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Nonlinear Limits for Single-Crystal
Silicon Microresonators

Ville Kaajakari, Tomi Mattila, Member, IEEE, Aarne Oja, and Heikki Seppä

Abstract—Nonlinear effects in single-crystal silicon microres-
onators are analyzed with the focus on mechanical nonlinearities.
The bulk acoustic wave (BAW) resonators are shown to have
orders-of-magnitude higher energy storage capability than flex-
ural beam resonators. The bifurcation point for the silicon BAW
resonators is measured and the maximum vibration amplitude is
shown to approach the intrinsic material limit. The importance
of nonlinearities in setting the limit for vibration energy storage
is demonstrated in oscillator applications. The phase noise cal-
culated for silicon microresonator-based oscillators is compared
to the conventional macroscopic quartz-based oscillators, and
it is shown that the higher energy density attainable with the
silicon resonators can partially compensate for the small mi-
croresonator size. Scaling law for microresonator phase noise is
developed. [1246]

Index Terms—Bifurcation, bulk acoustic wave (BAW) devices,
hysteresis, microresonators, nonlinear oscillators, nonlinearities,
oscillator noise, oscillators, phase noise, resonators.

I. INTRODUCTION

A
S the wireless communication devices are becoming ubiq-

uitous, there is a growing need to miniaturize the size-con-

suming analog RF components. Although the new transceiver

architectures such as direct conversion cut down the number of

analog filters, a high spectral purity local oscillator is still re-

quired. The problem is perhaps the most obvious in the rela-

tively low cost applications such as Bluetooth where the entire

communication circuitry, with the exception of the frequency

reference and a few capacitors, has been integrated on a single

CMOS chip.

Micromechanical silicon resonators are an interesting alter-

native to the macroscopic quartz resonators due to their com-

pact size and feasibility for integration with IC technologies

[1]. Unfortunately, the smaller size of the micromechanical res-

onators unavoidably results in a lower energy storage and power

handling capacity. As a direct consequence, achieving a suf-

ficient phase noise performance becomes a challenge [2]. The

maximum power handling capacity is also a critical parameter

in filter applications. The central aspect of this paper is, there-

fore, to provide detailed knowledge of the fundamental nonlin-

earity mechanisms in microresonators and of the induced en-

ergy storage limits. The performance limits are demonstrated in
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oscillator applications and microresonator performance is com-

pared to macroscopic quartz.

The paper is organized as follows: First, the theory of non-

linear oscillations is reviewed in Section II. Expressions to es-

timate the maximum vibration amplitude (the bifurcation limit)

are given and a scaling law for the maximum energy stored in the

resonator is derived. In Section III, the various nonlinear effects

in electrostatically actuated microresonators are identified. The

maximum energy storable in silicon flexural (bridge and can-

tilever) resonators and bulk acoustic wave (BAW) resonators

is compared. It is shown that at the nonlinear limit, the BAW

resonators can store orders-of-magnitude more energy than the

flexural resonators. In Section IV, the nonlinear analysis of BAW

resonators is refined to include material effects. The distributed

material nonlinearity is theoretically estimated using the non-

linear engineering Young’s modulus. A model incorporating the

material effects is developed and simulated with the method

of harmonic balance. The simulations are compared to exper-

imental data and it is shown that the energy stored in the BAW

resonators approaches the material nonlinearity limit. In Sec-

tion V, the oscillator phase noise is considered. The equation for

phase noise is derived to explicitly show the relation between

the stored energy and phase noise. The theoretical phase noise

attainable with flexural and BAW resonators is compared to the

macro quartz crystal based oscillator performance in Section VI.

While the flexural resonators are shown to be inferior in terms

of phase noise due to their low energy storage capability, the

BAW resonators can provide performance close to the quartz

resonators. The paper is concluded with Section VII where the

impact of scaling on phase noise is analyzed.

II. NONLINEAR OSCILLATIONS

To characterize the nonlinear oscillatory motion and to esti-

mate the maximum vibration amplitude, we review the results

by Landau [3]. We take the bifurcation point as a measure of

maximum usable vibration amplitude, as at higher vibration am-

plitudes, the oscillator trajectory depends on the initial condi-

tions. Thus, the systems analyzed in this paper are weakly non-

linear and the analysis is restricted only to a single resonance

excitation. Nonlinear effects can also lead to super and subhar-

monic resonances that can also limit the fundamental mode am-

plitude [4], [5].

