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NONLINEAR LEAST SQUARES — AN AID TO

THERMAL PROPERTY DETERMINATION

By D. M. Curry and S. D. Williams*
Manned Spacecraft Center

SUMMARY

Nonlinear least squares techniques are applicable to solving problems associated
with thermal property determination. Of the techniques discussed in this paper, the
method of Peckham is shown to be the most efficient. Effective thermal conductivity
values were determined using in-depth thermal response data from both atmospheric
and reduced pressure tests. As shown, the predicted values compare favorably with
measured thermal conductivity results. The results of this study show that the combina-
tion of nonlinear least squares and thermal analysis offers a more efficient tool for use
in the design of experimental testing and in obtaining reliable thermal property
information.

INTRODUCTION

The design and the development of a reusable thermal protection system for the
space shuttle require detailed investigations of various material classes and configura-
tions in addition to a knowledge of the thermophysical properties of the materials. These
properties are normally obtained from standardized tests; however, before exhaustive
property determination tests are conducted, it is desirable to perform thermal protec-
tion system analyses, because the results of these analytical studies can be used to
minimize the number of materials to be considered.

Of special interest are analytical methods that permit the evaluation of thermal
response data obtained from a single experiment. Many papers discussing the identifi-
cation of parameters using nonlinear regression analysis and the inverse heat conduction
problem are available (refs. 1 to 6). The calculation of the surface heat flux and the sur-
face temperature from an in-depth temperature-history measurement is termed the in-
verse solution; the estimation of thermal property values from experimental in-depth
temperature data is classified as a parameter identification problem. The motivation
for the investigation presented in this paper was the work done by Pfahl and Mitchel
(ref. 6) and by Williams and Curry (ref. 7). .

*Lockheed Electronics Company, Inc.



Pfahl and Mitchel indicated that a least squares technique could be used to obtain
realistic values for thermal properties of ablating materials. The method they used
was a variant of the method developed by Levenberg (ref. 8) and modified by Marquardt
(ref. 9). Pfahl and Mitchel did not compare this method with other techniques. A com-
parison of the relative efficiency of different techniques in determining thermal prop-
erties is given in this paper. Also, it can be shown that meaningful property
determination (that is, thermal conductivity) can be obtained from tests not designed to
measure the thermophysical properties by using nonlinear least squares techniques.

SYMBOLS

a. coefficients for the effective thermal conductivity polynomial

2
F sum of squares of the residuals

f a vector of residuals to be minimized

f. the kth component of f

G matrix of partial derivatives with components g. .
Kl

gki V3xi
h vector with components h.

h. first term in the Taylor series expansion of f. about x
K . K. 0

K thermal conductivity due to solid conduction
\^

Kg effective thermal conductivity

K thermal conductivity of free gas
O

KR thermal conductivity due to radiation through a solid

K thermal conductivity due to solid conduction and radiationrs

L thickness of the specimen

L, mean free path of molecule fibers

L mean free path of gas molecules
O



N backscattering cross section per unit volume

P porosity of the specimen

5 sum of squares of the residuals to be minimized

T temperature

T.. predicted temperature of the ith thermocouple at the jth time measurement

T*.. measured temperature of the ith thermocouple at the jth time measurement

T temperature of the specimen at the surface

T_ temperature of the specimen at the back wall

TC. temperature above the nominal for the ith thermocouple

TC.~ temperature below the nominal for the ith thermocouple

W. a positive weighting factor for the jth constraint

x a vector of control parameters

x. the ith control parameter or independent variable

TI

x. highest permitted value for x.
J J

x. lowest permitted value for x.

