
J. Austral. Math. Soc. 19 (Series B), (1976), 343-357.

NONLINEAR LEAST SQUARES — THE LEVENBERG
ALGORITHM REVISITED*

M. R. OSBORNE

(Received 7 March 1975)

(Revised 28 July 1975)

Abstract

One of the most successful algorithms for nonlinear least squares
calculations is that associated with the names of Levenberg, Marquardt, and
Morrison. This algorithm gives a method which depends nonlinearly on a
parameter y for computing the correction to the current point. In this paper
an attempt is made to give a rule for choosing y which (a) permits a
satisfactory convergence theorem to be proved, and (b) is capable of
satisfactory computer implementation. It is believed that the stated aims
have been met with reasonable success. The convergence theorem is both
simple and global in character, and a computer code is given which appears
to be at least competitive with existing alternatives.

1. Introduction

In this paper we consider a class of descent methods for minimising the
sum of squares

F(x) = II/(*) IP = / r (*)/(*) (11)
where / is an n vector of, in general nonlinear, suitably smooth functions /,

of the independent variables xu x2,- • •, xp with p < n. The descent vectors

ht(y), i = 1,2, • • • are chosen by solving at each step the linear least squares

problem minimise || ^ (T) IP where

* Professor Levenberg was killed recently in a motor car accident. This paper is respectfully
dedicated to his memory.

343

https://doi.org/10.1017/S033427000000120X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000120X

344 M. R. Osborne [2]

A, = V,£(XJ), B, is a p x p matrix which is assumed to have full rank (it will be
no restriction to assume \\B, || = 1, and ||Br'|| = a where the spectral norm is
used), and y g O is a scale parameter which controls the magnitude and
direction of /»,.

Remark (i)

The case B, = I together with a suitable strategy for choosing y gives the
algorithms of Levenberg [4], Marquardt [5], and Morrison [6]. The use of
Bi^ I permits, for example, taking some account of the relative sizes of the
columns of A,.

Remark (ii)

Equation (1.2) uniquely determines h,(y) unless y = 0 and A, has less
than full rank. In this case we determine h, by taking the unique solution of
(1.2) of minimum norm (that is we use the generalised inverse solution to
(1.2)).

Discussion of the convergence of the descent process requires the
specification of the rule for obtaining x,+i from x,. This has been done for
various line search strategies in Osborne [7], but the correspondence between
this kind of discussion and actual algorithmic implementations is not as close
as might be desired. In this paper an attempt is made to close this gap. Thus
an algorithm is given which introduces no auxiliary line search parameter so
that all adjustment of step length is done by altering y, and the actual test for
accepting the predicted step requires only quantities that are readily available
at the current stage. It is, in fact, only a minor modification of the frequently
used test that F(x) be reduced at each stage (without qualification this is
known to be unsatisfactory). A bonus is that, apart from one explicitly
testable exception, the algorithm is globally convergent from an arbitrary
starting point to a stationary point (either a minimum or possibly a saddle
point) of F.

2. The algorithm

The development of the algorithm will be given in three stages. First a
characterisation of the stationary points of F(x) is recalled. Then a con-
vergence theorem is given under the assumption that the sequence of values
{F(x,)} satisfy a suitable criterion. Finally it is shown that for fixed x, this
criterion can always be satisfied by choosing y large enough in (1.2).

https://doi.org/10.1017/S033427000000120X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000120X

[3] The Levenberg algorithm revisited 345

LEMMA 2.1. [7] If y is bounded in (1.2) then the following are
equivalent

(ii) 11/11= Ik. ||,
and

(iii) JC, is a stationary point of F{x).

THEOREM 2.1. If in (1.2) a bounded sequence {y,} can be chosen such
that

0<o-g^(x, ,y,) (2.1)

where a- is a prescribed constant independent of i,

xl+l = x, + h,(y,), (2.2)

and

F (x) F (x)
)' (2-3)

then the sequence {F(x,)} is convergent, and the limit points of the sequence
{x,} are stationary points of F(x).

