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Nonlinear Least Square Regression by Adaptive
Domain Method With Multiple Genetic Algorithms

Satoshi Tomioka, Shusuke Nisiyama, and Takeaki Enoto, Member, IEEE

Abstract—In conventional least square (LS) regressions for non-
linear problems, it is not easy to obtain analytical derivatives with
respect to target parameters that comprise a set of normal equa-
tions. Even if the derivatives can be obtained analytically or nu-
merically, one must take care to choose the correct initial values
for the iterative procedure of solving an equation, because some
undesired, locally optimized solutions may also satisfy the normal
equation.

In the application of genetic algorithms (GAs) for nonlinear LS,
it is not necessary to use normal equations, and a GA is also capable
of avoiding localized optima. However, convergence of population
and reliability of solutions depends on the initial domain of param-
eters, similarly to the choice of initial values in the abovementioned
method using the normal equation. To overcome this disadvantage
of applying GAs for nonlinear LS, we propose to use an adaptive
domain method (ADM) in which the parameter domain can change
dynamically by using several real-coded GAs with short lifetimes.

Through an example problem, we demonstrate improvements
in terms of both the convergence and the reliability by ADM. A
further merit in the proposed method is that it does not require any
specialized knowledge about GAs or their tuning. Therefore, the
nonlinear LS by ADM with GAs are accessible to general scientists
for various applications in many fields.

Index Terms—Adaptive domain, convergence, real-coded ge-
netic algorithm (GA), multimodal problem, nonlinear least square
(LS) regression, reliability.

I. INTRODUCTION

L
EAST SQUARE (LS) REGRESSION techniques [1] are

useful to determine best fit parameters for simulation

models in many engineering and scientific fields. The simula-

tion model is based on a function that includes some variable

(tunable) parameters, which are determined by finding the

minimal sums of squares of residuals between the function and

experimental data. In conventional techniques, the parameters

determined from LS residuals are derived from a set of equa-

tions called normal equations in which the derivative of the

sum of squares’ residual with respect to each parameter equals

zero. When the function to be estimated is nonlinear, there are

two main disadvantages in this technique. First, it is not easy

to obtain the derivatives analytically. Second, in addition to the

correct LS solution, certain locally optimized solutions may
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also satisfy the normal equation; therefore, the choice of initial

values in a parameter space greatly affects the reliability of the

solution [1], [2].

A genetic algorithm (GA) is one of evolutionary computa-

tions that were first applied by Rechenberg [3] and Holland [4].

It imitates the process of biological evolution in nature, and it

is classified as one type of random search techniques. Various

candidate solutions are tracked during the search procedure in

the system, and the population evolves until a candidate of solu-

tion fitter than a predefined criteria emerges. In most GAs [5], a

candidate solution, called an individual, is represented by a bi-

nary string, i.e., a series of 0 or 1 elements. Each binary string

is converted into a phenotype that expresses the nature of an in-

dividual, which corresponds to the parameters to be estimated

in the LS problem. The GA evaluates the fitness of each pheno-

type with respect to cost functions such as the residual in an LS

problem. A general GA involves two major genetic operators;

a crossover operator to increase the quality of individuals for

the next generation, and a mutation operator to maintain diver-

sity in the population. During the operation of a GA, individual

candidate solutions are tracked in the system as they evolve in

parallel. Therefore, GA techniques provide a robust method to

prevent against final results that include only locally optimized

solutions.

The following are the main merits for applying a GA to an LS

problem. It does not require any effort to calculate the deriva-

tives. Furthermore, no special techniques are required to solve

the nonlinear equation. Also, it is not required to make a selec-

tion of initial points in the space of parameters to be estimated.

Only coding to represent the LS residuals is necessary.

On the other hand, there are some drawbacks concerning the

use of GA for general applications. The first disadvantage is

with respect to computational time. Since a GA is based on

a random search technique, computational time required by a

GA is higher than that of a conventional LS based on algebraic

solver. Furthermore, it is known that GA methods are effective

in generating convergence of the population in early generations

but the search may slow down or stall in later generations. Ap-

plications of GAs sometimes result in premature convergence,

in which a population concentrates around an undesired local

optimum. In this situation, the population, after falling into the

local optimum, becomes more and more similar with the in-

crease of generations, and consequently, a global search to es-

cape from local optimum does not work effectively [6]. To avoid

this premature convergence some local tunings are applied, such

as controlling the pressure of a selection, or the ratio between

the number of individuals created by mutation strategy and that

created by crossover strategy. Such tunings that depend on the

1089-778X/$25.00 © 2006 IEEE
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problem under consideration help to maintain the reliability of

solutions; however, they also tend to induce delayed conver-

gence due to the tradeoff relationship between reliability and

computational performance [6], [7]. To solve this slowing down,

there are some well-known techniques, which include switching

to methods other than the GA in later generations [7]–[9] and

restricting GA parameters such as a mutation amplitude in ac-

cordance with increase in generations [6]. However, since early

switching intended to achieve fast convergence may again in-

duce results that favor a localized optimum, the correct choice

of the timing to switch between different methods is difficult for

users who are not familiar with the GA. Furthermore, a GA may

result in local optima if incorrect initial settings are provided,

such as an excessively narrow definition of solution’s domain

for the sake of faster convergence. This is similar to the problem

of the initial point selection in conventional LS techniques. The

second disadvantage is that the parameters to be determined in

LS are real numbers and moreover their domains generally are

not known. However, the binary coding normally used can rep-

resent only discrete numbers. To represent real number parame-

ters efficiently, modified binary coding called Gray coding was

applied in early studies [13], [14]. Even in the use of the Gray

coding, since both the resolution of a gene and its length are lim-

ited, the range of the phenotype of gene is finite. Since both the

resolution and the domains are fixed in the coding, less accurate

solutions were obtained [6]. Moreover, in problems for which

domains of parameters are not known, the binary coding and

the Gray coding are not applicable. In many real-number-based

techniques proposed during the past decade, it has been demon-

strated that by representing physical quantities as genes, i.e., as

components of an individual, it is possible to obtain faster con-

vergence and better resolution than by use of binary or Gray

coding. A program employing this kind of method is called an

“Evolution Program” by Michalewicz [6] or a real-coded GA.

In this study, we adopt the real-coded GA.

Additional disadvantages of GAs include the problem con-

cerning domains of parameters to be estimated and the difficul-

ties to control the domain without loss of convergence. In order

to solve the former disadvantage, some ideas to change the do-

main dynamically during the process of a GA have been pro-

posed [10], [11]. By such methods, the details of which are dis-

cussed in Section III, it is possible to achieve faster convergence

and better accuracy, but these are not applicable when the global

solution is not within the initial domain. To overcome this draw-

back, in this study, we propose a new adaptive domain method

(ADM) using multiple independent GAs with short lifetimes.

We show here a brief summary of ADM. The ADM invokes

several GAs with the information about current ranges of do-

mains of the initial population in each GA. Each GA returns the

best individual and its associated cost function within several

generations. The ADM decides the new domains by a statistical

analysis of all of the results from GAs, and the resulting domain

is used when ADM invokes next series of GAs. In the system,

the domain of the solutions varies dynamically. The ADM is

also advantageous in that there are no sensitive parameters re-

quired to control a GA in order to ensure convergence.