The equation of motion for forced oscillations is

(1)

where is the lumped mass, is the damping coefficient,

is the forcing term, and the nonlinear spring constant is

1057-7157/04$20.00 © 2004 IEEE
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Fig. 1. The effect of anharmonic force on oscillator transmission curves. (a) Linear response. (b) k and negative k terms tilt resonance peak to a lower frequency.
(c) Positive k tilts resonance peak to a higher frequency. (d) Large amplitude vibrations result in hysteresis.

, where is the linear term and

and are the first- and second-order anharmonic terms. We

also define the natural frequency and quality

factor . The quality factor is not usually defined for

nonlinear systems but due to its information value for engineers,

its use is justified for the weakly nonlinear systems analyzed

here. The solutions to (1) can be obtained by the method of

successive approximations by assuming a solution of form [3]

(2)

For vibrations without damping, the amplitude of the higher har-

monics is given by

(3)

The resonance behavior changes in the presence of nonlinear

terms and the resonance frequency is related to the vibration

amplitude by

(4)

where

(5)

This behavior is illustrated in Fig. 1. A typical linear amplitude

vs. frequency curve is shown in Fig. 1(a). The first-order non-

linearity (positive or negative) causes tilting of the resonance

peak to the left as shown in Fig. 1(b). A positive second-order

nonlinearity results in tilting of the peak to a higher frequency

as shown in Fig. 1(c). Increasing the excitation signal causes

further increase in nonlinearity and eventually the transmission

signal shows discontinuity due to frequency hysteresis (bifurca-

tion) as demonstrated in Fig. 1(d).

The vibration amplitude at the point of bifurcation is

(6)

As indicated in Fig. 2, the critical vibration amplitude (or the

greatest vibration amplitude) is slightly higher than the vibration

amplitude at the bifurcation point and is given by

(7)

Fig. 2. The bifurcation point x and critical vibration amplitude x .

If either or is dominant, the critical limit can be approxi-

mated from

(8)

where and (note correction to

[2] for ).

We take the critical amplitude as the limit for mechanical en-

ergy storable in the resonator. Thus, the maximum stored energy

is

(9)

If all the linear device dimensions are scaled proportionally, the

mechanical linear spring constant and the critical vibration am-

plitude scale as

(10)

where is the linear device dimension and is the quality

factor. Thus, at the nonlinearity limit, the maximum energy

stored scales as . It can be seen that increasing

the quality factor reduces the amount of energy that can be

stored in a resonator as the resonator becomes more susceptible

to nonlinear effects.

III. NONLINEARITIES IN MICRORESONATORS

The nonlinearities in electrostatically actuated resonators can

have mechanical and capacitive origin. The mechanical nonlin-

earity is due to geometrical and material effects in the resonating

element while the capacitive nonlinearity is due to electrostatic
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Fig. 3. Comparison of three different microresonators. (a) Spring hardening due to stretching of clamped-clamped beam (bridge resonator). (b) Vibrations of
clamped-free beam (cantilever). (c) Spring softening due change in BAW resonator area.

coupling mechanism. In this section, both effects are considered

and approximate analysis is carried out.

A. Mechanical Nonlinearity

It is illustrative to estimate the mechanical nonlinearity for

three devices, a bridge, a cantilever, and a bulk acoustic wave

(BAW) resonator, shown in Fig. 3. Each resonator is sized to

have the natural frequency of 13 MHz. The aim of this analysis

is to get an order-of-magnitude comparison of the maximum en-

ergy limit. For clarity, only geometrical effects are considered

and the accurate analysis that includes material effects is post-

poned until Section IV.

1) Bridge Resonator: Fig. 3(a) shows a bridge resonator,

also known as the clamped-clamped beam resonator. According

to the classical beam theory, the first mode shape is

(11)

where is the vibration amplitude at the beam center and the

constants are , , and [6]. As-

suming a point force excitation at the bridge center, the lumped

effective mass and the spring constant for the first resonance are

(12)

where is the moment of inertia , is the Young’s

modulus, is the beam height, is the beam width, and

is the beam length. Large deformations result in an additional

anharmonic force due tension caused by the change in the beam

length.