PROOF. Note that unless x, is a stationary point of F(x) then (1.2)
implies || r, | |<| |/, ||, and in this case (2.1) implies F(x,+i)< F(x,). Now (2.1) can
be rewritten

2(11 / (, ,) | | + || r, ||)(|| f(x.)||- || r, |

.)!! HI/(•+•) II
| H | | | |

as || f{x,) || £ || fix,) || + || r, ||, and || /(x,) || + || /(x,+1) || % 21| /(x,) ||. Thus, rearrang-
ing (2.4),

)||-||r,||) (2.5)

so that the non-negative sequence {||/(x,)||} is convergent. Rearranging again
gives

^ | | / (x , + 1) | |) . (2.6)

An appeal to Lemma 2.1 establishes the second part of the theorem as the
right hand side tends to zero.

https://doi.org/10.1017/S033427000000120X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000120X

346 M. R. Osborne [4]

THEOREM 2.2. For each cr < 1, and each xn there exists a y, such that
(2.1) is satisfied.

PROOF. It will be shown that

(l / 2) as y->oo

so that the test can be satisfied for any fixed x, by choosing y large enough.
First note that the normal equations determining fc,-(y) can be written

[AM, + y
2B?B,]h,(y) =-ATf. (2.7)

so that, as B, has full rank,

*.(?) = - ^ (iW'A 1/ + 0 (^;). (2.8)

Thus || fc,(y)||—»0 as y —»o°.
Now a direct calculation shows that

VF(x,) = 2/TA. (2.9)

so that

whence, using (2.8), (2.10), and the assumed smoothness of the / „ ; = 1, • • •, n,

as y —»°°.

Remark (i)

The inequality (2.1) gives a test which can be used to select an
appropriate y,. It takes the decrease actually produced by the step h, and
compares this with that predicted by the linearised equation (1.2). The
theorem says essentially that convergence is a consequence of these quantities
being similar so that we do not depart too far from the region in which the
linear approximation holds.

Remark (ii)

The particular case y = 0 is equivalent to the well known Gauss-Newton
method [7]. If this method is convergent (this is not guaranteed), and if | | / | | is
sufficiently small, then the rate of convergence can be very satisfactory. This
suggests that there is an advantage in working with y as small as possible.

https://doi.org/10.1017/S033427000000120X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000120X

[5] The Levenberg algorithm revisited 347

Choosing a small has the advantage that it makes (2.1) easier to satisfy, and
such a choice probably also favours smaller values of y.

Remark (iii)

The connection between (2.1) and the Goldstein-Armijo type tests
(Daniel [2]) for standard line searches should be noted. In fact, by (2.10),
t/f(x, y) is the obvious extension of the Goldstein functional to allow for
nonlinear dependence of the descent direction on a parameter. However,
there are important differences. For example, \\h, (y)|| is bounded indepen-
dent of y. Thus arguments which depend on a large enough step being taken
need not generalise (Goldstein [3]).

Remark (iv)

The gap in the global convergence result occurs because Theorem 2.2
holds for any given x, but does not give information concerning sup.y, which
conceivably could be unbounded. Thus we have only that if {y,} is bounded
then the limit points of {x,} are stationary values of F(x).

On the basis of the above considerations the following algorithm is
suggested.

Algorithm

(i) Set x,, y*,1', cr, DECR, EXPND, TOL, GMAX; i = 1
(ii) Set / = 1; compute /f, A,, B,
(iii) Determine h^yf*), ip(x,,y^)
(iv) If o- ̂ i/Kxi, yV) then go to (v)

else / : = / + 1

yV= EXPND * y r i }

go to (iii)

(v) y, = y<"; x,+1 = x, +/i,(y.)
(vi) If || /, || - 1 | r, || < TOL or y, > GMAX then EXIT
(vii) If / > 1 then -yjV, = y,; else y!V, = DECR* y,
(viii) i: = i + 1; go to (ii)