We enumerate the requirements to the nonlinear LS by GAs

with ADM in order of importance: it should be able to find

the global optimum even if the initially defined domain does

not include the global optimum; it requires no selection of

sensitive GA tuning parameters such as the timing to switch the

algorithms or the mutation amplitude, which may be difficult

for novice users of GA techniques; and its computational time

should not be much higher than that of other methods using

GAs. Some readers may wonder about a possible relation

between abovementioned requirements and “No Free Lunch

(NFL) theorems [12].” These theorems conclude that there

is no single algorithm with the best performance for all opti-

mization problems, where performance means the number of

times of evaluation of search points. These theorems require

the assumption that once a point is evaluated, it is not evaluated

again. However, as most GAs, including the GA applied in this

paper, do not record the history of searching, it is practically

impossible to avoid the revisiting of points. Accordingly, the

imperial performance is worse than the predicted ideal perfor-

mance that is considered the same for any algorithm according

to NFL theorems. The ADM changes the search domain ac-

cording to the results from several GAs, sometimes broadening

and other times narrowing it, or sometimes making only small

adjustments. In the broadened case, the probability to revisit

the same area is reduced. When the domain becomes narrower,

the probability is increased but the computational cost to obtain

the solution in the domain becomes smaller than the case of

larger search space. And in the case where ADM suggests only

a minor domain change, GA searches again to obtain more

information about the reliability. Thus, the total number of

instances of revisiting may be smaller than for general GA

problems, although its performance may be worse then that of

the ideal performance.

The outline of this paper is as follows. In Section II, the diffi-

culties of using LS for nonlinear problems and the potential ap-

plication of GAs to problems of regression are discussed. Next,

application of ADM using multiple GAs is proposed in Sec-

tion III, and subsequently, the real-coded GAs and their genetic

strategies are discussed in Section IV. The applicability of ADM

is demonstrated for simulation data and results are verified by

actual experimental data in Section V, and finally, conclusions

are drawn regarding ADM in Section VI.

II. NONLINEAR LS REGRESSION

In order to understand the nature of a system, it is generally

important to represent the system as a model expressed by ana-

lytical functions. To determine the best modeling functions, it is

common to employ statistical processing of experimental data

by such methods as LS regression.

Consider a problem to fit observations , where

, into an estimating function that represents the

model with several parameters

(1)

where parameters are not given and the form of the function

is given. The purpose of fitting is to find the parameters that

comprise a maximum-likelihood function. Every observation

is not coincident with due to errors. When the distribution



TOMIOKA et al.: NONLINEAR LEAST SQUARE REGRESSION BY ADM WITH MULTIPLE GAS 3

of errors conforms to the normal distribution (Gaussian distri-

bution), the maximum-likelihood estimator is called an LS so-

lution. The LS solution satisfies the condition that a sum of the

squares of residuals between the observations , and the esti-

mations is minimized [1]

(2)

where shows an -vector which consists of the parameters

, and represents the standard deviation of the data . At this

minimum point, every partial derivative of the with respect

to vanishes

(3)

The set of these equations is called the normal equation.

If the estimated function is linear with respect to the param-

eters, such as , then the derivatives can

be easily derived by hand, and the solution can be obtained by

solvers of simultaneous equations such as Gaussian elimination

or LU decomposition techniques.

For nonlinear estimated functions, however, the derivatives

cannot be calculated easily. Even if one can obtain the deriva-

tives numerically, there is another problem that the normal equa-

tion shown in (3) may have several solutions. Of these solutions,

the one that satisfies an LS condition is unique, and the others

correspond to local minima or local maxima of the residual

in (2). If we could obtain all of the solutions, then we

would be able to decide which one is the LS solution by the con-

sideration of (2). However, most solvers that are based on itera-

tive procedures return only one solution, which depends on the

initial point in the iteration. To specify the correct initial point

requires empirical insight.

In contrast, when applying a GA to an LS regression, there is

no such need to specify the initial value of a parameter. The LS

regressions by GAs search for the parameters using (2) directly,

and (3) is not applied. Thus, it is not necessary to make any effort

to compute the derivatives.

Furthermore, a GA has an advantage to extend from the LS

method to the least median square method that can exclude

some data points with huge measurement error, by only a small

modification, namely, to replace the summation operator in (2)

with the median operator [14], [15].

As described above, the application of GAs to LS regres-

sions has some important merits. However, there remains an-

other problem. In a similar way to the selection of initial point

for iterations based on the normal equation, one must specify

the domains of solutions in GA calculations, in order to ensure

that estimated results are included. If the selected domain is too

wide, the computations could be too costly or time-consuming.

On the other hand, a choice of narrow domain is troublesome,

since once one specifies an incorrect domain which does not

contain an expected solution due to overly optimistic expecta-

tions of faster convergence, a global optimal solution may never

be obtained. A methodology is proposed to overcome this dis-

advantage in the next section.

III. ADAPTIVE DOMAIN METHOD (ADM)

Our aim is the development of a GA-based nonlinear LS re-

gression method in which the following are required, enumer-

ated in order of importance.

• Reliability: A global optimum solution can be obtained

with any domain setting of the parameters to be estimated

in LS.

• Ease of operation: The estimation system does not require

any specialized knowledge about GA tuning, i.e., it is prac-

tical and applicable for users who are not familiar with

GAs.

• Small computational cost: The system converges effi-

ciently and the computational time is not much higher

than that of other techniques using GAs.

Generally, a GA searches for the solution within a predefined

space of parameters to be solved. As described in the end of

the previous section, it is difficult to correctly define the do-

main to achieve both reliability and good convergence. In order

to solve this problem, we propose a new approach, ADM, to

change the domain of parameters dynamically during the esti-

mation process.

The parameter space in binary coding is limited both by the

resolution of a gene and by its length or domain, as described in

the Section I. All of the candidate solutions are located at dis-

crete points within the parameter domain. In contrast, for the

real-coded GA applied in this study, the resolution of the phe-

notype is as small as the resolution of the computer, and thus it

is considered as a continuous real number. Furthermore, some

of the genetic operators we applied, the details of which are de-

scribed in Section IV, such as the crossover by the extrapolation

and the fluctuation can generate individuals located outside of

the predefined domain. Therefore, even if the domain defined

initially or redefined in an estimation process does not include

the desired solution, the GA may successfully find the desired

solution. However, the other operators such as the random mu-

tation and the crossover by the interpolation are only available

for searching within the domain, so the chance of correcting for

solutions resulting from an inappropriate choice of domain will

be small. Therefore, another mechanism to search for optimal

solutions outside the domain is required.

Some novel ideas about adaptive domain or range have been

proposed. Arakawa et al. [10] introduced an adaptive real range

technique for binary coded GAs. The outline of their study is

as follows. Genotypes at an evenly spaced interval in a finite

range are mapped onto phenotypes that are spaced at an uneven

interval, using a Gaussian function. For example, consider the

integral of a Gaussian function , with an average , and a

standard deviation as ,

where is a real number that is a phenotype. (In the original

paper, the mapping function is defined as a Gaussian function;

however, to demonstrate easily, we choose its integral here.)

