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Abstract

It has been well demonstrated over the past few years that vibration energy harvesters with

intentionally designed nonlinear stiffness components can be used for frequency bandwidth

enhancement under harmonic excitation for sufficiently high vibration amplitudes. In order to

overcome the need for high excitation intensities that are required to exploit nonlinear dynamic

phenomena, we have developed an M-shaped piezoelectric energy harvester configuration that

can exhibit a nonlinear frequency response under very low vibration levels. This configuration is

made from a continuous bent spring steel with piezoelectric laminates and a proof mass but no

magnetic components. Careful design of this nonlinear architecture that minimizes piezoelectric

softening further enables the possibility of achieving the jump phenomenon in hardening at few

milli-g base acceleration levels. In the present work, such a design is explored for both primary

and secondary resonance excitations at different vibration levels and load resistance values.

Following the primary resonance excitation case that offers a 660% increase in the half-power

bandwidth as compared to the linear system at a root-mean-square excitation level as low as

0.04g, secondary resonance behavior is investigated with a focus on 1:2 and 1:3 superharmonic

resonance neighborhoods. A multi-term harmonic balance formulation is employed for a

computationally effective yet high-fidelity analysis of this high-quality-factor system with

quadratic and cubic nonlinearities. In addition to primary resonance and secondary

(superharmonic) resonance cases, multi-harmonic excitation is modeled and experimentally

validated.
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1. Introduction

The transformation of ambient vibration into low-power

electricity for powering small electronic components (e.g.

wireless sensors) has received growing attention over the last

decade [1–3] to enable energy-autonomous systems. Various

research groups have reported their work on modeling and

applications of vibration-based energy harvesting using

electromagnetic [4–6], electrostatic [7–9], piezoelectric [10–

13] and magnetostrictive [14, 15] transduction mechanisms,

as well as the use of electronic and ionic electroactive poly-

mers [16, 17] and polymer electrets [18], and even flex-

oelectricity for energy harvesting at submicron scales [19].

Among the basic transduction mechanisms that can be used

for vibration-to-electricity conversion, piezoelectric trans-

duction has received the most attention due to the high power

density and ease of application of piezoelectric materials

[2, 20, 21].
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Theoretical and experimental aspects of linear-resonant

piezoelectric energy harvesting have been researched exten-

sively in the first decade of this century [10–13]. A major

limitation in the commonly employed resonant energy har-

vester configuration is that the effective power generation

performance of the device is limited to resonance excitation.

Especially in high-quality-factor piezoelectric energy har-

vesters, if the excitation frequency deviates slightly from the

fundamental linear resonance frequency of the harvester (as a

result of manufacturing imperfections or changing excitation

and/or environmental conditions), the electrical power output

is drastically reduced by orders of magnitude. To overcome

this bandwidth issue of conventional linear-resonant config-

urations, researchers have recently investigated exploitation

of nonlinear dynamic phenomena [22–24]. For the broad

literature of nonlinear energy harvesting, the reader is referred

to a recent comprehensive review article [25]. Only a brief

review is given in the next paragraph.

Early investigations of exploiting nonlinear stiffness in

electromagnetic energy harvesting were due to Burrow et al

[26] and Mann and Sims [27] using monostable Duffing

oscillators. Arguably the first intentionally-designed nonlinear

piezoelectric energy harvester architectures were published

independently by Cottone et al [28] and Erturk et al [29] in

early 2009. Using two different bistable ‘piezo-

magnetoelastic’ structures, the former group explored noise

(random) excitation [28] while the latter one [29] explored

harmonic excitation with a focus on broadband interwell

periodic oscillations. Another seminal paper was due to

Stanton et al [30] who showed bidirectional increase of the

frequency bandwidth in a monostable ‘magnetopiezoelastic’

