
A&A 526, A80 (2011)
DOI: 10.1051/0004-6361/201016063
c© ESO 2010

Astronomy
&

Astrophysics

Nonlinear long-wavelength torsional Alfvén waves

S. Vasheghani Farahani1, V. M. Nakariakov1,2, T. Van Doorsselaere3, and E. Verwichte1

1 Centre for Fusion, Space and Astrophysics, Physics Department, University of Warwick, Coventry CV4 7AL, UK
e-mail: s.vasheghani-farahani@warwick.ac.uk

2 Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, 196140 St Petersburg, Russia
3 Centrum voor Plasma-Astrofysica, Mathematics Department, Celestijnenlaan 200B bus 2400, 3001 Leuven, Belgium

Received 3 November 2010 / Accepted 23 November 2010

ABSTRACT

Aims. We investigate the nonlinear phenomena accompanying long-wavelength torsional waves in solar and stellar coronae.
Methods. The second order thin flux-tube approximation is used to determine perturbations of a straight untwisted and non-rotating
magnetic flux-tube, nonlinearly induced by long-wavelength axisymmetric magnetohydrodynamic waves of small, but finite ampli-
tude.
Results. Propagating torsional waves induce compressible perturbations oscillating with double the frequency of the torsional waves.
In contrast with plane shear Alfvén waves, the amplitude of compressible perturbations is independent of the plasma-β and is pro-
portional to the torsional wave amplitude squared. Standing torsional waves induce compressible perturbations of two kinds, that
grow with the characteristic time inversely proportional to the sound speed, and that oscillate at double the frequency of the inducing
torsional wave. The growing density perturbation saturates at the level, inversely proportional to the sound speed.
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1. Introduction

Alfvén waves are often considered as the primary candidate for
the acceleration of solar (e.g. Cranmer 2009) and stellar (e.g.
Charbonneau & MacGregor 1995; Suzuki 2007) winds and coro-
nal heating (e.g. Ofman 2005). Alfvén waves are also considered
in the context of the collimation and confinement of astrophys-
ical jets (Bisnovatyi-Kogan 2007), and in core-collapse super-
nova explosions (Suzuki et al. 2008). However, observational
evidence of Alfveń waves in astrophysical plasmas still remains
indirect, e.g. as a possible interpretation of non-thermal broad-
ening of coronal emission lines (e.g. Banerjee et al. 2009) in
coronal holes.

One of the key ingredients of the theoretical modelling of
Alfvén waves in solar and stellar atmospheres is the concept
of the nonlinear cascade. It is needed to explain the transfer
of wave energy from the low-frequency injection range (that is
around 10 mHz in the solar atmosphere) to the high-
frequencydissipation range. In one-dimensional models, the
nonlinear cascade is connected with nonlinear generation of
higher harmonics, and hence steepening of the waves, caus-
ing the onset of nonlinear dissipation or of non-MHD dissipa-
tive processes. In a uniform plasma, this process is analytically
described by a weakly-nonlinear evolutionary equation, known
as the Cohen–Kulsrud equation (Cohen & Kulsrud 1974). The
cubically-nonlinear term in this equation accounts for the non-
linear self-interaction of linearly or elliptically polarised, plane
Alfvén waves via the wave-induced perturbation of the local
Alfvén speed. These perturbations are often referred to as the
nonlinearly-induced compressible motions in Alfvén waves. In
contrast with the parallel magnetoacoustic waves (e.g., slow
waves in the low-β plasma of the solar corona), these perturba-
tions exist even in the zero-β regime. Circularly polarised plane
Alfvén waves are not subject to this effect.