The result is considered as a genotype, and it is chosen

as a binary coding with some scaling , i.e., even interval. The

phenotype corresponding to some genotype , is obtained by
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an inverse mapping . The intervals of are un-

even. In the neighborhood of middle range genotypes, the den-

sity of phenotypes becomes high, and conversely around both

extremes the density becomes low. The average and the stan-

dard deviation are computed from the population of the pre-

ceding generation, which is generated by GA procedure where

the cost function of individual is evaluated via . If the pop-

ulation is concentrated around some point, the standard devia-

tion becomes small, and the search range of phenotype is nar-

rower in the next generation. The change of both the average

and the standard deviation leads the mapping function and the

domain is changed. For the real-coded GA, Oyama et al. [11]

adopted a similar approach. These techniques can dynamically

change the parameter domain, and thus can overcome the disad-

vantage concerning resolution that is involved in binary coding.

However, these improved methods have other disadvantages. In

spite of the difference in phenotype mapping, , between gen-

erations, the genotype, , of the GA determines the population

of the next generation. This means that the genotype for an in-

dividual is same but the phenotype of that is different between

the successive generations; therefore, one cannot change the do-

main much drastically. Furthermore, once a population is con-

centrated in the neighborhood of a local optimum, it is difficult

to escape from that area. Accordingly, in the abovementioned

studies, limitations of the standard deviation of parameters are

set initially. The correct setting of the parameters is difficult for

users who do not have detailed knowledge about their adaptive

range mechanism.

As simple techniques to overcome this handicap, other mod-

ifications of genetic operators have become available for ef-

fective searches. In general, the population converges rapidly

into a narrow space in early generations; however, the conver-

gence speed slows down in later generations. The nonuniform

mutation [6] works effectively even in later generations. How-

ever, this also has the difficult requirement to set the value of a

factor to control the mutational amplitude, as discussed in the

Section IV. Yi et al. [16] proposed a mutation mechanism that

applies a local search algorithm based on gradients of fitness.

Since these modifications also have the drawback of local op-

tima, it is necessary to tune the factor to control the GA.

There are other ideas to take advantage of the natural ten-

dency of GAs to converge in early generations. Baskar et al. [8]

proposed a procedure composed of two phases. Specifically, its

second phase is implemented by random searches in order to

narrow the searching space after attaining a rough convergence

of the population by a GA in the first phase. Kwon et al. [17] and

Djuris̆ić et al. [18] studied alternating repetitions of GAs with

short lifetimes as a technique for domain narrowing. In Kwon’s

method, the center of the new domain agrees with the parameter

values of the best solution in the preceding short lifetime GA,

and the domain width is redefined at a reduced size by multi-

plying a given factor less than unity. In Djuris̆ić’s method, the

bounds of the new domain are computed by a relaxation tech-

nique, in which the current bounds and an average of the final

population in the short lifetime GA are considered. Here, the

bounds of new domain are defined as an interpolation between

the current bound and the average. Since these methods were

developed only for the sake of narrowing the domain; for mod-

eling based on such methods, there is still no easy way to avoid

the possibility of local optimum solutions.

In this paper, we propose the application of multiple GAs to

enable a change of domain in order to overcome these disadvan-

tages, namely, the lack of an effective method to escape from

local optimum solutions, a limitation of speed to change of do-

main, and required use of factors that may be unfamiliar for gen-

eral users.

A. Outline of ADM Using Multiple GAs With Short Lifetimes

Consider the case where several local optimum solutions are

included in a search domain. When executing a GA for this

problem, the GA will find a result as either a local optimum or a

desired solution. The reliability, namely, the probability that the

result is the desired solution, may be estimated by the fitness of

the result. However, it is difficult to verify the confidence of such

a result. We attempt to use another measure of the reliability.

Trying additional runs with different random series, one can de-

termine the reliability of these solutions. If the results agree, the

probability that the results are the desired solution is greater.

Otherwise, it is concluded that they include some local optima

or they have not yet fully converged.

In real-coded GA, the phenotype of an individual consists of

several components corresponding to the parameters to be es-

timated in the problem. In other words, the phenotype shows a

point in the space defined by the axes of the parameters. First,

we consider a parameter on one axis. Some GAs with different

random series will return different solutions each of which has

the largest fitness in the respective final population. If the sur-

viving parameter values are concentrated, with respect to the

axis of the solutions, in the neighborhood of a particular point

on the axis, then these parameter values have greater reliability,

i.e., the probability that the surviving parameter values are lo-

cated around the desired solution’s parameter value is relatively

high. In this case, it is possible to narrow the domain with respect

to this parameter to accelerate the convergence. Otherwise, the

domain cannot be reduced, and conversely, it may be advisable

to expand the domain in the worst case. Considering this nature,

we propose a new method to vary the domain of the parameters

dynamically, by applying several GAs with short lifetimes as

ADM.

The relation between ADM and multiple GAs is shown in

Fig. 1. Each GA computes not only the best estimation but also

its fitness. An estimation with larger fitness is interpreted to be

more reliable, so the fitness can be used as a relative weighting

of the estimation. All GAs run independently because of dif-

ferent random series, and each will return a different estima-

tion; some will be around the desired solution and others will

be around local optimum solutions. Since the weighting of the

former is larger than the latter, a redefinition of the domain is

expected to be biased to the side of the desired solution. After

the average and the standard deviation are computed from the

results of all GAs, the new domain is updated based upon the av-

erage and the standard deviation. These procedures are repeated

until the fitness of the best individual satisfies all convergence

conditions.

When a desired solution is not included in results, the distri-

bution of surviving results will be expected not to concentrate
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Fig. 1. Method of the adaptive domain using multiple GAs with short lifetimes.

in one particular area. In this case, the ADM will not narrow

the parameter domain, and it may conversely widen the domain.

If the distribution is concentrated into an area around a partic-

ular local optimum, the ADM may not work properly. How-

ever, this is believed to be a rare case for the following reasons:

all the GAs should not return similar solutions because of use

of random seeds; the estimations should not fall into local op-

timum perfectly because of short lifetimes; each GA has some

facilities that can search outside the domain, namely, crossover

by extrapolation and fluctuation, which will be explained in de-

tail in Section IV. When one chooses a sufficiently wide domain

to contain some local optimum solutions, this case will be com-

pletely prevented. Of course it is best, however, to select the do-

main that is certain to include the desired solution. An example

of this case is shown in the section concerning numerical tests

(Section V).

We discussed the merits in the use of multiple GAs. However,

the use of multiple GAs induces an increase of computational

cost. Fortunately, GAs with ADM do not demand high compu-

tational performance to attain convergence, because the conver-

gence of solutions is mainly achieved by ADM rather than by

GAs. Therefore, we are not excessively concerned as to whether

the result of a GA is the desired solution or not. The requirement

imposed upon the GAs from the ADM is only the ability to find

near-optimal individuals, i.e., the individuals in the vicinity of

either a local optimum or a global optimum, which need not be

limited to only global optimum solutions. Moreover, a GA gen-

erally exhibits rapid convergence of a population in early gener-

ations. This means that the small area around either the desired

solution or the local minimum can be found in early generations.