configuration. After this explosion of pioneering research in

nonlinear energy harvesting, numerous other papers appeared

on exploiting nonlinear dynamic phenomena in vibration

energy harvesting. Other than magnetoelastic interactions

[29–34], purely elastic buckling was also considered for

bandwidth and performance enhancement in nonlinear energy

harvesting [35, 36]. A bistable electromagnetic energy har-

vester was theoretically and experimentally explored by

Mann and Owens [37]. In electrostatic energy harvesting,

MEMS bistable spring arrangements for bandwidth

enhancement were presented by Nguyen et al [38]. Stanton

et al [32] theoretically investigated bifurcations of a bistable

configuration similar to the one tested by Cottone et al [39],

and presented harmonic balance analysis using a single har-

monic [34]. Ramlan et al [40] explored hardening stiffness in

monostable Duffing oscillator along with snap-through

behavior in a mass-spring-damper mechanism. Two research

groups reported superharmonic resonance behaviors in

monostable [41] and bistable [42] energy harvesters. Other

than the aforementioned intentionally designed nonlinearities,

inherent electroelastic and dissipative nonlinearities in pie-

zoelectric energy harvesting were studied by Stanton et al

[43–45] and most recently by Leadenham and Erturk [46] to

establish a unified framework. Others investigated random

excitation of nonlinear energy harvesters [47–52], which is

beyond the scope of our current paper.

Under harmonic excitation, typically the greatest band-

width enhancement can be achieved in the presence of strong

nonlinearities and under hard (strong) excitation [22]. For

instance, to overcome the potential barrier in bistable energy

harvesters and exploit broadband interwell periodic oscilla-

tions [29], the required excitation levels are typically [29–36]

on the order of 0.5–1g (where g= 9.81 m s−2). This presents a

challenge for nonlinear energy harvesting in low-intensity

vibration environments. Furthermore, most meso-scale non-

linear energy harvesters use discrete components (e.g. mag-

nets) and magnetoelastic interactions to create the desired

nonlinear stiffness. Such designs are relatively complex and

magnetic interactions may not be allowable in some envir-

onments. To avoid these potential issues, we have developed

an M-shaped bent spring steel asymmetric oscillator for

nonlinear bandwidth enhancement as a simple but effective

design for piezoelectric and/or electromagnetic energy har-

vesting (inspired by its MEMS counterpart [53] used for

electrostatic energy harvesting).

In our recent effort [54] focusing on purely mechanical

(structural) dynamics of this configuration, it was suggested

that broadband energy harvesting can be achieved for exci-

tations below 0.1g base acceleration. In the following, we

introduce an M-shaped piezoelectric energy harvester proto-

type, present its empirical mathematical model, and investi-

gate its linear and nonlinear electromechanical dynamics by

rigorous experiments and high-fidelity modeling using the

method of harmonic balance with multiple terms. Both pri-

mary resonance and secondary resonance (for superharmonic

response) behaviors, as well as multi-harmonic excitation, are

modeled and experimentally validated.

2. Nonlinear piezoelectric energy harvester,

mathematical description, and analysis

2.1. M-shaped piezoelectric energy harvester

3D model and photographic views of the nonlinear M-shaped

piezoelectric energy harvester prototype explored in this work

are shown in figure 1 along with its clamp and shaker mount.

While this device can be fabricated at different geometric

scales, the M-shaped energy harvester analyzed in this work

consists of a flexible beam made from 25.4 mm wide by

0.254 mm thick AISI 1075 spring steel and is approximately

22 cm long. The steel is cut and bent using common sheet

metal tools. The bend angles used are small enough to allow

near zero radius bends without first heating the metal. The

lumped mass attachment consists of pieces of stainless steel,

bolted together sandwiching the center of the beam. Both

ends of the bent beam are clamped. The clamp and shaker

mount are made from 6061 aluminum. Electromechanical

coupling is due to four piezoelectric patches bonded near the

clamps (resulting in two bimorphs bracketing the continuous

spring steel substrate). Dynamic bending of the spring causes

tensile and compressive strains on the piezoelectric layers,

yielding an alternating voltage via the direct piezoelectric

effect, which is then connected to an electrical load for AC
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power generation (or it can be rectified and conditioned in an

energy harvesting circuit to obtain a stable DC signal for

charging a storage component). The present effort focuses on

analyzing the AC power generation characteristics and har-

monic balance analysis of this nonlinear piezoelectric energy

harvester when excited near its primary or secondary

(superharmonic) resonance frequencies.

