swing Instability

We compute the action transfer operator J for the CSI

phenomenon shown in Fig. 2(b). The KMs in Fig. 4 are com-

puted for the bounded swings in Fig. 2(a). The results on

Figs. 2(a) and (b) are obtained with different initial conditions

of (17). Hence we consider how J behaves under dynamics

perturbed by a slight change of initial conditions. We use the

tools (model decomposition and action-angle representation)

developed in Sec. IV and the formulas presented in Appendix

for computation.
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Fig. 5. Collective dynamics of the CSI phenomenon shown in Fig. 3(b) and
snapshots of the Jacobi matrix J. The six snapshots are at time (1) 1.2 s, (2)
2.8 s, (3) 5.0 s, (4) 7.2 s, (5) 8.4 s, and (6) 9.0 s.
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Fig. 6. Time evolution of magnitude |zi| for the five Koopman modes. This
is associated with the time evolution of the action transfer operator J shown
in Fig. 5.

Figure 5 shows several snapshots of the action transfer

operator J along the COA trajectory shown in Fig. 3(b). In

the snapshots the i-th KM (i = 1, . . . , 5) corresponds to the

2i−1 and 2i rows. The two variables z2i−1 = r2i−1e
jθ2i−1 and

z2i = r2ie
jθ2i are assigned to the i-th KM. By definition the

action variables r2i−1 and r2i have the same behaviors, and the

angle variables θ2i−1 and −θ2i also have the same. Because

both the variables r2i−1 and r2i affect the infinitesimal change

of rj (j = 1, . . . , 10), in J we need to plot ∂Fj/∂r2i−1 as

well as ∂Fj/∂r2i.
1 First, the magnitude of elements in the

upper triangular part change as time goes on. On the other

hand, the magnitude of elements in the lower triangular part

does not change and is almost constant. This salient feature of

J suggests directed transmission paths of energy from high-

frequency KMs to low ones. This is consistent with that in [19]

that analyzes global dynamics occurring in nearly-integrable

Hamiltonian systems. The current result is obtained for a set

of KMs embedded in dynamics of a general power grid model

with nonlinear local interconnections. Second, we see that the

transmission path of energy from high-frequency KMs to the

1See Fig. 5. For the 1st KM (j = 1), in the snapshot 2 the variable r9 for
the 5th KM dominantly affects the time change of r1. On the other hand,
in the snapshot 4 the variable r10 dominantly affects r1. These observations
both are regarded as the effect of the 5th KM to the 1st KM.
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Fig. 7. Coupled swings and instability observed in in the New England 39-
bus test system (Di = 0.01): (a) the initial condition (21) and (b) the initial
condition (22). The angular positions δi only are displayed.

lowest one becomes stronger when the COA trajectory largely

grows in the neighborhood of the δCOA-axis: see the snapshots

at time (4) 7.2 s and (6) 9.0 s in Fig. 5. The transmission path

appears in several times, and then the magnitude |z1| of the

lowest KM begins to diverge as shown in Fig. 6 while the

magnitudes of the other KMs are still bounded. Since the

lowest KM with 0.40 Hz is the coherent KM, the divergence

of magnitude |z1| implies CSI. This provides a precursor

diagnostic for CSI: the emergent transmission path of energy

from high-frequency KMs to the lowest, coherent KM.

D. On the Effect of Non-Zero Dissipation

Finally we discuss the effect of non-zero dissipation on the

time evolution of action transfer operator. Here we fix the

damping parameter Di at 0.01. Then two types of coupled

dynamics in the 9 generators are observed: bounded swings

and the CSI phenomenon. Fig. 7 shows the coupled swings and

instability. We use the following two different sets of initial

conditions:

(δi(0), ωi(0)) =

{

(δ∗i + 1.00 rad, 3 rad/s) i = 8,

(δ∗i , 0 rad/s) else,
(21)

and

(δi(0), ωi(0)) =

{

(δ∗i + 1.75 rad, 3 rad/s) i = 8,

(δ∗i , 0 rad/s) else.
(22)

In Fig. 7(a) we can pick up four dominant frequencies:

0.40Hz, 1.00Hz, 1.25 Hz, and 1.45Hz. By computing the

KMs for these frequencies in the same way as Sec. V-B, we
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is associated with the time evolution of the action transfer operator J shown
in Fig. 8.

compute the action transfer operator for the CSI phenomenon.

Note that the lowest KM with 0.40Hz has almost flat basis

vector and corresponds to the coherent mode in this simulation.

Fig. 8 shows several snapshots of J along the COA trajectory

calculated for the result in Fig. 7(b). First, we see the trans-

mission path of energy to the lowest KM. The transmission

path appears in several times, and then the magnitude |z1| of

the lowest KM diverges while the magnitudes of the other

KMs are bounded: compare the snapshots at time (2) 3.8 s

and (4) 6.0 s in Fig. 8 with Fig. 9. This is consistent with

that in the case of zero dissipation. Thus we say that the

transmission path of energy can survive as a precursor. Second,

in contrast with Fig. 5, we see a few strong elements in the

lower triangular part. This suggests that a transmission path

of energy from low KMs to high ones can emerge. The origin

of this is the existence of non-zero uniform dissipation. In the

case of Di = 0.01, the transmission path of energy due to

the system structure overwhelms that due to dissipation, and

thus the CSI phenomenon emerges against the perturbation of

small dissipation.