The compressible flows induced by nonlinear Alfvén waves
have been intensively studied in the context of solar wind accel-
eration (e.g. Ofman & Davila 1998). A modified Cohen-Kulsrud
equation describing spherical Alfvén waves in a stratified atmo-
sphere with a radial magnetic field was derived in Nakariakov
et al. (2000b) in application to coronal holes. Analytical results
are consistent with numerical MHD modelling performed in
Torkelsson & Boynton (1998). More advanced one-dimensional
models for nonlinear Alfvén waves in solar and stellar atmo-
spheres in open-field regions include upflows, super-radial mag-
netic field geometry, non-adiabatic effects and various dissipa-
tion mechanisms (Suzuki 2004; Suzuki & Inutsuka 2005; Suzuki
2007, 2008). Secularly growing compressible perturbations, in-
duced by standing Alfvén waves, have been considered in the
context of coronal loop hydrostatics by Litwin & Rosner (1998),
and in connection with magnetospheric field-line resonances by
Tikhonchuk et al. (1995). Secular compressible effects associ-
ated with travelling in opposite directions Alfvén waves were
found in Verwichte et al. (1999). All those studies were carried
out in terms of a shear Alfvén wave, one-dimensional model.

One-dimensional models mentioned above are based upon
the assumption that the waves are plane. For long-period Alfvén
waves, with periods of the order of typical time scales of lower-
atmospheric dynamics, this condition is not fulfilled. For exam-
ple, for a period of 10 min and an Alfvén speed of 1 Mm/s, the
longitudinal wavelength is 600 Mm. In a plane wave, the trans-
verse wavelength should be much larger than the longitudinal
wavelength. Hence, for the generation of a plane Alfvén wave of
a 10-min period, the wave driver should be of the size exceeding
the solar diameter. Also there should be no transverse structur-
ing of the plasma in the Alfvén speed, otherwise the wavefront
is distorted, and the wave becomes non-planar (e.g. Botha et al.
2000). Thus, the study of the initial stage of the nonlinear cas-
cade in the corona requires consideration of non-planar Alfvén
waves.
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In non-uniform plasma structures, Alfvén waves are situ-
ated on magnetic surfaces. In the field-aligned structured coro-
nal plasmas, Alfvén waves can be present in the form of tor-
sional modes (see discussion in Van Doorsselaere et al. 2008a,b).
Torsional waves are intensively studied theoretically in the con-
text of coronal heating (e.g. Antolin et al. 2008; Copil et al. 2008;
Antolin & Shibata 2010), coronal seismology (Zaqarashvili &
Murawski 2007; Verth et al. 2010) and particle acceleration in
solar flares (Fletcher & Hudson 2008). There is some indirect
evidence of torsional standing modes (Zaqarashvili 2003) and
propagating waves (Banerjee et al. 2009) in spectroscopic data,
and also in microwave emission (Tapping 1983; Grechnev et al.
2003). The aim of this article is to study compressible pertur-
bations induced by long-wavelength weakly-nonlinear torsional
waves, which are essentially non-plane.

2. Compressible flows induced by torsional waves

We are interested in torsional waves of wavelength much longer
than the diameter of the wave-guiding magnetic flux tube with
cylindrical coordinates (r, ϕ, z). In an untwisted and non-rotating
tube with the equilibrium magnetic field Bz0, mass density ρ0,
and circular cross-section area A0, linear torsional waves are
twisting azimuthal motions vϕ accompanied by the appearance
of the azimuthal component of the magnetic field Bϕ. At the
axis of the flux-tube, both quantities vanish, and hence can-
not be described by the first order thin magnetic flux theory
of Roberts & Webb (1978), while they appear in the second-
order thin flux-tube approximation of Zhugzhda (1996). The
approximation allows one to describe axisymmetric (m = 0,
where m is the azimuthal wave number) flows of plasma, in-
cluding sausage, longitudinal and torsional modes (Zhugzhda &
Nakariakov 1999; Vasheghani Farahani et al. 2010) and their in-
teraction. Linear torsional waves are governed by the equations
for the quantities Ω = vϕ/r and J = Bϕ/r, which in the thin
flux tube approximation correspond to the vorticity and electric
current density, respectively,