Thus, since each GA need not converge by itself, the lifetime of

the GA (i.e., the total number of generations to compute) can be

shorter. In contrast, if the total number of generations is large,

the probability that the GA returns only a particular local op-

timum increases. In this case, the solutions from every GA may

be concentrated around the local optimum, and finally, ADM

may not work effectively. The lifetime of each GA is a prede-

fined quantity which affects both the reliability of solutions and

the computational cost, and its optimum tuning may depend on

the nature of problems under consideration. However, we think

the setting of this factor is not so difficult for unfamiliar users

about GAs.

B. Implementation of ADM

The parameter domain redefinition algorithm proposed in this

study is as follows. The best individual from the th GA, ,

which consists of the parameters , has an

evaluation value as an error defined as the square root of

the least mean square of the residual as follows:

(4)

where are the measurement data,

is the standard deviation of measurements, which are obtained

by several repetitions of experiments or by a theoretical error

distribution of the experimental setup, and represents the

function to be fitted.

Suppose that an error with respect to th parameter is pro-

portional to the evaluation value

(5)

Also, assuming that the samples are distributed around the

average of the parameter with normal distribution, one can write

the likelihood function as follows:

(6)

where is the most likely solution. The overall likelihood

function from all of the best results can be presented as a

joint distribution that is given by the product of all likelihood

functions

(7)

where is number of GAs. The solution that maximizes the

likelihood function can be obtained analytically as a weighted

average

(8)
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Fig. 2. Determination of the new domain. Each plot in the upper figures shows
the normal distribution, expressed in terms of both the center a and the width
� , which are obtained from the best estimation from each GA with the orig-
inal domain. The lower plots show the normal distributions of the center points
~a and the width ~� . The new domain is determined by this distribution. The
difference between the figures on both sides is the degree of dispersion of the
results from GAs.

where represents the weighting factor for averaging

(9)

Similarly, the variance with respect to the th parameter ,

can be obtained by the weighting factor

(10)

The new domain is determined from the average and the vari-

ance

(11)

where , a factor used to indicate the confidence interval of

the parameter, is defined as the ratio between the width and the

standard deviation. When the samples of each parameter obey

a normal distribution, the probability that the value is contained

in the domain is 0.95 in the case of , and also it

reaches 0.99 in the case of . Subsequently, in this

paper, we refer to this factor as the width factor. The aforemen-

tioned method to obtain the new domain from the results of sev-

eral GAs is depicted in Fig. 2. If the results of the GAs are con-

centrated, the domain width becomes narrower due to the

small variance . Also, the center is varied.

This approach is dependent on the assumption that the error of

a parameter is proportional to the evaluation value in (5), which

may induce an error in terms of the computation of the new

domain. To reduce this effect, we apply the relaxation method

(12)

where is a relaxation factor, if , then relaxation is

not in effect, also if the domain is not updated.

In the last step of the ADM procedure, the new domain is

restricted, if there are the limitations of range due to a physical

quantity’s own limitations (e.g., the physical quantity must be

positive). We refer to this type of limit as a “hard limit” in a later

description.

In this section, we explained the details of implementing

ADM for LS problems. However, by simply choosing (4) to

satisfy (5), ADM may also be applied for other optimization

problems, providing that the parameter to be optimized is a real

number.

IV. GAS FOR REAL-VALUED VARIABLES

In this section, we will explain in some detail about the GA

that is invoked by the ADM. The ADM gives several GAs an

initial domain of parameters that are to be estimated. The GA

output results include both the best individual in the final pop-

ulation and its fitness. The requirement for the GA with ADM

is to obtain as quickly as possible the near-optimal individuals,

i.e., the individuals in the neighbor of either a global optimum or

local optima. Even if the solution is a local optimum, it should

not create a problem because the GA’s robustness against local

optima is kept in check by the ADM. In other words, since the

ADM searches for the global optimum, the GA itself is not re-

quired to find the global optimum.

In contemporary research, beginning with early studies con-

cerning GA, as summarized by Goldberg [5], the gene is typ-

ically coded as a binary string, and the individual is expressed

as a long one-dimensional binary string by concatenation of all

the strings corresponding to genes. However, in the cases where

a property is in the form of a real number, the binary coding

has disadvantages: it will be impossible to express exact solu-

tion because the binary code’s resolution is limited, as deter-

mined by the string length. In addition, in LS type problems,

the coding requires conversion from binary strings (genotypes)

to real numbers for representation of some parameters (pheno-

types). In spite of these disadvantages, binary coding has been

applied in a wide variety of applications and problems, due

to the simple and useful genetic operators available for binary

coding.

By using a set of genetic operators, it is possible to perform

two different functions simultaneously. The first function is to

accelerate the convergence toward a population that includes

a large number of superior individuals. In some cases, the

crossover operator, which exchanges substrings of the two

parents with each other in the binary coding, is adopted for this

purpose. As an example, we consider a problem of a two param-

eter space. When one of the parents in the crossover strategy

has a superior gene with respect to one parameter and the other

parent has a superior gene with respect to another parameter,

the probability that the resulting child has two superior genes

that are given by both the parents is increased. But this strategy

introduces a certain probability for the solution to fall into

local optima. The second function is to maintain the diversity

of a population, which means that the operator has the ability

to avoid the concentration of individuals into a narrow space

around local optima. In some cases, the mutation operator plays
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a role to provide a method of escaping from local optima. This

operation is executed by simply inverting one or more digits in

a binary string. Note that these strategies are switched in other

cases, and they depend on the implementations of strategies

and they also depend on problems under the consideration. If

there is another known coding method that has both a tendency

toward convergence and a tendency to support diversity of

solutions, then such a method might be applied as an of the

binary coding. Michalewicz [6] shows several floating-point

implementations, which are called evolution programs. He

showed that the use of real-coded genes in which genotypes are

represented by continuous, real numbers, whose resolution is

equal to that of the computer, instead of binary strings is more

effective than the binary coding, in terms of both the resolution

and computational cost. In recent literature, Herrera et al.

provide a review with respect to the handling of real-coded

parameters [19], and Blanco summarizes a brief list [20].

In the previous section, we provided details about the appli-

cation of ADM using multiple GAs with short lifetimes. Since

the GAs work with different random series and the total number

of generations is small, the results from the GAs are generally

different. This implies that the diversity of solutions is already

considered in nature. On the other hand, the convergence of the

population in a GA corresponds to the convergence of the do-

main in ADM. Therefore, the requirement for each GA in ADM

is to obtain the near-optimal individuals as quickly as possible,

as shown at the beginning of this section. It would be ideal to

obtain the global optimum with fast convergence by means of a

single GA, but this is difficult because the convergence depends

on the problems under consideration, and several GA parame-

ters may require tuning.