2.2. Governing electromechanical equations

The M-shaped energy harvester is modeled as a single-

degree-of-freedom system undergoing base excitation with

linear viscous and quadratic damping terms, a nonlinear

elastic restoring force, and linear electromechanical coupling

(figure 2). The locations of the piezoelectric patches in

figure 1(b) are chosen to reduce piezoelectric softening non-

linearity [46] and best exploit the geometric hardening non-

linearity of the M-shaped design1. The force balance and

current balance equations are then

θ̈ + ̇ + ̇ ̇ + − = − ̈mz bz b x x F z v my( ) ¯ , (1)a s

θ̇ + + ̇ =C v
R
v z

1
0, (2)p

l

where m is the equivalent mass of the device, m̄ is the

effective mass that causes the forcing term due to base

excitation ( ≅m m̄ if the lumped mass dominates the mass of

the rest of the structure), b is the linear viscous damping

coefficient, ba is the quadratic (velocity-squared) damping

coefficient (typically attributed to fluid-structure interaction),

F z( )s is the nonlinear elastic restoring force, y t( ) is the base

displacement measured in an inertial frame, z t( ) is the

displacement of the oscillator relative to the moving base,

x t( ) is the displacement of the mass relative to the fixed

reference frame (i.e. = +x t y t z t( ) ( ) ( ) ), and an overdot

represents differentiation with respect to time.

2.3. Harmonic balance analysis: general multi-harmonic

formulation

The second-order force balance equation with nonlinear terms

and linear current balance equation given by equations (1) and

(2) can be expressed in the form of three first-order equations

for time-domain numerical simulations (e.g. by using ode45

in MATLAB). However, the process of numerical simulation

in time domain can be computationally lengthy (especially to

reach steady state in high-quality-factor systems), and it offers

little or no insight into the underlying mathematics of the

problem. Among the methods of approximate analytical

solutions for nonlinear differential equations, the method of

harmonic balance [22, 54, 55] is preferred in this work, since

the system studied here exhibits a high degree of nonlinearity

(strong nonlinearity) and therefore it is required to explore

multi-harmonic solutions for enhanced accuracy [54]. In the

following, first the multi-harmonic solution is given by

accounting for higher harmonics and a DC (constant) com-

ponent prior to demonstrating the solution process for the case

of a single harmonic.

Figure 1. (a) 3D model and (b) picture of the nonlinear M-shaped
piezoelectric energy harvester prototype along with its clamp and
shaker mount. Close-up picture shows one of the four piezoelectric
patches (which form two bimorphs).

Figure 2. (a) Lumped-parameter electromechanical model and (b)
equivalent circuit model with a dependent current source and linear
electromechanical coupling.

1
Piezoelectric material nonlinearity in energy harvesting is manifested in the

form of ferroelastic softening (of quadratic order—from the dynamical

system standpoint—according to our recent work [46]), which would

inherently eliminate a significant part of the geometric hardening bandwidth

(before it appears) in the case of tightly clamped piezoelectrics at the roots.

Therefore piezoelectric patches are deliberately located slightly outside the

clamps to reduce the strain in piezoelectrics. This is a tradeoff between the

peak power output and the frequency bandwidth, and clearly the effort

presented here is concerned with the latter.
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The base excitation term is assumed to be harmonic of

the form:

Ω̈ =y t A t( ) cos( ), (3)

where A is the base acceleration amplitude and Ω is the

driving frequency. It is useful to write the governing in state-

space form:

= = ̇ =x z x z x v, , . (4)1 2 3

The governing equations then become the first order

system of ordinary differential equations:

Ω
Ω

Ω
Ω θ Ω

θ

̇ =

̇ = − − +

× + − + −

̇ =
−

+

x x

x
m

bx b x
A

t

x
A

t F x x mA t

x
C R

x x

,

1
sin( )

sin( ) ( ) ¯ cos( ) ,

1 1

(5)

a

s

p l

1 2

2 2 2

2 1 3

3 3 2

⎜ ⎟

⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟

which can be written in vector form:

⃗ ̇ = ⃗ ⃗ = ⃗ + ⃗( ) ( )x f t x f t T x, , . (6)

This system with explicit time dependence is periodic in

time with period π Ω=T 2 . A truncated Fourier series solu-

tion with N harmonics and the same period is assumed for

solution:

⃗ = ⃗ + ⃗ + ⃗x t a c t s tA B( ) ( ) ( ), (7)

where ⃗a is a constant vector representing the DC components

of the response, A and B are constant 3xN rectangular

matrices containing the cosine and sine coefficients, while

⃗c t( ) and ⃗s t( ) are vectors of cosine and sine functions defined

as

Ω

Ω

=
=

c t n t

s t n t

( ) cos( ),

( ) sin( ). (8)

n

n

With the chosen approximate solution, the residual

function is

⃗ = ⃗ ⃗ − ⃗ ̇( )r t f t x t x t( ) , ( ) ( ). (9)

In order to find the unknowns ⃗a , A, and B¸ the residual

function is minimized in the Galerkin method sense such that

∫

∫

∫

⃗ =

⃗ ⃗ =

⃗ ⃗ =

π Ω

π Ω

π Ω

r t t

r t c t t

r t s t t

( )d 0,

( ) ( )d 0,

( ) ( )d 0. (10)

0

2

0

2
T

0

2
T

This yields 3(2N+ 1) equations for the same number of

unknowns. This nonlinear system of algebraic equations can

be solved in a number of ways, one of the best being the

Newton–Raphson method.