∂Ω

∂ t
− Bz0

4πρ0

∂ J
∂ z
= 0, (1)

∂ J
∂ t
− Bz0

∂Ω

∂ z
= 0, (2)

where r is the radial coordinate. Also it is worth mentioning that
in the magnetic cylinder, a torsional wave could exist on any
cylindrical shell (magnetic surface), having an arbitrary depen-
dence on r, provided vϕ and Bϕ are zero on the axis of the cylin-
der. In the thin flux tube approximation, those dependencies are
approximated by linear functions. Equations (1) and (2) are read-
ily combined in the wave equation,[
∂2

∂t2
−C2

A
∂2

∂z2

]
J = 0, (3)

where CA = Bz0/
√

4πρ0 is the Alfvén speed. In the linear
regime, these motions are decoupled from compressible mo-
tions. The latter are described by the variables u and V , the lon-
gitudinal and radial components of the velocity, respectively, ρ
the mass density, Bz the longitudinal component of the magnetic
field, p the gas pressure and A the perturbation of the cross-
sectional area of the flux tube.

A long-wavelength torsional wave of a finite amplitude in-
duces compressible motions by three forces: the centrifugal

force connected with the azimuthal rotation of the plasma, the
magnetic tension force caused by the magnetic field curvature,
and the ponderomotive force that is connected with the longitu-
dinal gradients of the magnetic pressure perturbation in the tor-
sional wave. The first two forces are absent from the plane wave
theory of Alfvén waves and appear because of plasma structur-
ing. These forces can modify the flux-tube cross-sectional area,
hence inducing compressible plasma motions in the longitudi-
nal and radial directions. In the second-order thin flux-tube ap-
proximation, these effects are taken into account in the trans-
verse force-balance equation. The ponderomotive force causes
the nonlinear self-interaction of Alfvén waves in the Cohen-
Kulsrud equation formalism.

We consider a weakly-nonlinear torsional wave and restrict
our attention to the linear terms of the compressible variables,
described by the equations

p +
1

4π
Bz0Bz − A0ρ0

2π
∂V
∂ t
− A0Bz0

16π2

∂2Bz

∂ z2

= pext
T +

A0J2

8π2
− A0 ρ0Ω

2

2π
, (4)

ρ0
∂ u
∂ t
+
∂ p
∂ z
= − 1

4π
JR2 ∂J
∂z
, (5)

where pext
T is the total pressure in the external medium, and

R =
√

A0/π is the flux-tube radius. The nonlinear terms associ-
ated with the torsional wave are on the right hand side. In Eq. (5)
the term responsible for the ponderomotive force appears after
accounting for the higher-order terms in the thin flux-tube ex-
pansion.

The compressible variables are expressed through the lon-
gitudinal component of the magnetic field perturbation Bz, with
the use of the linear expressions

∂ ρ

∂ t
+ ρ0
∂ u
∂ z
+ 2ρ0V = 0, (6)

∂ Bz

∂ t
+ 2Bz0V = 0, (7)

∂ p
∂ t
− C2

s
∂ ρ

∂ t
= 0, (8)

where Cs is the sound speed. Equations (6)–(8) are readily com-
bined in a driven wave equation for the density perturbation,

(C2
s + C2

A)DTρ +
A0

4π
DsDAρ =

∂2 pext
T

∂t2
+

A0

2π
∂2

∂t2

(
J2

4π
− ρ0Ω

2

)

+
R2C2

A

4π
∂

∂z

(
J
∂J
∂z

)
+

A0R2

16π2
DA
∂

∂z

(
J
∂J
∂z

)
,(9)

where

DT, s,A =
∂2

∂t2
−C2

T, s,A
∂2

∂z2
, and CT =

C2
AC2

s

C2
A +C2

s
· (10)

The last term on the right hand side of Eq. (9) can be ne-
glected in comparison with the other terms, as it is proportional
to A0/λ

2 � 1, where λ is the longitudinal wavelength. The
second term on the left hand side, responsible for wave disper-
sion, can be neglected too. Equation (9) describes the excitation
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of compressible motions by weakly nonlinear, long-wavelength
torsional waves in a thin magnetic flux tube. In the following
we ignore the perturbation of the total pressure in the external
medium, pext

T , concentrating on the compressible flows inside the
flux-tube.