The implementation of this algorithm is discussed in the next section. For our
present purposes it is only necessary to note that a is usually chosen small
(say 10~4), that TOL and GMAX test convergence and the boundedness of the
{y,} respectively, and that EXPND and DECR are fixed constants used for
modifying y. EXPND is used to increase in step (iv) to ensure that (2.1) is

https://doi.org/10.1017/S033427000000120X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000120X

348 M. R. Osborne [6]

satisfied, and DECR is used to decrease y in step (vii) to attempt to increase
the rate of convergence if the test in (iv) is satisfied with / = 1.

Now that the algorithm provides an explicit rule for choosing {y,} it is
possible to look at the unbounded case in more detail. In particular we can
deduce information about V2F This situation can be compared with that in
the standard proofs of the convergence of descent methods. For example,
Ostrowski [8] assumes ||V2F|| is bounded, and Goldstein [3] assumes the
existence of an equipotential spanning a bounded region.

THEOREM 2.3. Assume the sequence {y,} determined by the algorithm
is unbounded. Then the norm of the Hessian matrix V2F is also unbounded.

PROOF. If {y,} is unbounded then there exists an unbounded sequence
{y*} with the property that

as there must be infinitely many times that the test in step (iv) of the algorithm
fails. Thus there exists an unbounded sequence {y,} with the property that
a > if>(x,, y,). In what follows h,(y.) is denoted by h,. We have, denoting mean
values by a bar

\VF,h,

so that

| hy2F,h, | >2(1 - a)\VF,hi |. (2.12)

Thus

j£ | (2.13)

F r o m (2 .7) a n d (2 .9)

V F A = - | M 2 l T

whence

| VF.h, | § l|| h, ||2 ̂ i (2.14)

where, by assumption, I/a2 is a lower bound for the smallest eigenvalue of

https://doi.org/10.1017/S033427000000120X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000120X

[7] The Levenberg algorithm revisited 349

It follows that

(2.15)

COROLLARY 2.1. If ||V2F|| is finite in any bounded region of x, then any
finite limit point of {*,} is a stationary value of F(x).

PROOF. Let x* be a finite limit point, and let {*„,} be a subsequence
tending to x*. Then {y*,} is bounded as the alternative implies that V2F is
unbounded at a finite point as the {|| h^, ||} are bounded. The result now follows
by a minor modification of the argument of Theorem 2.1.

Remark (i)

In the examples considered in the next section ||V2F|| is certainly
bounded in bounded regions of parameter space. An example where this may
not be so is rational fitting.

3. Implementation notes

In this section we consider in more detail the nonlinear least squares
algorithm given in section 2. The key steps in a computational implementa-
tion based on the use of orthogonal matrix factorisation techniques are as
follows:

(i) Set initial parameters (iteration counter, initial y etc.).
(ii) Evaluate /, Vf = A at the current point.
(iii) Scale A to have column length 1 (A: = AD).
(iv) Compute

where U is upper triangular and Q orthogonal,
(v) Compute

and

where H is orthogonal and R is upper triangular,
(vi) Compute

h(y)=-DR-yi, ||

u
0 = H

R

0

0

https://doi.org/10.1017/S033427000000120X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000120X

350 M. R. Osborne [8]

(vii) Evaluate F(x + h), i(/(x, y) and test for accepting h. Increase y and
go to (v) if h not accepted.

(viii) x: = x + h(y)

If h is accepted at the first attempt decrease y.

(ix) Test for convergence. Go to (ii) if failure.

Note (i)

The factorisation of the augmented upper triangular matrix in step (v) is
comparatively cheap if n > p as the standard methods (Householder transfor-
mations, plane rotations) preserve the band of zeros introduced in step (iv).
This observation is due to Golub. Note that a convenient expression is
available for || r(y)||2.