6 correction to | along which S is minimized

e T emissivity at the specimen back wallLJ

e emissivity at the specimen surface

X scalar quantity to minimize S from £ along 6

| independent variables used to minimize S

a Stefan-Boltzmann constant



a standard temperature deviation

<p penalized performance index

0 performance index to be minimized

4* • constraints placed on d>]

THEORETICAL FORMULATION

Several numerical optimization methods and nonlinear least squares techniques
were examined to determine the relative efficiency of each technique in determining
thermal conductivity. The techniques ranged from simple ones such as adaptive creep
and steepest descent to sophisticated techniques such as those devised by Peckham
(ref. 10) and Powell (ref. 11). The two most efficient techniques, which were developed
by Powell and Peckham, reduced the number of function evaluations by more than
600 and 1000 percent, respectively, when compared to Davidon's (ref. 12) method.
All minimizing techniques examined did not require special formulations for the per-
turbation equations but used numerical procedures to obtain the effects of parameter
variations. An implicit thermal model was used with these techniques. The primary
difference in the efficiencies of the numerical optimization techniques and the methods
based on the nonlinear least squares are shown in the difference in the basic formulation.

Numerical Optimization

The general nonlinear optimization problem is concerned with finding the extre-
mum of a performance index of the form

0 - 0(x) (1)

where x is an n dimensional vector with components x., subject to an m vector of
constraints •*

(2)



The x. are independent variables (control parameters) the values of which are to be
J

determined such that equation (1) is an extremum subject to the constraints in equa-
tion (2). If the constraints are applied directly to the independent variable

x . L <x. <x.H (3)
J ] J .

where j = 1,2,. .., m, then a region of control space is defined within which the solu-
tion must lie. Problems involving equality constraints can be treated as unconstrained
problems by replacing the actual performance index with a penalized performance index
0, where

m

If the W. values are sufficiently large in magnitude, minimization of equation (1) sub-

ject to the constraints of equation (2) is equivalent to the minimization of the uncon-
strained performance index defined by equation (4). By means of this approach, search
techniques for finding unconstrained minima can be applied in the solution of constrained
minima.

Various numerical procedures have been developed to solve parameter optimiza-
tion problems. Most of the search techniques were based on the reduction of the multi-
dimensional control space to a succession of steadily improving searches along a vector.
Thus, the search technique can be thought of as a one-dimensional search technique.

The numerical search for the minimum of 0 can be performed in a local region by
most methods, but none can guarantee the global minimum. The object of these numer-
ical methods is to isolate the minimum performance index as rapidly as possible, often
without knowledge of the characteristics of the response surfaces. A measure of the
effectiveness of the various search techniques used in this report is the number of eval-
uations required to locate the minimum.

Least Squares

on, a vector of

defined for which a minimum value for S is to be determined, where

In the least squares formulation, a vector of variables x = x,, x0, . . . , x isi & n

m
I n

(5)•D



In a linear approximation

n

or in matrix notation

f = h + Gx (6)

The value of x at the minimum (x ) is given by

GTGxQ = -GTh (7)

If the gradients g, . are available, these equations can be solved for x . Because, in
1C1 O

general, the f. are not linear in x, x will not be the true minimum and is used for
• K O

the starting value of x for the next iteration. At this point, equation (7) represents the
Tstandard solution to the least squares problem and G G is positive definite because x

is assumed not to be at a stationary point. Also

(8)

because £ is not a stationary point of S. To guarantee convergence, a positive value
of X may be developed to minimize S(£ + X6) (for example, X ) then 4 + X 6 will

approximate the minimum. If the second-order partial derivatives are not zero, the
quadratic convergence depends on having the magnitude of the correction of the same
order as the functions. An error in the derivatives by 6 is acceptable and does not
jeopardize convergence. In any case, the least squares method hinges on the approxi-
mation that the second-order partial derivatives can be ignored in the simulation. The
term is of order 6 if f is linear in the variables; and, in all other cases, the con-

K

vergence of the procedure will only be linear. The correction to £ is calculated by
solving equation (7). In the iterative procedure, £ + X 6 is chosen as the new starting
point. Therefore, in the least squares formulation, an advantage is gained because the
local effects of the gradient are directly related to each control parameter; however, in
multivariable optimization, only the composite effect is observed.