2.4. Single-harmonic formulation and frequency response

equations

While the main advantage of harmonic balance analysis is the

ease of including higher harmonics in a systematic way,

consider the simplest solution using only the constant term

and first frequency component, i.e. N= 1, in order to illustrate

the solution process. The assumed solutions for the relative

displacement, relative velocity, and electrode voltage are

Ω Ω= = + +z t x t a A t B t( ) ( ) cos( ) sin( ), (11)1 1 11 11

Ω Ω̇ = = + +z t x t a A t B t( ) ( ) cos( ) sin( ), (12)2 2 21 21

Ω Ω= = + +v t x t a A t B t( ) ( ) cos( ) sin( ) (13)3 3 31 31

which yield the following residual functions:

Ω Ω

Ω Ω Ω Ω

= + +
+ −

r t a A t B t

A t B t

( ) cos( ) sin( )

sin( ) cos( ), (14)

1 2 21 21

11 11

Ω Ω Ω

Ω Ω

Ω
Ω

Ω

Ω
Ω

Ω

Ω Ω

Ω Ω

Ω Ω

Ω Ω

Ω Ω

θ Ω Ω

Ω

= − +

+ + +

+ + + +

× + + +

+ + +

+ + +

+ + +

+ + +

+ + +

− + +

+

[ ]
[ ]

[ ]

[ ]

[ ]

[ ]
[ ]

( )

r t m A t B t

b a A t B t

b a A t B
A

t

a A t B
A

t

k a A t B t

k a A t B t

k a A t B t

k a A t B t

k a A t B t

a A t B t

mA t

( ) sin( ) cos( )

cos( ) sin( )

cos( ) sin( )

cos( ) sin( )

cos( ) sin( )

cos( ) sin( )

cos( ) sin( )

cos( ) sin( )

cos( ) sin( )

cos( ) sin( )

¯ cos ( ), (15)

a

2 21 21

2 21 21

2 21 21

2 21 21

1 1 11 11

2 1 11 11
2

3 1 11 11
3

4 1 11 11
4

5 1 11 11
5

3 31 31

⎜ ⎟

⎜ ⎟

⎛

⎝

⎞

⎠

⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎤
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⎥
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Ω Ω

θ Ω Ω
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+ + +

+ + +

[ ]

[ ]

[ ]

r t C A t B t

R
a A t B t

a A t B t

( ) sin( ) cos( )

1
cos( ) sin( )

cos( ) sin( ) . (16)

p

l

3 31 31

3 31 31

2 21 21

Minimizing the residual functions in the Galerkin sense

(equation (10)) means finding the unknowns (elements of ⃗a ,
A, and B) such that each of the residual functions is ortho-

gonal to each of the basis functions: 1, Ωtcos( ), and Ωtsin( )

in this particular case of N = 1. Carrying out the required

integrations yields the following system of nine nonlinear

algebraic equations for the nine unknown Fourier coefficients

in equations (11)–(13):

=a 0, (17)2

Ω− =A B 0, (18)21 11

Ω+ =B A 0, (19)21 11

4
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θ

+ + +

+ + +

+ + + +

+ + +

+ + − +

+ + + =

k a A k a B k a A k a B

k A B k a A k a B

k a A k a B k A k B

k a k A k B

k a k a a b a

k a k a k a A B

3 3 6 6

3

2
10 10

15

4

15

4

2
3

4

3

4

2 2 2 2

2 2
15

2
0, (20)

3 1 11
2

3 1 11
2

4 1
2

11
2

4 1
2

11
2

4 11
2

11
2

5 1
3

11
2

5 1
3

11
2

5 1 11
4

5 1 11
4

2 11
2

2 11
2

3 1
3

4 11
4

4 11
4

4 1
4

5 1
5

3 eq 2

1 1 2 1
2

5 1 11
2

11
2

θ

Ω

+ + + +

− + +

+ + +

+ +

+ + +

+ + =

k A mA k A b A k A

A k a A B k a A B

k A B k a A k a A

k a A k a A

m B k a A k a A

k A B k A B

3

4
¯

5

8

3
15

2
5

8

15

2
4

3 5

2 3

5

4

3

4
0, (21)