To obtain a rough estimate for the anharmonic term, the dis-

placement profile is approximated with a triangle as shown in

Fig. 3(a). While the triangle is rather crude approximation to the

mode shape given by (11), it allows easy order of magnitude es-

timation of the nonlinear spring force. The beam tensioning due

to the elongation is and the resulting force in

-direction is

(13)

Thus, the nonlinear mechanical spring is

(14)

Finite element analysis shows that this simple estimate is accu-

rate within 30% for a typical bridge microresonator. The crit-

ical vibration amplitude given by (8) is for a

13 MHz bridge resonator with and dimensions

of , , and . The corresponding

maximum stored energy is .

2) Cantilever Resonator: Unlike the bridge resonator, the

cantilever resonator shown in Fig. 3(b) has no single dominant

nonlinear effect [7]. While a full nonlinear analysis is beyond

the scope of this paper, it is useful to obtain an upper limit for the

stored vibration energy for scaling and comparison purposes.

Given that the nonlinear effects are weak, we optimistically as-

sume that the resonator can be driven close to the silicon fracture

point.

According to the linear beam theory, the effective mass and

the spring constant are

(15)
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for a point force excitation at the cantilever end [6]. The mode

shape for linear vibrations is

(16)

where is the vibration amplitude at the beam end and the con-

stants are , , and . The max-

imum strain is at the anchor point and is given by

(17)

The typical fracture strain for bulk micromachined silicon can-

tilevers is [8]. Assuming that the beams can be vibrated

at 50% of the fracture point, a 13 MHz resonator with dimen-

sions of , , and has a

maximum vibration amplitude of 300 nm. The corresponding

maximum stored energy is .

3) BAW Resonator: The beam BAW resonator shown in

Fig. 3(c) demonstrates a geometrical spring softening effect

due to the change in the cross sectional beam area. The wave

equation for a longitudinal mode in beam is

(18)

where is the undeformed beam cross sectional areas and the

deformed area is given by

(19)

where is the Poisson’s ratio. The solution to (18) is approxi-

mated by the linear solution

(20)

where is the motion of the beam tip [2]. Substituting (20) into

(18) and integrating over the mode shape leads to

(21)

The effective mass and the nonlinear spring constants can be

recognized as

(22)

Using a typical values of , , and

for a 13 MHz BAW resonator [2], the critical

vibration amplitude given by (8) is and the cor-

responding maximum energy is .

4) Microresonator Comparison: Comparing the different

resonators, the BAW resonator is seen to have orders-of-magni-

tude larger energy storage capacity than

the bridge and cantilever resonator

operating at the same frequency. Nor-

malizing the stored energy with the resonator volume gives

the maximum energy density . For the bridge, can-

tilever, and BAW resonator this is , ,

and , respectively. Thus, the high energy storage

capability of the BAW resonators arises from two factors: the

high maximum energy density and the large volume.

The approximate analysis in this section thus indicates

that the BAW devices are candidates for large energy storage

resonators. As the maximum energy density is of fundamental

interest, the approximate analysis for the BAW resonators will

be refined in Section IV where the material effects are also

considered.

B. Capacitive Nonlinearity

Due to inverse relationship between displacement and par-

allel plate capacitance, electrostatic coupling introduces non-

linear forcing terms [9]. The nonlinear spring constants are ob-

tained by a series expansion of the electrostatic force

(23)

where is the bias voltage, is the electrode area, is

the permittivity of free space, is the electrode gap, and is

the resonator displacement [2]. Including the terms up to the

second-order gives

(24)

The second-order correction can be shown to be the dominant

nonlinear electrostatic term [2]. Since the electrical spring co-

efficient is proportional to , the capacitive nonlinearity can

be reduced by lowering the bias voltage. Also, the nonlinearity

could be significantly reduced with different electrode config-

uration, e.g., comb-drive actuation. Thus, electrostatic nonlin-

earity, while inherent to actuation mechanism, does not set a

fundamental limit to the vibration amplitude. In practice, for

resonators such as the cantilever in Section III-A2 that have low

mechanical stiffness, the capacitive nonlinearity can be signifi-

cant. As an example, assuming electrode area ,

gap , and bias voltage , gives hysteresis

limit of for the cantilever resonator. This can be

compared to the 300 nm estimate for the mechanical limit.