THE CONDUCTIVITY PROBLEM

The material investigated in this study is a rigidized fibrous insulation. The
porosity and transparence of the material permits heat transfer to occur by conduction
and radiation. Analytical studies (ref. 13) have shown that the effective thermal con-
ductivity K can be expressed as

(9)

where K is the conductivity due to conduction and K_ is the conductivity due to

radiation. The conductivity due to radiation is given by

crL
(10)

where o is the Stefan-BoItzmann constant, T and T0 are the bounding surface
O £t

temperatures, e and eT are the bounding surface emittances, L is the sampleo • jj
thickness, and N is the backscattering cross section per unit volume. A more com-
plete expression (ref. 14) that includes the contribution by gas conduction is given by

where K is the contribution by solid conduction and radiation, K is the conductiv

ity of free gas, P is the porosity, and L, and L are the mean free paths of mole-

cule fibers and gas molecules, respectively. The effective conductivity can be
expressed as a polynomial in temperature with coefficients composed of unknown prop-
erty-values. The model used in this study is

(12)



where the unknown coefficients a. are to be determined such that the difference be-i
tween the desired temperatures and the predicted temperatures is a minimum. If T..
is the temperature at the ith thermocouple and jth time measurement, the least squares
problem is to minimize

m n

where T*.. is the desired temperature.

The optimization problem is to minimize

nxm
W.^2 (14)

K=l

where »//. = T.. - T*.. with K = i + (j - l)n and $= 0.

EFFICIENCY STUDY

Several numerical optimization techniques and nonlinear least squares techniques
were used to solve the thermal conductivity problem. The standard least squares and
most of the numerical optimization techniques either converged too slowly to be of use
or did not converge at all. The only numerical optimization scheme evaluated that was
of value to the current investigation was Davidon's method. However, it was necessary
to adjust the initial metric to account for the large derivatives. The successful least
squares techniques that were examined were a least squares with a Levenberg correc-
tion, the method developed by Powell, and the method developed by Peckham. With all
these techniques, realistic values of effective thermal conductivity as a function of tem-
perature were achieved for an analytical test model subjected to a low heating rate with
an acceptable tolerance of + 0.1° R for each temperature prediction. Typical results
for Powell's method are shown in table I. The least squares techniques were superior
to Davidon's method in achieving convergence. Davidon's method required 229 function
evaluations to achieve convergence compared to 61 for Levenberg, 39 for Powell, and
21 for Peckham (table II). To differentiate better between the least squares techniques,
an additional analytical test was simulated using a higher heating rate with an acceptable
tolerance of + 2° R for each temperature prediction. Again, Peckham's method was
superior in achieving convergence, with only 17 function evaluations as compared to
31 for Powell (table m).



ERROR ANALYSIS

Results using numerically generated data show that least squares techniques can
be used to calculate thermal properties. For the analytical verification studies, the
same mathematical formulation controls the thermal model for both the generation of
data and the prediction of thermal conductivity. However, under actual test conditions,
some of the assumptions used in formulating the mathematical model are violated. For
instance, with a one-dimensional thermal model, it is impossible to account for any
two-dimensional conduction that may exist. Because the thermal conductivity is inde-
pendent of the test conditions, any differences observed in the calculated thermal con-
ductivity values may be attributed to measurement errors, such as errors caused by
uncertainties in the location of the thermocouple. Accordingly, an investigation was
performed to determine the effects of variations in thermocouple location on thermal
conductivity.

This investigation consisted of (1) comparing different conductivity values at dif-
ferent heating rates using the same specimen and (2) using similar data at different
times when results from only one test were available. The results of this investigation
indicate that it may be possible to assess the directional effects of errors in thermo-
couple location. The following procedure was used to assess the effects of errors in
thermocouple location. A positional error for the ith thermocouple, which produces a

temperature above the nominal, was designated as TC. ; conversely, TC." designates

a positional error that produces a temperature below nominal. Nominal means that
there is no positional error in the thermocouple location. A positional error equivalent
to the thermocouple wire diameter (0. 01 inch) was assumed. Four thermocouples are
used; the fourth is maintained at its nominal position. This allows for the following four

different cases to be examined for both TC. + and TC. ".