3 11
3

5 11
5

eq 21 1 11

31 4 1 11 11
2

5 1
2

11 11
2

5 11 11
4

5 1
2

11
3

4 1
3

11

4 1 11
3

5 1
4

11

21 2 1 11 4 1
2

11

5 11
3

11
2

3 11 11
2

Ω

θ

− + + +

+ +

+ + +

+ + +

+ + − +

+ =

m A k a B k a B k a B

k a B k A B

k A B k A B k a B

k a B b B k B

k B k B B k a A B

k a A B

4 5 2

3
5

8

3

4

5

4
3

15

2
5

8

3

4
3

15

2
0, (22)

21 4 1
3

11 5 1
4

11 2 1 11

3 1
2

11 5 11
4

11

3 11
2

11 5 11
2

11
3

4 1 11
3

5 1
2

11
3

eq 21 1 11

5 11
5

3 11
3

31 4 1 11
2

11

5 1
2

11
2

11

θ + =a
R
a

1
0, (23)

l
2 3

Ω θ+ + =C B
R
A A

1
0, (24)p

l
31 31 21

Ω θ− − =C A
R
B B

1
0, (25)p

l
31 31 21

where the first three equations confirm the expected relation-

ship between z and ̇z. In these equations the dissipative terms

have been combined by defining an equivalent viscous

damping coefficient, b ,eq as

π
= + +b b b A B

8

3
. (26)aeq 21

2
21
2

This is a very good approximation when the base velo-

city ( ̇y) is small compared to the relative velocity ( ̇z ). This
approximation is necessary, as integrating the quadratic dis-

sipation term in closed form is impossible for general har-

monic balance solutions with N harmonics. As is apparent,

this system of equations is not solvable directly, and a

numerical method such as Newton–Raphson is required to

solve them. The difficulty of generating the system of

algebraic equations in closed form and the necessity of sol-

ving them numerically make it evident that, in practice, it is

better to numerically generate and solve the system of non-

linear equations for harmonic balance analyses from the

outset.

It is worth mentioning the approach used in the compu-

tational algorithm to obtain the harmonic balance analysis

results presented in this work. A general harmonic balance

solver is written to solve any system that can be written in the

form of equation (6), which might include other nonlinearities

(e.g. inertial [56], piezoelectric [46], and even circuit [57]

nonlinearities). Since the integrations in equation (10) (and

associated integrations to find elements of the Jacobian

necessary for the Newton–Raphson method) are equivalent to

finding Fourier series components, the algorithm’s speed is

significantly increased using fast Fourier transform (FFT)

algorithms. In this way, harmonic balance analyses to find

periodic solutions to high order/dimension systems can be

completed orders of magnitude faster than time domain

simulations, even while keeping many more harmonic com-

ponents than is feasible with perturbation methods such as the

Lindstedt–Poincaré method or the method of multiple scales

[58]. The benefits over time domain simulation are especially

apparent for high-quality-factor systems, where much com-

putation time can be wasted simulating transients. Also by

including the appropriate harmonics and choosing the correct

driving frequency range, it is simple to use the method of

harmonic balance to analyze secondary and combination

resonances in addition to the primary resonance of a nonlinear

oscillatory system.

2.5. Multi-harmonic excitation

Another advantage of the method of harmonic balance is the

ease with which the analysis may be extended to include

excitation from an arbitrary periodic source rather than a pure

sinusoid. From the experimental standpoint, providing an

ideal single frequency base acceleration is impossible, and in

some circumstances, the contribution of harmonic distortion

in the excitation to the response may not be negligible, which

might yield misleading experimental results. For example, an

ideal experiment to observe a quadratic superharmonic reso-

nance would involve a single frequency excitation at

Ω ω≈ 2,n where ωn is the linear natural frequency of the

system. If a quadratic nonlinearity is present, a response at ωn
would be generated and then dynamically amplified, dom-

inating the subresonant quasi-linear response at Ω. However,

suppose the excitation (base acceleration) is not a pure sinu-

soid and instead is a general periodic function with form:

∑ Ω ϕ̈ = + +
=

∞

( )y t p p n t( ) cos . (27)

n

n n0

1

In this case, the response at ωn is due to both the quad-

ratic nonlinearity as well as forcing at the natural frequency

directly from the term with coefficient p .2 Experimentally, it

is impossible to separate the superharmonic resonant response

to the fundamental frequency of excitation signal from the

quasi-linear resonant response due to higher harmonics of the

5
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excitation signal. Therefore it is useful to be able to simulate

response to multi-harmonic excitation to validate experiments

and analyze differences between ideal experimental condi-

tions and more realistic ones. Additionally, there might be

practical scenarios of energy harvesting in which the ambient

excitation form is indeed general periodic rather than simple

harmonic.