In addition to the nonlinear spring effects, the capacitive cou-

pling results in distortion of the motional current. These har-

monics can be calculated from

(25)

Thus, even linear vibrations can result in harmonics and the har-

monics due to capacitive coupling can be much larger than the

harmonics arising from the nonlinearity and given by (3).
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IV. MECHANICAL NONLINEARITY IN SILICON

BAW RESONATORS

As was shown in Section III-A3, the geometrical nonlinear-

ities may be very small for the BAW resonators and material

effects have to be included in the analysis. In this section, an ac-

curate analysis of mechanical nonlinearity is presented for the

BAW resonators. First, the nonlinear Young’s modulus is calcu-

lated for bulk silicon. Next, a model that incorporates the mate-

rial nonlinearity is presented and nonlinear vibrations are sim-

ulated using the method of harmonic balance. The simulations

are compared to experimental results obtained for two types of

BAW resonators: longitudinal mode beam resonator and exten-

sional mode plate resonator shown in Fig. 5.

A. Theory of Large Deformations

The Cauchy stress due to finite deformation including the ge-

ometrical (area and volume change) and material stiffness ef-

fects is

(26)

where is the particle coordinate at finite deformation, is the

undeformed state, and are the deformed and undeformed

densities, and are the second and third-order stiff-

ness tensors, and is the Lagrangian strain [10]. The third-

order stiffness tensor for silicon has been experimentally ob-

tained using ultrasonic wave measurements [11] and theoretical

analysis [12]. This data and (26) enable computation of non-

linear strain dependent engineering Young’s modulus

(27)

where is the force divided by the initial undeformed area (en-

gineering stress), is the displacement gradient with

respect undeformed coordinates (engineering strain), and and

are the first- and second-order corrections respectively. Cal-

culated values for the nonlinear Young’s modulus are tabulated

in Table I with values in [100]-direction agreeing with the pub-

lished analytical results in [10]. The contribution of the anhar-

monic stiffness tensor is found to be significant. For ex-

ample, accounting only for the geometric effects gives

and for the [100] beam extension. The third-order stiff-

ness tensors in [11] and [12] are slightly different but the resulting

difference in the nonlinear Young’s modulus is only about 5%.

Unfortunately, no information exists on the effect of doping

on the anharmonic stiffness tensor. Thus, the calculated values

may not be accurate for the highly boron doped silicon

used for the microresonators measured in this

study. Nevertheless, the literature data allows a comparison of

measured resonator nonlinearities and the fundamental material

limits.

The relationship between the nonlinear Young’s modulus and

spring constants is

(28)

TABLE I
CALCULATED NONLINEAR ENGINEERING YOUNG’S MODULUS

where is the spring stretching, is the area, and is the

length. We emphasize that this includes both the material and

geometrical effects. Using (8) and (28), the critical strain am-

plitude at the hysteresis due to first- and second-order mechan-

ical nonlinearity corrections can be approximated. Based on the

computed values for Young’s modulus in Table I, we estimate

the critical vibration amplitude for a plate res-

onator in Fig. 5 with . In this case, both the first-

and second-order correction terms are significant.

B. Modeling of the Distributed Nonlinearity

To accurately simulate the nonlinear vibrations, the dis-

tributed nature of stress and strain has to be included in the

model. In our devices the resonator modal shape is to a good

approximation sinusoidal and the strain is the highest at the

center. A full distributed model would be computationally very

demanding and therefore the continuum is approximated with

a discrete chain of masses connected with nonlinear springs.

As shown in Fig. 4, a good approximation is obtained with a

relatively small number of masses. A four mass system appears

to be a good compromise between the accuracy and simulation

speed, and is used in this paper. The mass-spring chain model

has been implemented as an electrical-equivalent model in

the Aplac simulation software. In addition to the mechanical

nonlinearity, the equivalent circuit includes an accurate model

of the capacitive coupling [9]. Displacement versus frequency

responses to a sinusoidal excitation are simulated using the har-

monic balance analysis [13]. As the harmonic balance analysis

is carried out in the frequency domain, it is computationally

efficient for systems that have a high quality factors and are

thus slow to settle in the time domain (transient) analysis.

C. Measured Nonlinear Vibrations

To characterize the nonlinear vibrations in single-crystal

silicon micromechanical resonators, two bulk acoustic wave

(BAW) resonator designs shown in Fig. 5 were measured. The

devices were fabricated by etching a SOI wafer. Both the beam

and plate BAW resonators show high quality factors exceeding

100 000 and operate at 11.7 MHz and 13.1 MHz respectively.

Further details of these resonators are provided in [2] and [14].