1. Case a: TCg"1", TC3
+

2. Case b: TC0
+, TC,"

£t O

rpr*

3

+

Of primary interest are the results obtained for TCj+ (cases c and d) and for

TC. " (cases a and b). These combinations result in the largest least squares error and

associated errors in the predicted thermal conductivity. Typical results for heating
2

rates of 15, 20, and 30 Btu/ft -sec are shown in figures 1 and 2. In general, the re-
sults for figure 1 give lower values of conductivity than would be predicted using nomi-
nal thermocouple locations. The conductivity increased with increasing heating rate at
the higher temperatures for this case. Conversely, the results shown in figure 2

3. Casec: T C " , TC

4. Case d:



indicate that the highest values of conductivity were obtained using the lower heating
rates and that these values were greater than would be predicted using nominal thermo-
couple locations.

EXPERIMENTAL VERIFICATION

Convective Tests

Thermal evaluation tests have been conducted in the NASA Manned Spacecraft Cen-
ter 10-megawatt arc-heated facility on test models fabricated from LI-1500, a surface-
insulation material that is being developed for potential application on the space shuttle.
The primary objective of the tests was to demonstrate the reusability of the material
system for temperatures between 2500° and 3000° R. The test specimens were 4-inch-
diameter flat-faced cylinders with a nominal thickness of 2 inches. Each model con-
tained chromel/alumel thermocouples installed in depth to allow monitoring of the
thermal response of the material. The tests were conducted over a range of gas en-

o
thalpy levels from 4000 to 6000 Btu/lb, heat transfer rates from 12 to 22 Btu/ft -sec,
and model impact pressure levels from 0. 0023 to 0. 0027 atmosphere. Three test runs
identified as tests 302, 304, and 308 were selected as typical. The heating rates for

2
these tests were 14. 2, 16.8, and 21. 4 Btu/ft -sec, respectively. Conductivity values
predicted on the basis of these tests are shown in figure 3. Tests 302 and 304 were in
close agreement and had a standard temperature deviation a of 2. 2° and 2. 6° R,

respectively. Test 308 had a a value of 9. 6° R but provided conductivity values that

closely approximated experimentally determined values, indicating that an error could
exist in the in-depth position of the thermocouples. Based on the previous analyses
of these positional error effects, the thermocouple locations were changed in the
thermal model. Predicted thermal conductivity values are shown in figure 4. The
corresponding values of a were 1. 7°, 3. 2°, and 7. 3° R for tests 302, 304, and 308,
respectively.

Radiant Tests

A series of radiant heating cycles were performed on a specimen of the
surf ace-insulation material in radiant-lamp facility at a pressure of 1 atmosphere.
The specimen was a 4-inch-diameter flat-faced cylinder instrumented with four
0. 01-inch-diameter chromel/alumel thermocouples. Four thermocouples were located
in the center of the specimen at depths of 0. 30, 0. 50, 1. 0, and 1. 5 inches from the
heated surface. The thermocouple junction was placed on a 0. 50-inch-diameter cylin-
drical plug of LI-1500 that was inserted into the specimen. The other thermocouples
were installed in the same manner, using four LI-1500 plugs for the installation. The
thermocouple wires were carefully located around the circumference of the plugs and
extended out of the bottom of the specimen.

Predicted thermal conductivity results using the 1-atmosphere radiant test data
are shown in figure 5 for maximum times of 540, 600, and 740 seconds. Significant
variations in thermal conductivity predictions using these various times were obtained.

10



The previous analysis for errors in thermocouple location was used as a guide, and the
thermocouple locations were changed in the thermal model. Conductivity results ob-
tained from these revised locations are shown in figure 6. A comparison of figures 5
and 6 shows that the standard temperature deviation a_, has been reduced by approxi-
mately 50 percent and a better correlation of conductivity values was obtained.

Thermal Conductivity Tests

For comparative purposes, thermal conductivity values obtained by guarded-
hotplate and radial in-flow apparatus (ref. 15) are shown in figures 3 to 6. Although
'the values of thermal conductivity obtained using nonlinear least squares do not agree
at every point with the values obtained by these standard experimental methods, the
general agreement is considered good. It should be noted that the arc-jet and radiant
tests were designed to show material thermal response and reusability and the thermo-
couples were installed to provide secondary information. However, analyses made
using the measured guarded-hotplate conductivity values will not reproduce the in-depth
thermal response; analyses using the values determined by the nonlinear least squares
analysis will reproduce the response. Finally, because the tested materials were early
prototype specimens, some differences in the thermal conductivity values may be at-
tributed to variations in material.