Note (ii)

The scaling used is equivalent to taking

and ensures that the terms added to the normal matrix are comparable with
the original elements. With this scaling the choice y = 1 for the initial y is
natural. The desirability of this scaling has been indicated by Marquardt [5]
and Beale [1] for example. The author's experience with scaled and unsealed
versions of the algorithm confirms their recommendations. It should also be
noted that there is a presumption that the columns of A have finite lengths
which are bounded away from zero. It is recommended that an explicit test be
made to ensure that this is the case and that an error return be made if the test
fails.

Note (iii)

The iteration has the familiar form of a descent calculation. Thus an
inner iteration (steps (v) through (vii)) is used to satisfy a step acceptance
criterion, and forms part of an outer iteration (steps (ii) through (ix)) which
updates the current x.

Note (iv)

Some care may be needed to avoid two calculations of F(x) as the point
which satisfies the acceptance criterion in the inner iteration is the point at
which / and V/ are evaluated at the start of the next outer iteration.

https://doi.org/10.1017/S033427000000120X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000120X

[9] The Levenberg algorithm revisited 351

However, this duplication can be avoided at the probable cost of some local
storage in the function routine.

A FORTRAN program has been written to realize this implementation
scheme and is given in detail in Appendix 1.

To illustrate the performance of the algorithm we consider the two
examples given in [7], and used subsequently by several other authors. The
first example is a five variable exponential fitting problem

/, = -y,+x, + x2e -">'•+ x4e~"''-

with 1 ̂ / S 33 and /,• = 10(J — 1). The second example has eleven variables
and is appropriate to stripping Gaussians in the presence of an exponentially
decaying background. In this case we have

/, = - y, + x,e"*5''+ x2e''^-x"r2

with l g i g 65, and t, = • 1 * (i — 1). The data values y, and the initial
conditions for both cases are given in the reference cited.

We present results for each example for two different initial choices of y
— both y = 1 and y = A,h the average value of the moduli of the elements of
A, and several different values for EXPND and DECR. The results are given
in Tables 1 and 2 respectively, and include, in addition to the above data, both
the number of outer iterations and the number of inner iterations. Apart from

TABLE 1.

RESULTS FOR THE EXPONENTIAL FITTING PROBLEM

EXPND DECR OUTER INNER INITIAL

ITERATIONS ITERATIONS y

1.5

3.75

7.5

1.5

3.75

7.5

.5

.2

.1

.5

.2

.1

17

9

18

20

24

27

24

12

26

25

33

40

.0267

.0267

.0267

1.

I.

1.

https://doi.org/10.1017/S033427000000120X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000120X

352 M. R. Osborne [10]

TABLE 2.

RESULTS FOR THE GAUSSIAN STRIPPING PROBLEM

EXPND DECR OUTER INNER INITIAL

ITERATIONS ITERATIONS y

1.5

3.75

7.5

1.5

3.75

7.5

.5

.2

.1

.5

.2

.1

7

16

22

8

8

14

17

25

33

8

9

19

.0048

.0048

.0048

1.

1.

1.

the first function call the number of inner iterations corresponds to the
number of evaluations of the sum of squares. These results show that there is
some scope for optimising the performance of the algorithm by carefully
choosing the parameters; but the consistently good performance for the
combination EXPND = 1.5, DECR = .5, INITIAL y = 1. suggests that these
should be a satisfactory selection in general. Also it is not always clear how
the parameters should be chosen to optimise performance. For example, in
the results for the exponential fitting problem a step in which y is multiplied
by DECR is almost always followed by a step in which it is multiplied by
EXPND, making this look, at first sight, like a poor strategy. However,
although a steadily decreasing y can be obtained by choosing DECR greater
than about .7, the results are always worse than in the case DECR = .5, in
terms of numbers of evaluations of the sum of squares. The results also
indicate that DECR should not be chosen too small. Certainly DECR = .1 is
always less efficient than the others.

References

(1] E. M. L. Beale, 'Numerical methods' in Nonlinear Programming (ed. J. Abadie), North
Holland (1967) 135-205.