The measurements were done using a HP4195A network ana-

lyzer and the resonance signal was buffered with a JFET pream-

plifier with a low 100 input impedance to rule out resonator

loading by the measurement set-up. Fig. 6 shows the measured

and simulated transmission amplitudes for the plate BAW

device shown in Fig. 5. At higher drive levels, the resonator peak

becomes sharper and shifts down in frequency. As discussed in

Section III-A, this tilting is expected with and/or negative .

The measured and simulated data shown in Fig. 6(a) corre-

spond to the best fit values and . These ex-

perimentally obtained values are about 50% lower than theoret-
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Fig. 4. Equivalent mechanical model used in Aplac circuit simulator. Material nonlinearity is included as nonlinear springs. As the number of discrete elements
N is increased, the frequency difference �f=f between discrete and continuum model approaches zero.

Fig. 5. Schematics of the beam and plate resonators used in measuring nonlinearities in single-crystal BAW resonators.

Fig. 6. Measured and simulated transmission curves for 2-D plate (f = 13:1MHz) with nonlinear capacitive and mechanical effects. The maximum vibration
amplitude at the hysteresis limit x was 155 nm independent of bias showing that hysteresis limit is due to mechanical and not capacitive nonlinearity. (a) Measured
and simulated (-) transmission jS j curves with the material nonlinearity included in the model (Y = �1:4 and Y = �4:0). The highest excitation level results
in a discontinuity (the sweep direction is from right to left). (b) Measured (o) and simulated (-) transmission jS j curves without the material nonlinearity included
in the model. Capacitive spring softening alone does not explain the frequency shift.

ically estimated for a solid plate. This discrepancy can probably

be attributed to the etch holes (39 39 matrix of 1.5 holes)

in the plate that lower the effective Young’s modulus. Another

source of discrepancy may the corner anchoring that although

flexible may add to the nonlinearity. Nevertheless, the obtained

maximum vibration amplitude is close to the theoretical limit for

bulk silicon. The hysteresis limit was , which cor-

responds to average strain of across the

resonator and maximum strain of

at the resonator center. This corresponds to the stored energy of

190 nJ or average energy density of .

To quantify the effect of nonlinearity due to the capacitive

coupling and to show that the nonlinearity is indeed of mechan-

ical origin, the transmission was also simulated without the me-

chanical nonlinearity in the model. As the capacitive nonlin-

earity given by (24) increases as a square of bias voltage, it

is insignificant at low bias voltages but becomes important at

high bias voltages. This is evident in Fig. 6(b), where simulation
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Fig. 7. The electrical equivalent circuit for MEMS-based oscillator.

without mechanical nonlinearity show no excitation amplitude

dependence at 50 V bias voltage. Higher bias voltages show ca-

pacitive spring softening effect, but even at this is

not enough to explain the observed nonlinearity. A further proof

that the mechanical nonlinearity dominates at low bias voltages

is obtained by looking at the bias and excitation voltage product

at the hysteresis limit. As the driving force and con-

sequently the vibration amplitude is proportional to

this remains constant if the mechanical nonlinearity dominates.

Our measurements for the plate BAW resonator indeed show

that hysteresis is obtained at constant .

As both the first- and second-order nonlinearity can cause

similar distortion on the transmission curve, there is uncertainty

about the relative contribution of and . In principle the

first- and second-order effects can be differentiated by looking

at the vibration spectrum. Unfortunately, as discussed in Sec-

tion III-B, the parallel plate transducer produces harmonics even

for linear vibrations. For our devices, the harmonics in mo-

tional current due to capacitive coupling given by (25) are or-

ders-of-magnitude larger than the harmonics due nonlinear vi-

brations given by (3). Thus, measuring the motional current

spectrum does not yield further information about the mechan-

ical nonlinearity. Future work will measure the mechanical vi-

brations using optical interferometric techniques.

The measured beam BAW’s showed similar behavior but the

measured values showed larger variation from device to de-

vice. We attribute this to the larger surface-to-volume ratio that

causes small geometrical or surface defects to have a larger ef-

fect. Also, the mechanical spring constant for the beams is much

smaller than for the plate causing the capacitive nonlinearity to

be more significant. With capacitive nonlinearity shadowing the

mechanical nonlinearity, accurate absolute values for the non-

linear mechanical spring constant could not be obtained. Based

on our measurements, we estimate upper limits of and

for the correction terms. Thus, even for the 1-D beam

BAW’s, we can conclude that the measured mechanical non-

linearities are not significantly larger than estimated from the

theory and that the devices can be operated near the fundamental

strain limit.