The following are genetic strategies we adopted for imple-

mentation with real-valued variables. To accelerate the ADM,

some of the strategies (i.e., “crossover by extrapolation” and

“fluctuation”) have the ability to search outside the initially de-

fined domain, which is fixed for each GA when it is called from

the ADM. Others are intended to find the near-optimal individ-

uals effectively. Moreover, some parameters and strategies that

can serve to control the GAs are discussed next. All of our de-

tailed results are not shown here, but from our numerical exper-

iments we found that the settings of parameters to control the

GAs have only a small effect on computational cost and they do

not affect to the reliability. This indicates that the convergence

and reliability mainly depend on ADM, and one need not pay

any attention to choosing the correct parameters to control a GA.

A. Genetic Strategies for Real-Valued Variables

The coding we adopted is the real-coded gene model, in

which a gene represents a phenotype parameter without any

conversion. The individual is represented as a vector , the ele-

ments of which are floating-type genes , .

1) Crossover: The crossover operator adopted in this

study is based on “arithmetic crossover” as introduced

by Michalewicz [6]. When two parent individuals are de-

noted as , , two offspring

are reproduced as interpolations of both

parents’ genes

(13)

where is a constant in the system. At first glance, choosing

may look like a good idea; however, the vectors of

a pair of offspring are pointing to the same point in the param-

eter space. Wright [13] proposed an additional extrapolative re-

production, which is expressed by . We adopt the

Wright’s crossover with some modification

(14)

where the indexes of offspring and are chosen for each

gene using a random number and a given factor

, as follows:

(15)

In the case of , always , ; therefore, every

gene in the individual is generated by interpolations and

is generated by extrapolations. The case of is same as

the case of except that the parents are exchanged. In

the case of , the probability of interpolation and that of

extrapolation are same in each new individual. Once two parents

are selected from the pool of parents, the crossover strategy is

applied for every gene in each child, namely, .

The random number for one locus of gene is different from for

another locus, so the reproduction method, of interpolation or

extrapolation, is different between each gene in an offspring.

The crossover strategy by interpolation increases the likeli-

hood of convergence; in contrast, that by extrapolation acts to

maintain the diversity of a population. Note that the crossover

by extrapolation has the ability to reproduce outside the domain

in some cases. The GA does not prevent the generated individual

from going outside of the domain.

2) Mutation and Fluctuation: We adopt two mutations. The

first is a random mutation [6]. One of the genes in an individual

is replaced by a random number within the parameter domain,

. The gene to be mutated is selected at random,

namely is one of members in . This mutation op-

erator acts to maintain the diversity.

The second is a simplified version of Mühelenbein’s mutation

[21] to achieve a good convergence by neighborhood search.

The gene of the offspring is computed according to

(16)

where is a uniform random number , and is

the ratio of the mutational amplitude to the parameter domain,

which is constant in the system as . In this paper, we

denote this mutation as “fluctuation.” Note that the fluctuation
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has the ability to enable reproduction of offspring outside the

domain, as with the crossover by the extrapolation.

There is a better known mutation operator called the nonuni-

form mutation [6], but we do not adopt it. In this nonuniform op-

erator, the strength of mutation becomes smaller with advancing

of generations

(17)

where and are random numbers, , , and

also , , and denote the generation number, the max-

imum generation, and given index to control the mutational am-

plitude, respectively. Since and are constant, the muta-

tional amplitude has been determined before a GA runs. There-

fore, it is impossible to consider the convergence of a population

dynamically. Even worse, predetermination of the constant is

difficult for users who do not know how to select GA parame-

ters. Since this constant is sensitive and influences the stability

of the estimation, once this constant is chosen incorrectly, the

mutation will not work and the diversity of the population will

be lost. The purpose of the nonuniform mutation operator is to

narrow the parameter space of mutational amplitude in accor-

dance with advancing generations. Since the ADM dynamically

changes the domain size, , the fluctuation achieves

this purpose without this difficult and sensitive parameter. Since

the fluctuation needs as input only the range of mutation in terms

of the ratio to the domain size, it is easier to define than that of

the nonuniform operator and it is less sensitive to influence the

stability of a search. Thus, in this study, we elected not to adopt

the nonuniform mutation operator.

3) Selection: No special considerations for the real-coded

GAs are necessary concerning implementation of the selection

strategy; this case is similar to that of the selection for binary

coding. We adopt a proportional selection [5] with a slight mod-

ification [22]. Consider the minimum search problem as an ex-

ample. In this case, an individual with smaller evaluation func-

tion should have greater fitness and also larger probability to be

a parent. The probabilities are calculated in each generation by

using biased evaluation functions. First, all the individuals in the

population of size are sorted with respect to evaluation func-

tion in ascending order. Next, the discrimination level

is determined as the evaluation function of the th in-

dividual, where is the pool size of parents to produce off-

spring. Finally, the probabilities are computed by the following

relation:

(18)

In this selection strategy, the bias can be calculated

automatically from the distribution of the evaluation functions

in each generation by simply specifying as a fixed size.

This strategy accelerates the convergence of population, but

might be a risk to induce premature convergence to local optima

because its influence is more powerful when the fitness variance

Fig. 3. Procedure of the Single GA.

is large in early generations. However, this is not a problem be-

cause the purpose of the GA with ADM is only to search for the

near-optimal individuals that include local optima.

4) Elitism: The elitism strategy proposed by De Jong [23]

prevents loss of a superior individual in convergence processes.

It can be simply implemented by allowing the individual with

the best fitness in the last generation to survive into the new gen-

eration without any modifications. The purpose of this strategy

is same to the purpose of the selection strategy.

5) Migration on Island Model: The migration on island

model [24]–[26] is a different kind of strategy compared with

the above operators, and this strategy is considered optional.

The ADM uses multiple GAs. When multiple GAs are running

in a system, it allows exchanges of the best individuals in

among different GAs. In our implementation, the opportunity

for such exchanges happens only once, when GAs are invoked

from ADM. In other words, the best individual from other GAs

is contained in the initial population. Since the best individual,

once found, will not be lost as long as the elitism operator is

also available, this strategy promotes convergence [25], [26].

However, it may also induce the population to fall into a local

optimum. The relation between the system with ADM and the

GAs is similar to the relation between a GA and the population.

If one considers the ADM as a conventional GA and considers

the GAs as conventional population, this migration strategy

acts as an elitism operator for the ADM. Thus, it may obstruct

the diversity that is one of the main purposes of using ADM.

An example of this case will be shown in the Section V.

B. Procedure

The outline of the GA we adopted is shown in Fig. 3. The

main purpose of this GA is to find a candidate solution with the

smallest residuals in the particular parameter domain which is

suggested by the ADM.
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In the initialization, individuals are mapped at random into

the parameter space. If the optional migration strategy is made

available, one individual selected at random is replaced by the

immigrant.

In the program loop with respect to each generation, there

are four components: the evaluation of individuals, checking

the convergence, the selection with associated calculation of the

probability for reproduction, and the reproduction of the popu-

lation for the next generation. This loop is repeated times

that is predefined to control the GA. In the GA with ADM, this

limit is set to a small number, i.e., generations are assigned

a short lifetime.