CONCLUSIONS

Nonlinear least squares techniques can be readily applied to solving the difficult
and realistic problems associated with thermal property determination. The results
obtained can be used with confidence for thermal protection system design analysis.
The most successful nonlinear least squares technique, which was one developed by
Peckham, used an implicit thermal model to solve the heat equation. The effects
of positional errors in the thermocouple location were significant; but, when these
errors were accounted for in the thermal analysis, the least squares error could be
reduced. By taking the positional errors into account, meaningful thermophysical
property values can be determined from simply instrumented tests.

Thermal conductivity values were obtained from the in-depth thermal response of
experimental models as a function of temperature at both atmospheric and reduced
pressures. These values compared well with values measured directly. This study
illustrates the capability and applicability of the least squares program for property
determination. Although the theory and numerical methods are not new, it is believed
that the combination of nonlinear least squares and thermal analysis offers a new, more
efficient tool to be used in the design of experimental testing and a rapid technique for
obtaining reliable thermal property information required in the preliminary design of a
thermal protection system.

Manned Spacecraft Center
National Aeronautics and Space Administration

Houston, Texas, June 15, 1972
908-42-02-00-72

11



REFERENCES

1. Beck, J. V. : Analytical Determination of High Temperature Properties of Solids
Using Plasma Arcs. Thermal Conductivity, Proceedings of the Eighth Confer-
ence, C. Y. Ho and R. E. Raylor, eds., Plenum Press (New York), 1969,
pp. 1009-1030.

2. Pfahl, R. C., Jr.; and Mitchel, B. J. : Simultaneous Measurement of Six Ther-
mal Properties of a Charring Plastic. Internatl. J. Heat Mass Transfer,
vol. 13, no. 2, Feb. 1970, pp. 275-286.

3. Nagler, R. G. (with appendix by E. M. Blizzar and R. J. Jirka): Transient Tech-
niques for Determining the Thermal Conductivity of Homogeneous Polymeric
Materials at Elevated Temperature. J. Appl. Polymer Sci., vol. 9, no. 3,
1965, pp. 801-819.

4. Filippov, L. P. : Methods of Simultaneous Measurement of Heat Conductivity,
Heat Capacity, and Thermal Diffusivity of Solids and Liquid Metals at High
Temperatures. Internatl. J. Heat Mass Transfer, vol. 9, no. 7, June 1966,
pp. 681-691.

5. Laurenson, R. M.; and Baumgarten, J. R. : Application of Gradient Search Pro-
cedures for the Identification of Unknown System Parameters From System
Response Observations. ASME Trans., J. Eng. for Industry, vol. 94, no. 1,
Feb. 1972, pp. 109-114.

6. Pfahl, R. C., Jr.; and Mitchel, B. J. : Nonlinear Regression Methods for Simul-
taneous Property Measurement. AIAA, vol. 8, no. 6, June 1970, pp. 1046-1052.

7. Williams, S. D. ; and Curry, D. M. : Parameter Optimization - An Aid to Thermal
Protection Design. J. Spacecraft Rockets, vol. 9, no. 1, Jan. 1972, pp. 33-38.

8. Levenberg, K. : A Method for the Solution of Certain Nonlinear Problems in Least
Squares. Quart. Appl. Math., vol. 2, no. 2, 1944, pp. 164-168.

9. Marquardt, D. W. : An Algorithm for Least Squares Estimation of Nonlinear
Parameters. J. SIAM, vol. 2, no. 2, June 1963, pp. 431-444.

10. Peckham, G. : A New Method for Minimizing a Sum of Squares Without Calculating
Gradients. Computer J., vol. 13, no. 4, Nov. 1970, pp. 418-420.

11. Powell, M. J. D. : A Method for Minimizing a Sum of Squares of Nonlinear Func-
tion Without Calculating Derivatives. Computer J., vol. 7, no. 4, Jan. 1965,
pp. 303-307.