VI. SUMMARY AND REMARKS

In this paper we identified a precursor to phenomena of loss

of transient stability in multi-machine power systems via the

so-called Coherent Swing Instability (CSI) that corresponds to

the emergent transmission path of energy from high-frequency

Koopman Modes (KMs) to the lowest frequency KM. The KM

analysis enables the decomposition of nonlinear dynamic phe-

nomena into dynamically relevant modes and the refinement of

mathematical model of the CSI that is suitable for identifying

the emergent energy transmission. Hence the KM Analysis

plays an important role in identifying the precursor. Also

we illustrated that the precursor persists under a perturbation

consisting of small dissipation.

Several remarks related to these are provided. Firstly, using

the action transfer operator, we quantified and visualized an

interaction between nonlinear KMs that is due to system

nonlinearity as well as slight changes of initial conditions.

This is a mechanism different from that in [4], [5] which

addresses an interaction between linear modes due to system

nonlinearity. The use of linear modes is valid because they

analyze long-term swing dynamics. On the other hand, since

we analyze the loss of transient stability as a nonlocal phe-

nomenon, the use of KMs is relevant in the current analysis.

Secondly, in order to monitor the dynamics of power system

using this precursor, we need to monitor evolution of state of

the power system to enable the computation of KMs. Such

data can be obtained from an off-line transient simulation as

well as on-line metering. Lastly, the precursor of this paper

is developed specifically for the case of CSI. Our analysis

tools in Sec. IV are based on the general nonlinear dynamical

system (2). Hence it is possible to include static or dynamic

models of loads that may affect this type of instability. Other

phenomena in loss of transient stability could be examined

using the KM Analysis as well, and structural changes in the

action transfer operator could be sought to devise instability

precursors. Under non-small dissipation, a transmission path of

energy from low-frequency KM to high-frequency KM may

be quantified via the KM Analysis: one glimpse of this is

shown in Fig. 8. Thus, the KM Analysis leads to a potentially

broader set of applications for instability monitoring of power

systems.

Before closing this paper, we describe a method for in-

stability monitoring of power systems by a combination of

practical data (possibly, numerical simulations), mathematical

modeling, and computation. Enabling tools for the purpose

lead to radical change in how to monitor dynamic phenomena

of the power system. The monitoring process which we claim

here consist of the three stages:

(i) Method for characterizing a dynamic phenomenon, where

practical data measured in a real power system is de-

composed into modes that capture the phenomenon of

interest.

(ii) Method for refining a mathematical model of the power

system, where it is represented in a new coordinate

system that is better for instability monitoring.

(iii) Method for instability monitoring of the power system by

a combination of practical data, the refined model, and
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computation.

Methods (i) and (ii) are possible by the KM Analysis and the

model refinement developed in Secs. IV-A and IV-B. Method

(iii) is based on the precursor whose identification is possible

by computing the action transfer operator in Sec. IV-C along

given time series. Validating the monitoring method is in future

directions.
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of California, Santa Barbara) for his suggestive question on

precursors to power system instabilities and Professor Takashi

Hikihara (Kyoto University) for his constant support of this

work. We also thank anonymous reviewers for their sugges-

tions and comments.

APPENDIX

FORMULAS FOR COMPUTATION OF THE ACTION TRANSFER

OPERATOR

Assume that the observable g is the identity map, i.e.

g(x) = x. We derive the analytical formulas that enable the

computation of J = DrF − Im: first,

∂Fj

∂ri

(r, θ) =
∂

∂ri

√

T̃ c
j T̃j

=
1

2
√

T̃ c
j T̃j

(

T̃ c
j

∂T̃j

∂ri

+ T̃j

∂T̃ c
j

∂ri

)

=
1

Fj(r, θ)
Re

[

T̃ c
j (r, θ)

∂T̃j

∂ri

(r, θ)

]

.

The derivative term of T̃j with respect to ri on the right-hand

side of (23) is the following:

∂T̃j

∂ri

(r, θ) =
∂zi

∂ri

∂T̃

∂zi

(z)

= eiθi

m
∑

l=1

[E−1
m ]jl

∂Tl

∂zi

(z)

= eiθi

m
∑

l=1

[E−1
m ]jlV

†
l

∂Φh
0

∂zi

(z)

= eiθi

m
∑

l=1

[E−1
m ]jlV

†
l

n
∑

q=1

Vqi

∂Φh
0

∂xq

(x).

The spatial derivative ∂Φh
0/∂xq at point x[k] is approximated

with, for example,

∂Φh
0

∂xq

(x[k]) ≈
1

2∆x
{Φh

0 (x[k] + eq∆x)

−Φ
h
0 (x[k] − eq∆x)}, (23)

where eq is the vector with q-th entry equal to 1 and all other

entries equal to 0; ∆x is a small parameter (∆x = 1 × 10−5

was used in Sec. V). The right-hand side of (23) is obtained

by numerical integration of the original system (2).
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