The evaluation function for every individual is computed

by (4) for the LS problem. Next, the condition to terminate is

checked. If the evaluation function of the best individual in the

population satisfies a predefined system criterion, then the GA

returns the best individual as the final result, and the ADM also

completes successfully. Otherwise, the GA goes to the next

step to search better individuals. The probability to be selected

for every individual , is computed by (18). Individuals with

a positive probability are settled into a pool of parents. Finally,

offspring are reproduced by genetic operators. The number of

the offspring produced by each operator is predefined; for

elitism the number is always 1, but it is for crossover,

for random mutation, and for fluctuation. The sum of the

number of offspring is always equal to the population size of

parents

(19)

An offspring reproduced by the elitism operator is selected as

the individual that has the largest probability among the pool of

parents, and the offspring is settled to a pool of offspring. The

parent is pushed back to the pool of parents. In both the mu-

tation and the fluctuation, a parent is selected from among the

pool of parents according to the probabilities, and the offspring

is settled to the pool of offspring. In the crossover, two parents

are selected, and two offspring are generated. In each operation

after the parents are referenced to reproduce offspring they are

returned to the pool of parents without any modifications. This

means that particular parents with higher probabilities are se-

lected multiple times to generate offspring. In a single genera-

tion, the operator to reproduce an offspring is applied only once;

therefore, there are no offspring for which an operator is applied

several times. In the last step of this program loop, the popula-

tion for the next generation is updated by the pool of offspring.

V. NUMERICAL TEST

The purpose of this section is to demonstrate the effective-

ness of the ADM. The effects in terms of specific parameters to

control GAs will not be discussed here, and the systematic anal-

ysis of such effects is one topic for future investigation. How-

ever, we have obtained the following empirical knowledge from

our other numerical experiments: the GA’s parameters affect the

computational cost, but their influence on the reliability of an es-

timation is small.

A. Input Data to the System of the LS Method

We begin with a problem represented by a model of an op-

tical interference pattern with spatial distribution of light inten-

sity that results from two coherent Gaussian beams. In an op-

tical interference experiment, first, a light wave, which is plane

wave with Gaussian shape distribution in the transverse plane,

is divided into two waves. Next, these waves are guided along

separate paths, and finally, they are superimposed at a certain

angle with respect to each other, onto a two-dimensional (2-D)

screen. A sensor device such as a camera may be used to de-

tect the intensity distribution, which represents the square of

the amplitude of a superimposed wave, including some back-

ground light. The test function to be estimated is determined by

the intensity distribution measured by the sensor, which can be

expressed as follows in a one-dimensional (1-D) problem:

(20)

where is the maximum intensity of one of beams, de-

notes the intensity ratio between the two beams, and de-

note the common center and the common width of Gaussian

beams, respectively, and are, respectively, the differ-

ences of wave numbers along the axis and of initial phase

between two beams, and denotes the background intensity.

The vector to be estimated is represented as a list of seven pa-

rameters . It is possible to obtain

the derivatives of the test function with respect to the parame-

ters that appeared in normal equation by the general LS method;

however, it requires much effort.

To demonstrate the proposed method, we prepared two data

sets of simulated measurements and one experimental data set

as follows:

The input data of “Sim-NoError” and “Sim-with-Error” are

shown in Fig. 4, which also shows estimated results. Since the

least mean square of a residual is estimated by (4), our system

requires an estimation of the standard deviation for every data

point, which is based on the measurement model or on several

experiments. In the first two data sets, the standard deviation is

given as a value that is 1/2 of the square root of each measure-

ment, and in the last one, it is estimated from several experi-

ments. In the case without error (Sim-NoError), the ideal value

of each residual shrinks to zero when the vector of the system

solution agrees with the assumed vector. In the cases with error

(Sim-with-Error, Exp), the ideal least mean squares, i.e., the
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Fig. 4. Input data and examples of estimated results. Each input data point is
plotted with an error bar that shows the standard deviation of the data itself.
These data are applied as input data for the estimation system. Also, the plotted
function estimated from the vector of seven parameters, which is the solution of
the system, is depicted as a solid line. The estimations in this figure are computed
by a Single GA.

TABLE I
CONDITIONS OF THE ADMS

least mean square defined by (4) when every estimated param-

eter is equal to the assumed parameter, approaches to unity be-

cause the expected standard deviation between the estimated so-

lution and measurement for each data point agrees with the stan-

dard deviation of the measurement error. Even if one were to

use an ideal estimation system, it would still return a different

estimation from the assumed parameters because the number

of sample data points is finite. Therefore, the actual least mean

square is not exactly one. In order to ensure that the actual least

mean square agrees with one, the number of sample data should

be sufficiently large compared with the number of parameters.

The number of sample points of each input data is 180.

To demonstrate the applicability of the ADMs, we compute

under different conditions, as shown in Table I. Each approach

for the input, of which true parameters are known (Sim-No-

Error or Sim-with-Error), is evaluated with two types of initial

domain, as shown in Table II. In an “internal” one, the initial do-

main of parameters contains the true solution; but an “external”

one does not include the true solution in its domain. The hard

limits shown in the Table II are set in two cases. The first is

a consequence of physical restrictions due to the nature of the

parameters. The purpose of the second case is to enable a reduc-

tion of the search space without lack of generality, which means

TABLE II
ASSUMED TRUE PARAMETERS AND THEIR INITIAL DOMAINS

unique representation of the test function by the parameters. The

intensity , and the intensity ratio , should be positive be-

cause the intensities, , , are positive. Moreover, can be

restricted to less than or equal to one because of unique repre-

sentation. The initial phase can be also restricted between

and . Note that the “external” domain is narrower than

the “internal” one, and the former is included within the latter.

In addition, the control parameters of the ADM, the width

factor in (11) and the relaxation factor in (12) are the same for

all results; , . Also, the parameters to control the

GA are as follows: the factor that chooses the crossover type

in (15), is 0.8; the range of the fluctuation in (16) is 0.3; the

numbers of offspring produced by each genetic strategy are the

elitism , the crossover , the random mutation

, and the fluctuation ; the population size

is equal to these sum , and the pool size of parents

. The details will not be shown here, but we have found

from other results that convergence is achieved more quickly in

cases in which the ratio of the crossover and the fluctuation is

higher.

B. Simulation in a Case for Which the Assumed Parameters

are Within the Predefined Domain (Internal Type)

1) Result for the Input “Sim-NoError”: Regarding the first

attempt, an example of the result for the case “Sim-NoError”

by the simple real-coded GA is shown in the top of Fig. 4. It

appears to be a good estimation; however, we cannot guarantee

that other estimations with different random seeds will always

return similar results.

To evaluate the reliability of the result, we ran the estimator

100 times with different random seeds. The frequency his-

togram of these trials by Single GA, and also the convergence

profile of the least mean square are shown in Fig. 5. The

convergence represents a saturation to almost 0.1 around 500th

generation. Also, the frequency histogram shows most of the

solutions are distributed around 0.1. However, in the case of

nonerror model, the ideal LS should be equal to 0. There are

two possible reasons for gap of these results; the populations

are concentrated into a local optimum and the GA cannot

escape from that area, or the GA is not working effectively

because the parameter domains are too wide.