V. NONLINEARITY AND PHASE NOISE PERFORMANCE

To show the importance of nonlinearities for microresonator

performance, it is useful to consider noise-to-carrier ratio in

an oscillator. Fig. 7 shows an electrical equivalent circuit for

a MEMS resonator connected in an oscillator loop with a loop

amplifier and a buffer to interface with the outside world. The

schematic representation that uses two amplifiers is chosen as it

simplifies the analysis by the separating of the near-carrier me-

chanical noise and the far-from-carrier amplifier noise (noise

floor).

The motional resistance , capacitance , and inductance

depend on the effective spring constant , the effective mass

, the quality factor , and the electromechanical transduction

factor [2]. The relation between current and mechanical ve-

locity is .

The mechanical vibration energy stored in the resonator is

(29)

where is the mean-square signal current through the circuit.

The theoretical maximum power deliverable to the buffer is the

same as the power dissipated in the motional resistance i.e.

(30)

In specifying quartz crystal oscillators, the and are in-

terchangeably referred to as the “drive level” and is a measure

of resonator power handling capacity.

The noise current due to motional resistance at the buffer

input is shaped by RLC impedance and is

(31)

For a frequency offset from the center frequency , the

impedance of the series RLC-circuit is

(32)

We can thus write the noise power density due to mechanical

losses at the buffer input as

(33)

The loop amplifier will also add noise but with proper noise

optimization it’s contribution to near-carrier noise can be made

small. For simplicity, the loop amplifier noise is therefore

omitted here.

The buffer amplifier noise sets a fundamental limit for the

oscillator performance at large frequency offsets. The resonator

impedance seen by the buffer amplifier is a rapidly varying func-

tion of , and thus perfect noise matching cannot be obtained

for all frequency offsets. In practice, the consequence is the

constant amplifier noise floor at large frequency offsets. We

model the buffer noise using a white noise power spectral den-

sity .

Adding the buffer noise and dividing (33) by two to

account only the phase not amplitude noise gives the overall

phase noise spectrum. It is customary to normalize this with the

carrier power to obtain the phase noise-to-carrier ratio

(34)
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Thus, we have a near-carrier region originating from mechanical

dissipations where noise falls as , and a constant noise

floor region dominated by the buffer amplifier. Equation (34)

bears close similarity to the generally used models for oscillator

phase noise (e.g., “Leeson’s equation”) [15], [16]. The analysis

has ignored the effect of -noise, which would result in noise

falling as very close to the carrier.

The important observation is that both terms in (34) have an

inverse dependence of signal power and consequently of

the energy (30). As was shown in Section II, the maximum

energy at nonlinear limit scales with device size as

. Thus, assuming fixed frequency, the signal power scales

and the resonator noise floor at nonlinear limit

is proportional to . Thus, the energy storage capacity sets

the fundamental performance limit for microresonators and the

small size cannot be compensated with a high-quality factor.

Finally, we note that the electromechanical transduction factor

does not appear in (34) as it assumes optimal power coupling.

However, in practice a sufficient is required to optimally realize

the oscillator using technologically feasible amplifier interface.

VI. PHASE NOISE COMPARISON

Using (34), the theoretical phase noise can be compared for

the microresonators analyzed in this paper and for a macro-

quartz crystal. The bifurcation limit for a 5 MHz AT-cut

quartz crystal resonator ( , ) is

and the corresponding maximum drive level

and stored energy are and

, respectively [17]. These published

values roughly agree with our own measurements of the hys-

teresis in quartz crystals. The crystal volume is estimated to

be and the corresponding stored energy density is

. Extrapolated to 13 MHz (see Section VII),

the critical parameters are , ,

, and . Comparison to

the silicon plate BAW resonator

shows that orders-of-magnitude higher energy density can be

achieved with silicon micromechanical resonators than with

shear-mode macroscopic quartz devices. This can partially

compensate for the small size of RF-MEMS oscillators.

Fig. 8 shows the theoretical phase noise density for the macro

AT quartz crystal, silicon bridge, silicon cantilever, and silicon

beam BAW and plate BAW resonators summarized in Table II.