[2] J. W. Daniel, The approximate minimisation of functionals. Prentice Hall, (1971).

https://doi.org/10.1017/S033427000000120X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000120X

[11] The Levenberg algorithm revisited 353

[3] A A. Goldstein, 'On steepest descent', Siam J. Control 3 (1965), 147-151.
[4] K. Levenberg, 'A method for the solution of certain nonlinear problems in least squares',

Quant. Appl. Math. 2 (1944), 164-168.
[5] D W. Marquardt, 'An algorithm for least squares estimation of nonlinear parameters', Siam

J. Appl. Math. 11 (1963), 431-441
[6] D. D Morrison, 'Methods for nonlinear least squares problems and convergence proofs', JPL

Seminar Proceedings, (1960).
[7] M. R. Osborne, 'Some aspects of nonlinear least squares calculations in Numerical Methods

for Nonlinear Optimization (ed. F. A. Lootsma), Academic Press, (1972).
[8) A. M. Ostrowski,' Solutions of equations and systems of equations', Academic Press, (1966).

Computer Centre,
Australian National University,
Canberra, A.C.T. 2601,
Australia.

https://doi.org/10.1017/S033427000000120X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000120X

354 M. R. Osborne [12]

Appendix 1.

FORTRAN subroutine for the nonlinear least squares algorithm. This
subroutine has been implemented using the FORTRAN V compiler on a
Univac 1108.

SUBROUTINE LMM1(X,F,A,SUMSQ,N,NP,TOL,EXPND,DECR,ITS,IER)
IMPLICIT REAL*8 (A-H.O-Z)
REAL*8 X(l),A[l),F(l),B(20,20),DA(20),DU(20),D(20),
1C(20),DX(20),Y(20)

cc
c
C LEVENBERG.MARQUART,MORRISON ALGORITHM IMPLEMENTED AFTER
C SUGGESTION OF GOLUB (SEE OSBORNE 'SOME ASPECTS OF NON-
C LINEAR LEAST SQUARES CALCULATIONS' EDITOR F.A. LOOTSMA
C ACADEMIC PRESS) . MAIN FEATURE OF THIS ROUTINE IS IMPROVED
C TEST FOR ACCEPTING PREDICTED CORRECTION AND ADJUSTING
C LEVENBERG PARAMETER EPS
C VARIABLES
C X(l) VECTOR OF INDEPENDENT VARIABLES (<=20)
C INPUT CONTAINS ESTIMATE OF SOLUTION
C OUTPUT CONTAINS SOLUTION VECTOR
C A(l) STORAGE OF GRAD F BY COLUMNS
C OUTPUT:CONTAINS UPPER TRIANGULAR FACTOR IN
C ORTHOGONAL FACTORIZATION OF GRAD F
C F(l) STORAGE FOR F VECTOR OF TERMS IN SUM OF SQUARES
C SUMSQ OUTPUT CONTAINS SUM OF SQUARES
C N INPUT:DIMENSION OF F
C NP INPUT:DIMENSION OF X (DIM A=N*NP)
C TOL INPUT:TOLERANCE ON CALCULATION
C EXPND INPUT:FACTOR BY WHICH EPS INCREASED IF
C TEST ON SUM SQUARE FAILS
C DECR INPUT:FACTOR BY WHICH EPS DECREASED IF TEST
C QN SUM SQUARES SUCCEEDS ON FIRST ATTEMPT
C ITS INPUT:MAX NUMBER OF ITERATIONS
C OUTPUT:ACTUAL NUMBER OF ITERATIONS
C IER INPUT:=0 NO PRINTING
C =1 PRINT DIAGNOSTIC INFORMATION
C OUTPUT:=1 SUCCESSFUL TERMINATION
C =2 MAX ITS EXCEEDED
C =3 EPS EXCEEDS 1.D6
C =4 ATTAINABLE ACCURACY REACHED
C TOL TOO SMALL
C IF IER=2,3, OR 4 THERE MAY BE ERRORS IN
C GRADIENT CALCULATION
C =500+1 I'TH COLUMN OF A HAS A SCALE
C WHICH IS SMALL COMPARED TO
C EUCLIDEAN NORM OF A BY A
C FACTOR < l.D-6
C
C USER SUPPLIED SUBROUTINE FUNVAL REQUIRED TO SET VALUES
C OF SUMSQ,F,A DECLARATION MUST BE
C SUBROUTINE FUNVAL(A,F,X,SUMSQ,IFL)
C IF IFL=1 SETS ALL VALUES
C IF IFL=2 SETS SUMSQ ONLY MUST NOT ALTER A,F
C
C NOTE: A VERSION OF THIS PROGRAM INCORPORATING A NUMBER OF
C ADDITIONAL FEATURES INCLUDING AUTOMATIC PLOTTING OF RESIDUALS
C AND BASIC STATISTICAL TESTING HAS BEEN PREPARED BY
C DR A.J. MILLER, CSIRO DIVISION OF MATHEMATICS AND STATISTICS.
C VERSIONS OF THIS PROGRAM ARE AVAILABLE FOR THE CYBER 7600 AND
C THE UNIVAC 1100/42.
C