(C2
s + C2

A)DTρ =
A0

2π
∂2

∂t2

(
J2

4π
− ρ0Ω

2

)

+
R2C2

A

4π
∂

∂z

(
J
∂J
∂z

)
, (11)

also, the back-reaction of the induced compressible flows on the
torsional waves through the modification of the local Alfvén
speed and the flux-tube diameter is not considered. The latter
assumption is justified by the consideration of the quadratically
nonlinear terms only, while the consideration of the Alfvén wave
self-interaction appears when the cubic nonlinearity is taken into
account.

The first term on the right hand side of Eq. (11) has two
terms associated with the nonlinear torsional wave, which have
opposite signs. Hence, their combined effect on the compress-
ible flows depends upon the phase relations between the twist
and the rotation of the plasma in the torsional waves. Consider
separately the cases of propagating and standing waves.

3. Propagating torsional waves

We take a propagating solution of Eq. (11),

J = ja cos(ω t − kz), (12)

where ja is the amplitude of the magnetic twist, and ω and k
are the frequency and the wavenumber, respectively, for which
ω = ±CAk. We use Eq. (1) to express the associated rotation of
the flux-tube as

Ω = − ja
(4πρ0)1/2

cos(ω t − kz). (13)

For such a solution, the first term on the right-hand side of
Eq. (11) vanishes:

J2

4π
− ρ0Ω

2 =

(
j2a

4π
− ρ0

(− ja)2

4πρ0

)
cos2(ω t − kz) = 0. (14)

This means that the effects of nonlinear magnetic twist and
plasma rotation in the travelling wave cancel out each other, and
do not add new effects to the nonlinear compressibility of propa-
gating torsional waves. Thus, the induced compressible motions
are described by the equation

(C2
s + C2

A)DTρ = −
R2C2

A

4π
k2 j2a cos[2(ωt − kz)]. (15)

with the driven solution

ρ =
R2 j2a

16πC2
A

cos[2(ωt − kz)]. (16)

Thus, we obtain that the right hand side of Eq. (16) is indepen-
dent of the value of the sound speed.

Compare Eq. (16) with the case without transverse structur-
ing, i.e. with plane shear Alfvén waves. Consider waves propa-
gating in the z-direction, taking ∂/∂y = 0 and ∂/∂x = 0. Restrict
our attention to the linearly polarised Alfvén waves, vy and By.

Following the formalism developed in Nakariakov et al. (2000a),
we obtain the equivalent of Eq. (11)

Dsρ =
1

4π
∂

∂z
By
∂By
∂z
· (17)

Taking By = Byacos(ωt − kz) we get

Dsρ = − 1
4π

B2
yak

2cos(2ωt − 2kz), (18)

with the solution

ρ =
B2
yak

2

16π(ω2 −C2
Ak2β)

cos(2ωt − 2kz), (19)

where β = C2
s /C

2
A. With ja ≈ Bϕa/R, we observe that the right

hand side terms in Eqs. (16) and (19) are of the similar order.
However, there is an important difference between solutions (16)
and (19) is that in the case of torsional waves, there is no possi-
bility for a resonance of the Alfvén waves with the sound wave.
Note, in the zero-β limit, both solutions coincide.