All but the cantilever resonators are assumed to be driven to the

mechanical hysteresis limit. The cantilever resonator operates

at 50% of the fracture limit (see Section III-A2). In the plots,

we have assumed buffer noise of

(or in 50 system). The bridge and can-

tilever resonators’ poor noise performance is due to low quality

factor and energy storage capability. In comparison, the beam

BAW has improved performance but the noise floor is still about

30 dB higher than for macro quartz crystal oscillator. The plate

BAW resonator has the same quality factor as the beam BAW but

due to the improved energy storage capability, the noise perfor-

mance is close to the quartz crystal. In practice the oscillators

must be operated well below the bifurcation to avoid aliasing of

noise and the bifurcation limit is used for comparison purpose

only and it may not be reached with real oscillators.

Fig. 8. Comparison of theoretical phase noise for a bridge, beam-BAW,
2-D-BAW, and macroscopic quartz resonator based oscillators.

It may be of interest to compare the noise analysis presented
here to the analysis on noise and scaling in [18]. The devices
analyzed here are much larger and consequently the noise due
to internal dissipation is much larger than the quantum noise
sources in [18]. However, when scaling to smaller dimensions,
the quantum effects can be significant.

For a real world performance comparison, Fig. 9 shows mea-
sured single-sideband (SSB) phase noise to carrier ratio for a
test oscillator based on the plate resonator [19]. The oscillator
demonstrates that sufficient energy can be stored in the mi-
croresonator to satisfy the GSM-specifications for phase noise.

VII. SCALING TO HIGHER FREQUENCIES

This paper has focused on 13 MHz resonators—a frequency

typically used for reference oscillator applications. In transre-

ceiver, the reference frequency is multiplied by a factor to gen-

erate the local oscillator (LO) at the carrier frequency (typically

1–2 GHz). Due to this frequency multiplication, the phase noise

scales as [16]. Alternatively, the resonator can be scaled to

operate at higher frequency to obtain the LO frequency directly.

Thus, it is of interest to develop a scaling law for micro-oscil-

lator phase noise as a function of resonator natural frequency.

Assuming that the frequency-quality factor product is

constant [20], the device scales as

(35)

where all the device dimension are scaled by the same factor

and the device is operated at the hysteresis limit. The phase

noise for the scaled device is

(36)
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TABLE II
RESONATORS USED FOR NOISE SPECTRUM COMPARISON. THE SILICON RESONATORS ARE BASED ON RESULTS PRESENTED IN THIS PAPER. THE QUARTZ

RESONATOR IS EXTRAPOLATED FROM DATA FOR 5 MHz AT-CUT QUARTZ CRYSTAL [17]

Fig. 9. Measured noise spectrum for a microresonator-based low-phase noise
oscillator.

The noise floor is seen to remain constant while the near carrier

noise degrades as . In practice, the noise floor will deteri-

orate for higher frequency oscillator as it is more difficult to

obtain optimal coupling. Thus, from purely phase noise con-

siderations, it is better to use low frequency reference and mul-

tiply it to higher frequency than it is to make a high frequency

oscillator [16].

VIII. CONCLUSION

For many practical applications, the resonator power han-

dling capacity and quality factor are equally important. In this

paper the nonlinear limits for silicon resonators have been quan-

tified and expressions for scaling of resonator energy storage

and power handling capacity were derived. Different microres-

onators were analyzed using one degree-of-freedom model with

anharmonic spring forces. The maximum vibration amplitude

was estimated from bifurcation in the vibration amplitude vs.

frequency curve. Increasing the resonator quality factor was

shown to make the resonator more susceptible to nonlinearities

and lower the maximum energy stored. The geometrical non-

linearity was shown to be the limiting mechanical nonlinear

effect in the bridge resonators. In comparison, the BAW res-

onators demonstrated operation near the fundamental material

limit for silicon. The BAW resonators were theoretically and

experimentally shown to have three orders-of-magnitude larger

energy storage capability than the analyzed flexural resonators.

Moreover, the comparison to macro quartz crystals showed

that for the silicon resonators the maximum energy density

attainable is orders-of-magnitude larger. The importance of

the energy storage capacity was demonstrated by estimating

the theoretically attainable oscillator signal-to-noise ratio. The

flexural resonators were shown to have inferior phase noise

floor in comparison to macroscopic quartz crystals while the

BAW resonators can rival the quartz crystal performance.
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