ccc

https://doi.org/10.1017/S033427000000120X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000120X

[13] The Levenberg algorithm revisited 355

IPRINT=IER
IF (IPRINT.EQ.O) GO TO 41
WRITE(3,102)

41 MAXITS=ITS
ITS=0

40 ITS=ITS+1
NITS=O
CALL FUNVAL(A,F,X,SSF,1)

C**** SCALE GRAD F
W=P.DO
DO 1 1=1,NP
II=(I-1)*N
S=O.DO
DO 2 J=1,N

2 S=S+A(II+J)**2
W=W+S

1 D(I)=DSQRT(S)
W=DSQRT(W)
DO 46 1=1,NP
II=(I-1)*N
IF (D(I)/W.LT.l.D-6) GO TO 47
S=1.DO/D(I)
DO 3 J=1,N

3 A(IH-J)=A(II+J)*S
46 CONTINUE

GO TO 48
47 IER=SOO+I

IF (IPRINT.EQ.O) GO TO 49
WRITE(3,104) I
WRITE(3,105) (D(I),I=1,NP)

49 GO TO 45
48 IF (ITS.EQ.l) EPS=1.DO

IF (IPRINT.EQ.O) GO TO 42
WRITE(3,100) ITS,EPS,SSF

C**«* HOUSEHOLDER TRANSFORMATION OF GRAD F,F
42 DO 4 1=1,NP

II=(I-1)*N
S=O.DO .
DO 5 J=I,N

5 S=S+A(II+J)**2
S=DSQRT(S)
IF (A(II+I).GT.0.D0) S=-S
DA(I)=S

IF (I.EQ.NP) GO TO 6
IP1=I+1
DO 7 K=IP1,N?
KK=(K-1)*N
S=O.DO
DO 8 J=I,N

8 S=S+A(II+J)*A(KK+J)

DO 9'J^I.N
9 A(KK+J)=A(KK+J)-S»A(II+J)
7 CONTINUE
6 S=O.DO

DO 20 J = I,N
20 S=S+A(II+J)*F(J)

S=-S/(DA(I)*A(II + I))
DO 21 J=I,N

21 F(J)=F(J)-S«A(II+J)
4 CONTINUE

https://doi.org/10.1017/S033427000000120X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000120X

356 M. R. Osborne [14]

O * * * COMPUTE SUM OF SQUARES OF RESIDUALS
NP1=NP+1
SSR=0.D0
DO 22 I=NP1,N

22 SSR=SSR+F(I)..2
C**** FACTOR EPS APENDAGE,TRANSFORM RHS
C**** UPPER TRIANGLE OF TRANSFORMED MATRIX STORED IN UPPER
C**** TRIANGLE OF B . FILL IN B STORED COLUMNWISE IN ROWS
C**»* IN LOWER TRIANGLE OF B