4. Standing torsional waves

We consider standing torsional waves that may appear in closed
magnetic structures, e.g. coronal loops with k = π/L where L is
the loop length

J = 2 ja cos(ω t) cos(kz),

Ω = −2
ja

(4πρ0)1/2
sin(ω t) sin(kz), (20)

where the phase relations between the perturbed magnetic twist
and the vorticity are obtained from Eqs. (1) and (2). Substituting
Eqs. (20) in Eq. (11), and neglecting dispersive effects, higher
order terms and the perturbations of the external medium, we
obtain

(C2
s + C2

A)DTρ = −
R2C2

A

2π
j2ak2 (1 + cos(2ωt)) cos(2kz)

− A0 j2aω
2

π2
cos(2ωt). (21)

The first term on the right hand side represents the ponderomo-
tive effect, and the second term contains the magnetic tension
and centrifugal effects.

In the finite-β case with the constraint β� 1 the solution for
Eq. (21) is

ρ = − R2 j2a
8πC2

s (1 + β)
(1 − cos(2Cskt)) cos(2kz)

+

⎛⎜⎜⎜⎜⎝ R2

4πC2
A(1 + β)

+
R2cos(2kz)

8πC2
A

⎞⎟⎟⎟⎟⎠ × j2acos(2ωt), (22)

where ω = CAk. Equation (22) is similar to Eq. (13) of
Tikhonchuk et al. (1995) obtained for shear Alfvén waves.

According to Eq. (22), standing torsional waves induce
growing compressible perturbations, similarly to standing shear
Alfvén waves (Tikhonchuk et al. 1995; Verwichte et al. 1999;
Litwin & Rosner 1998) and standing kink modes of coronal
loops (Terradas & Ofman 2004). The growth is connected with
the ponderomotive term on the right hand side of Eq. (21).
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Finite-β effects cause saturation of the compressible perturba-
tion. Using the results obtained for shear Alfvén waves, we ob-
tain that the highest value of the density perturbation,

ρ

ρ0
=

R2 j2a
4πρ0

1

C2
s (1 + C2

s /C2
A)
, (23)

is reached at the time tmax � L/2Cs, where L is the loop length.
Also, in the case of standing waves, the centrifugal and mag-

netic tension terms do not cancel each other, and produce com-
pressible perturbations oscillating at the double frequency of the
torsional wave. However, those terms do not cause the secular
growth of compressible perturbations.

5. Conclusions

We considered compressible perturbations induced in straight
untwisted and non-rotating magnetic flux tubes by weakly-
nonlinear long-wavelength torsional waves. We can summarise
our findings as follows:

1. Long-wavelength torsional waves induce compressible per-
turbations by the ponderomotive, centrifugal and magnetic
twist forces. The perturbations have double the frequency of
the inducing torsional wave. The efficiency of the excitation
depends upon the spatial (standing and propagating) struc-
ture of the inducing torsional wave.

2. The efficiency of the generation of compressible perturba-
tions by long-wavelength torsional waves is independent of
the plasma-β (see Eq. (16)). This result is different from
the excitation of compressible perturbations by plane shear
Alfvén waves, in which case the efficiency grows when the
Alfvén and sound speeds approach each other. The discrep-
ancy is connected with the fact that the tube speed is always
lower than the Alfvén speed. The relative amplitude of the
induced density perturbation is ρ/ρ0 = B2

ϕ/4B2
z0, where Bϕ is

the perturbation of the magnetic field at the boundary of the
flux tube.

3. There are two kinds of compressible perturbations induced
by standing torsional waves: the perturbations which grow
with the time scale 1/2Csk, where k is the longitudinal wave
number of the torsional wave, and the perturbations oscillat-
ing at the double frequency of the driving torsional mode.
The growing density perturbations saturate at the level in-
versely proportional to the sound speed.

Thus we conclude that nonlinear compressible effects which ac-
company standing weakly-nonlinear long-wavelength torsional

waves are similar to those derived for plane shear Alfvén waves.
For propagating waves, the efficiency of the nonlinear generation
of compressible perturbations does not grow with the plasma
beta. This effect should be taken into account in one-dimensional
models of the solar and stellar wind acceleration by Alfvén
waves.
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