Next, we will show results from the ADM simulations. The

number of generations in each GA with ADM, which has been

shown in Table II, is determined in reference to the result of the
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Fig. 5. Frequency histogram and typical convergence profile for “Sim-No-

Error” by a “Single GA.” The frequency histogram shows the final least
mean square for 100 trials. The frequency in longitudinal axis is shown with
nonlinear scale. The convergence profile is the result of the estimation for which
the rank of the final least mean square is 50th in 100 trials. The longitudinal
in the convergence profile shows the least mean square, whose final result is
corresponding to the quadrature axis of the frequency histogram.

Fig. 6. Difference between cases with and without the migration strategies.
Frequency histograms of final least mean square for 100 trials in the left-hand
side, and typical examples of convergence profile are shown in the right-hand
side. These data are computed by the ADM under “internal type condition” for
“Sim-NoError.” Frequencies for which the final least mean square is smaller
than the lowest level are counted into the lowest section. The rank of the con-
vergence profiles with respect to the final least mean square is 50th in 100 trials.
Each box shows the group of an adaptive range approach that contains four GAs.
The label in the abscissa, i.e., “cumulative generation,” means that each gener-
ation of a single GA with short lifetime (Max. 30 generations) for the ADM is
accumulated.

convergence profile by “Single GA.” The role of the GA is to

find the near-optimal individual; therefore, the number of gen-

erations is considered sufficient when the early convergence is

almost complete. Fig. 6 shows a comparison of the effects of ap-

plication of the migration strategy. In this figure, the comparison

between “ADM 4 GAs” and “ADM 4 GAs Mig.” demonstrates

that the migration strategy is effective only in early stage, and on

the contrary it makes convergence worse at later stage. This re-

sult seems unexpected, since the migration strategy is generally

considered effective to improve the convergence. The reason for

this anomaly is determined to be premature convergence of the

domain to a local optimum, which is due to the migration. The

GAs that employ the migration strategy may estimate similar

Fig. 7. Frequency histograms for “Sim-with-Error” under “internal type
condition,” when the cumulative generations are 480 and 1440.

solutions because the best solution at the last calling of GAs

is included in initial population. Accordingly, the dispersion of

the results from GAs becomes small, and the ADM will lock

onto a very narrow area. Once the parameter domain falls into

a very narrow and incorrect domain that can include only one

local optimum, the ADM does not work effectively, because a

single GA has a low probability of escaping from this incorrect

domain. Thus, the migration strategy reduces the robustness of

the ADM.

2) Result for the Input “Sim-With-Error”: From the results

of “Sim-NoError” in Fig. 5, we can find that there are several

local optima for which the amplitude of the evaluation func-

tion is less than 0.1. In contrast, the ideal least mean square of

“Sim-with-Error” is almost one. When the evaluation func-

tion of “Sim-with-Error” is considered as sum of the eval-

uation function for “Sim-NoError”and this ideal least mean

square, then, in the case of “Sim-with-Error,” the evaluation

function of local optima in the vicinity of the global optimum

is distributed around 1 with variance 0.1. From the viewpoint

of the selection pressure in (18), the diversity is not reduced

in this case. Thus, we hypothesize that the problem of “Sim-

with-Error” is easier than that of “Sim-NoError.” Actually, no

differences were found in the final results regarding the cases,

regardless of whether the migration strategy is enabled or not.

Accordingly, we show the results before convergence. The fre-

quency histograms at the 480th and 1440th cumulative gener-

ations, instead of the final results, are shown in Fig. 7. At the

1440th generation all results, except the one by “Single GA,”

converge around . At the 480th generation the perfor-

mance by “ADM 4 GAs Mig.” is better than that by “ADM 4
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Fig. 8. Differences of frequency histograms with respect to number of GAs and cumulative generations. Every data is computed under “external type condition”
for “Sim-with-Error.” When the final least mean square exceeds highest level in the quadrature axis, the event is counted into the highest section.

GAs,” which is different from the case for “Sim-NoError” in

Fig. 6. The reason is that the population converges to the global

optimum during the early stages in which the migration is effec-

tive, because the case of “Sim-with-Error” is an easier problem

than that of “Sim-NoError.” When the problems are easy cases

where it is expected that the estimation will converge to the cor-

rect domain at an early stage, the migration is effective even for

the smaller computational expense without lacking in reliability.

Otherwise, the migration strategy should not be applied.

C. Simulation in a Case for Which the Assumed Parameters

are Located Outside the Predefined Domain (External Type)

Next, we demonstrate the performance of an extrapolative

search, in which some true values of the parameters to be esti-

mated are not within the domain defined initially. Although we

will not discuss the details in this paper because of lack of space,

this situation is typically classified as a difficult estimation, and

early convergence to the global optimum cannot be expected.

Therefore, we may conclude it is not a good idea to apply the

migration strategy, and we show only the results without the use

of migration in this subsection.

The disadvantage of ADM appears in the case where only a

local optimum is existing in the predefined or redefined domain.

Even in this case, we can raise the reliability of solutions by

increasing the number of GAs in ADM. However, this induces

an increase of the computational expense. Next, we discuss the

issue of deciding the number of GAs to execute in ADM.

Fig. 8 shows the frequency histograms in the cases where the

number of GAs , is 2, 4, and 8. In every case, some trials can

successfully find the global optimum, while other trials fail. In

TABLE III
THE PROBABILITIES TO OBTAIN THE ACCEPTABLE SOLUTIONS

the case of , the histograms for which cumulative gener-

ations are 1440, 3000, and 6000 are almost the same. Therefore,

it is understood that they have already converged, and further

convergence with increasing generations cannot be expected.

Also, for , the histograms converge when the cumu-

lative generations reach 3000. For , more delayed con-

vergence can also be expected. Consequently, the convergence

is achieved faster with a smaller number of GAs. If we assume

that the acceptable solutions belong to the lowest concentrated

section , then the probabilities to obtain accept-

able solutions are shown in Table III. The maximum of cumula-

tive generations in this table means summation of number

of generations in each GA; therefore, the computational cost is

proportional to . In addition, since each GA with lifetime

is invoked multiple times from the ADM, number of times

of changing the domain by ADM is equal to ;

namely, it is proportional to . The comparison among

the converged cases (underlined cases) shows that the reliability

increases with the number of GAs, . This is attributed to the
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TABLE IV
JOINT PROBABILITY TO OBTAIN THE ACCEPTABLE SOLUTION

BY n-TIMES OF TRIALS

fact that a case of smaller has a larger probability that the

ADM falls into the incorrect domain. Tuning of factors to con-

trol the ADM (e.g., width factor or relaxation factor )

does afford better results without doubt, but this is not consid-

ered a practical solution for general users who may be unfa-

miliar with this method.