12. Davidon, W. C. : Variance Algorithm for Minimization. Computer J., vol. 10,
no. 4, Feb. 1968, pp. 406-410.

13. Larkin, B. K. ; and Churchill, S. W. : Heat Transfer by Radiation Through Porous
Insulations. Am. Inst. Chem. Engrs. J., vol. 5, no. 4, Dec. 1959, pp. 467-474.

12



14. Verschoor, J. D.; and Greebler, P. : Heat Transfer by Gas Conduction and
Radiation in Fibrous Insulations. Trans, of ASME, no. 74, 1952, pp. 961-968.

15. Smyly, E. D. : The Thermal Conductivity of LI-1500 Rigidized Fibrous Insulation.
Final Report to Lockheed Missiles and Space Company, A-989-2753-I-F,
Southern Research Inst. (Birmingham, Ala.) Jan. 1972.

TABLE I. - COMPARISON OF PREDICTED CONDUCTIVITY BY POWELL'S METHOD

TO ACTUAL CONDUCTIVITY FOR LI-1500 USING TEMPERATURE-TIME HISTORY

OF A THERMOCOUPLE

Temperature,
°R

660

860

1260

1960

2460

2960

Conductivity,
Btu/ft-hr-°R

0. 0277

.0324

.0439

. 0745

.1102

.1583

Predicted
conductivity,
Btu/ft-hr- °R

0.0275

' .0324

.0446

.0762

. 1093

. 1534

Error,
percent

0.72

.00

-1.59

2.28

- .82

-3. 10

TABLE II. - COMPARISON OF EFFICIENCY OF NONLINEAR MINIMIZING

TECHNIQUES IN SOLVING FOR THERMAL CONDUCTIVITY

Method

Davidon

Levenberg

Powell

Peckham

Number of iterations

10

12

10

14

Number of function evaluations

. 229

61

39

21

TABLE III. - COMPARISON OF EFFICIENCY OF NONLINEAR LEAST SQUARES

TECHNIQUES IN SOLVING FOR THERMAL CONDUCTIVITY

Method

Levenberg

Powell

Peckham

Number of iterations

32

9

. 12

Number of function evaluations

161

31

17

13



.10

.06

S .04

.02

— 15Btu/(t2-sec

--- 20Btu/lt?-sec

— 30Btu/ft2-sec

460 1260 1660
Temperature, 3R

2060 2460

Figure 1. - The effects of thermocouple location error on thermal conductivity for
different heating rates for TC* case d.

.14

.12

•-G .06

.04

.02

460 360 1260 looO
femperalc/re, '«

2*0 2460

Figure 2. - The effects of thermocouple location error on thermal conductivity for

different heating rates for TCj", case b.
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Test

Heat rate,

Btu/ft2-sec
.05

.04

.03

t.OZ

.01
o
o

O

302 14.2
304 16.8
308 21.4
Measured

F

38.5
52.9

741.3

Valid temperature range

460 860 1260 1660
Temperature, °R

2060 2460

Figure 3. - Calculated values of thermal conductivity at reduced pressure
(arc-jet test data).

Heat rate,

/ft2-Test B tu / f t -sec F

.05

.04

5 .03
QQ

>^
;|.02
"o

O

302 14.2
304 16.8
m 21.4
Measured

o

Valid temperature range

460 860 1260 1660
Temperature, °R

2060 2460

Figure 4. - Calculated values of thermal conductivity at reduced pressure with
thermocouple locations analytically translated (arc-jet test data).
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: .04

.02

Time, 2
sec F CTT

540 1954.8 19.8
600 3350.8 20.5
740 6686.0 24.7

O Measured

Valid temperature ranye

460 860 1260 1660, 2060 2460
Temperature, ^R

Figure 5. - Calculated values of thermal conductivity at atmospheric pressure
(radiant test data).

.14

.12

.10

= .06 -

.02

Time,
sec F

540 350.6 8.4
600 708.9 9.4
740 3222.7 1 7 . 1

O Measured

04 --:

Valid temperature ranije

460 860 12cO looO 2060 2400
temperature, T?

Figure 6. - Calculated values of thermal conductivity at atmospheric pressure with
thermocouple locations analytically translated (radiant test data).
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