19 DO 30 1 = 1,NP
DO 31 J=1,NP

31 B(I,J)=0.D0
C(I)=0.D0

30 B(I,I)=EPS
DO 10 1=1, NP
II=(I-1)*N
S=DA(I)**2
IP1=I+1
IL1=I-1
DO 12 J=1,I

12 S=S+B(I,J)**2
S=DSQRT(S)
IF (DA(IJ.GT.O.DO) S=-S
DU(I) = S
W=DA(I)-S
IF (I.EQ.NP) GO TO 18
DO 13 K=IP1,NP

IF (I.EQ.l) GO TO 11
DO 14 J=1,IL1

14 S=S+B(I,J)«B(K,J)
11 S=-S/(DU(I)«W)

B(I,K)=A(KK)-S*W
DO 15 J=1,I

15 B(K,J)=BrK,J)-S*B(I,J)
13 CONTINUE
18 S=F(I)»W

DO 16 J=1,I
16 S=S+B(I,J)»C(J)

S=-S/(DU(I)*W)
DX(I) = F(I)-S*W
DO 17 J=1,I

17 C(J)=C(J)-S*B(I ,J)
10 CONTINUE

C***« BACK SUBSTITUTION
DX(NP)=DX(NP)/DU(NP)
DO 25 1=2,NP
K=NP-I+1
KP1=K+1
S=O.D0
DO 26 J=KP1,NP

26 S=S+B(K,J)*DX(J)
25 DX(K) = (DX(K)-S)/DU(K)

SSS=SSR
DO 32 1=1,NP
SSS=SSS+C(I)**2
DX(I)=DX(I)/D(I)

32 Y(I)=X(I)-DX(I)
NITS=NITS+1

https://doi.org/10.1017/S033427000000120X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000120X

[15] The Levenberg algorithm revisited 357

C*«*« CHECK CONVERGENCE
IER=4
IF (S S S . G E . S S F) GO TO 45
IER=1
CALL FUNVAL(A,F,Y,SSN,2)
S=.SDO*(SSF-SSN)/(SSF-SSS)
IF (IPRINT.EQ.O) GO TO 43
NRITE(3,103) NITS,EPS,SSN.SSS.S

43 IF (S.GE.l.D-4) GO TO 28
EPS=EXPND*EPS
IER=3
IF (EPS.GT.1.D6) GO TO 45
GO TO 19

28 DO 29 1=1,NP
29 X(I)=Y(I)

IF (IPRINT.EQ.O) GO TO 44
WRITE(3,101) ((I,X(I)),I=1,NP)

44 IF ((DSQRT(SSF)-DSQRT(SSS))/(1.DO+DSQRT(SSF)).GE.TOL)
1GO TO 35

45 SUMSQ=SSN
DO 33 1=1,NP

S=D(I)
DO 34 J=1,I

34 A(II+J)=A(II+J)*S
33 CONTINUE

RETURN
35 IER=2

IF (ITS.GE.MAXITS) GO TO 45
IF (NITS.EQ.l) EPS=EPS*DECR
GO TO 40

100 FORMATC ITS=',I3,' EPS=',D14.6,' SUMSQ=',D14.6)
101 FORMAT(4(' X(',12,')=',D14.6))
102 FORMAT('1 NONLINEAR LEAST SQUARES BY LEVENBERG '

1'ALGORITHM')
103 FORMATC NITS=',I3,' EPS=',D14.6,• SUMSQ=',D14.6,

1' RES SUMSQ=',D14.6,' PSI=',D14.6)
104 FORMATC SCALING ERROR NO. OF COLUMN =',I3)
105 FORMAT(4(' D(',12,')=',D14.6))

END

https://doi.org/10.1017/S033427000000120X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000120X