The above results indicate that it is necessary to increase

and also in order to obtain a more reliable solution;

however, it requires more computational time. The design of

mechanism by which the ADM invokes several GAs is based

on the idea that reliability of solutions may be improved by

utilizing multiple computations with different seeds. Similarly,

several trials of running the estimation system should contribute

to improving the reliability of the solution. Furthermore, such

a system design may also reduce the computational expense.

When the probability to obtain an acceptable solution in a trial

is denoted as , then the joint probability in number of trials,

, is given by the following relation:

(21)

To compare under the same computational cost requirements,

we show the probabilities for , 2, and 1, where

is corresponding to in Table IV. All of the compu-

tational costs in Table IV are almost the same because the com-

putational cost is proportional to the product of the cumulative

generations , and the number of trials . Some results in

the cases or demonstrate better reliability than that of

. Thus, in order to raise total reliability with the same

computational cost, it is better to attempt several trials without

good convergence than to seek a good convergence with one

trial.

In the above discussion, we considered cases where only one

CPU is applied for the estimations; however, in parallel com-

puting with several CPUs the circumstances are different. If

the number of GAs equals to the number of CPUs, the com-

putational time is proportional to instead of .

The values of are also shown in Table III within the

parenthesis. Comparing the probability in terms of the similar

, we can predict that increasing the number of GAs,

will yield better performance.

Finally, typical convergence profiles of parameters are shown

in Fig. 9. The domains of parameters are modified dynamically

with advance of the cumulative generations. The results demon-

strate that the ADM is effective, even if the true solutions are out

of the initial ranges.

Fig. 9. Convergence of parameter domains for “internal” and “external” data.
Input measurement data is “Sim-With-Error,” and ADM is “ADM 4 GAs.”
The results are taken from the 50th rank in 100 trials. The bars at each iteration
indicate the domain of parameters. Iteration means the number of times to apply
the adaptive domain algorithm. The horizontal solid line in each figure shows
the parameter assumed initially.

D. Fitting of Real Experimental Data

In the last part of this section, we demonstrate an estima-

tion for a set of real experimental data. Fig. 10 shows input

data acquired by an experiment and its estimated result. The ex-

perimental data was obtained from a laser interferometer as a

2-D image. The experimental devices were adjusted so that the

fringes in the image were parallel to the vertical axis. The 1-D

input data for the estimator is taken from the bounded area de-

picted at the top-left of Fig. 10. Both the average value and the

standard deviation along the vertical axis are computed with re-

spect to every horizontal point.

Table V shows the initial domain for the estimation and its

estimated result. This result demonstrates that the technique is

successful, even for the case of external domain searching with

respect to . The parameter has large variance. We hy-

pothesize that this shows that the sensitivity of is small with

respect to the LS (the evaluation function), i.e., is not im-

portant for LS estimation. The convergence profile in Fig. 9 sup-

ports our hypothesis; the convergence of is achieved after the

other parameters converge. In other words, one can determine

which parameters in an LS estimation are most sensitive to the

least mean square by analyzing the convergence of parameters.

In Fig. 10, the frequency histogram shows that is almost

one. However, systematic errors are found within the middle

of the figure. These are not due to any inconsistencies of the

estimation method. As plausible explanations, the experimental
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Fig. 10. Input data of “Exp” and its estimated result. The image data in
left-top figure is obtained by an interferometer system with two light beams.
The bounded area is used for the proposed estimation method. The input data
for the proposed estimation method is prepared by computing the average and
the standard deviation along the vertical axis for the every horizontal pixel.
Both the input data and its estimated function obtained by the adaptive domain
method of “ADM 4 GAs” are shown in the middle. The estimated function
is of 50th rank in 100 trials. Each input data is plotted with an error bar that
shows the standard deviation of the data itself. The top-right figure shows a
frequency histogram of the least mean squares in 100 trials. The bottom figure
shows the estimated result for modified model which assumes that the center
and the width of two beams are different.

TABLE V
INITIAL PARAMETER DOMAINS AND ESTIMATED RESULT FOR Exp DATA

data may have had systematic errors (e.g., the image is slanted),

and also there may be effects from some minor parameters that

are not included in the estimation model in (20). To increase the

accuracy of the model, we assume that the center and the width

of the two beams’ envelopes are different. The modified model

is as follows:

(22)

The result of this modification is also shown at the bottom of

Fig. 10. Some of the systematic error is reduced. The improved

model can be realized by only a few lines modification to the

program source code.

Finally, we discuss the topic of optimizing computation time.

In our numerical test for which the number of parameters to be

estimated is seven , the computational time is almost 6 seconds

for each estimation with , using PC with an Intel

Pentium-4 processor operating 2 GHz. Thus, even with retrying

ten times with different random system to obtain a more reliable

solution, one can obtain the solution in only 1 minute.

VI. CONCLUSION

In conventional LS regressions for nonlinear problems, it is

difficult to obtain the normal equation analytically. As an alter-

native, a GA may be used as a search method to determine the

optimum value in the parameter space. It is expected that by the

application of this technique to problems of LS regression, we

can find solutions without relying on the normal equation.

In a simple real-coded GA, the domain of parameters with

respect to the phenotype of a gene is fixed in the system. If the

parameter domain is too wide the estimation is not effective.

Conversely, it is difficult to choose a narrower parameter domain

that is certain to contain an acceptable solution.

In this paper, we proposed a new method, ADM, to change

the domain dynamically using several GAs with short lifetimes.

The merits of ADM include the following points: the estima-

tion is almost always reliable, and the computational cost for

estimations is relatively small. Although general GAs are typi-

cally difficult to manage from the aspects of reliability and com-

putational cost, ADM requires no manual tuning or selection of

parameters to optimize these aspects. Hence, ADM is especially

useful for general researchers who may not have expert knowl-

edge of GA simulation models.

We demonstrated a nonlinear LS fitting problem concerning

the interference pattern from two light beams. In the simulation

of this problem, an acceptable estimation was always obtained

when the assumed solution was within the predefined domain.

Furthermore, even if the predefined domain did not contain the

assumed solution, the dynamic domain redefinition proved to

work effectively as an extrapolation method. Only in the case

where the predefined domain contains only a local optimum, did

some of the estimations fail. However, such cases can be pre-

vented by defining a wider initial domain. This may be accom-

plished without significantly sacrificing the convergence perfor-

mance because the dynamic redefinition of ADM is effective. In

the statistical fitting for a set of real experimental data, we can
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obtain reasonable results without any tuning of the factors that

are required to control GAs and ADM.

The computational cost of ADM will likely be more expen-

sive than that of solving the normal equation. However, en-

hancements for more detailed models of the function to be es-

timated can be easily applied with only slight modifications to

the source program.

Consequently, we conclude that the proposed ADM is effec-

tive and reliable for nonlinear LS regressions, and also advanta-

geous since it is easy to use without any detailed knowledge of

GAs or their tuning. Therefore, the ADM method may be useful

for general scientists in many fields.

Moreover, in the development of the ADM, we impose no

restriction on potential users except that the applied problem

should be a minimization problem. Thus, the ADM is applicable

not only to LS regressions but also to many other kinds of opti-

mization problems in which the parameters to be optimized are

real numbers.
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