3. Experimental results and model validation

3.1. Experimental procedure

In order to analyze the primary and secondary (super-

harmonic) resonance energy harvesting performance of the

device, as well as identify model parameters to simulate the

system as previously discussed, a series of experiments are

conducted. A static force–displacement test is completed to

identify the nonlinear restoring force, F .s Low amplitude lin-

ear regime energy harvesting tests are conducted to extract the

equivalent mass, linear damping, and electromechanical

coupling parameters. Finally nonlinear frequency sweep

energy harvesting tests are reported for both primary and

secondary (superharmonic) resonance excitation to evaluate

the performance of the M-shaped energy harvester and the

fidelity of the nonlinear electromechanical model and its

harmonic balance analysis. Multi-harmonic excitation (as a

part of secondary resonance excitation for superharmonic

response) is also demonstrated and validated as an application

of the model presented here.

3.2. Experimental setup for nonlinear dynamic analysis

An overview picture of the experimental setup is shown in

figure 3 along with a close up view of the M-shaped piezo-

electric energy harvester. Experiments are performed using an

APS-113 seismic shaker driven by an APS-125 amplifier and

controlled by a SPEKTRA VCS-201 controller. These devi-

ces allow for the sample to be subjected to harmonic base

acceleration at specified amplitudes and frequencies. Tests

consist of up and down frequency sweeps at a constant

kinematic variable (in this case base acceleration amplitude)

necessary for frequency response analysis of the nonlinear

system. Base acceleration measured by a Kistler model

8636C50 ICP accelerometer is used for feedback to the VCS-

201 controller. A Polytec PDV-100 Portable Digital Vib-

rometer is used to measure the base velocity. The velocity of

the lumped mass (i.e. center of the M-shaped oscillator) is

measured using a Polytec OFV-505 sensor head and OFV-

5000 controller. Current output from the piezoelectric ele-

ments is shunted through a variable resistance box (IET Labs,

RS-201W), the voltage across which is measured. A National

Instruments NI USB-4431 unit is employed for data

acquisition.

3.3. Parameter identification

In order to investigate the nonlinear system dynamics theo-

retically, it is necessary to identify the relevant parameters of

the M-shaped energy harvester. First the relationship between

deflection and restoring force (F )s is extracted to empirically

model the nonlinear stiffness behavior under short-circuit

condition. To this end, the oscillator is bolted to the rigid

optical table vertically (to set =y 0 so that =x z ). The

lumped mass attachment is removed (to avoid any sag due to

gravity), and then weights are suspended from the center of

the spring. Central deflection (z) is measured using the OFV-

5000 displacement decoder of the laser vibrometer. The

sample is turned over and the process repeated. It is assumed

that the weight of the spring itself is negligible compared to

the suspended weights. It is also assumed the removal of the

mass attachments does not change the stiffness characteristics

of the spring. The resulting force versus displacement curve is

plotted in figure 4 along with a polynomial curve fit.

The following quintic (fifth-order) polynomial form is fit

to the experimental nonlinear static force versus displacement

Figure 3. Experimental setup: (1) M-shaped nonlinear piezoelectric
energy harvester; (2) vibration exciter (electrodynamic shaker); (3)
accelerometer; (4) laser Doppler vibrometers; (5) vibration control
unit (using base acceleration as the feedback signal); (6) power
amplifier; (7) signal conditioner; and (8) resistance substitution
(decade) box.

Figure 4. Experimental nonlinear static force versus displacement
data (under short-circuit condition for the piezoelectric patches) and
a quintic polynomial curve fit.
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data:

= + + + +F z k z k z k z k z k z( ) . (28)s 1 2
2

3
3

4
4

5
5

Here, the linear coefficient (k )1 can be interpreted as the linear

spring stiffness for small displacements, while the higher

order coefficients define the nonlinearity. Identified values of

the stiffness coefficients are listed in table 1. The values of the

coefficients are displayed with respect to a cm length scale, as

this is the order of magnitude of displacements during

nonlinear testing (note that the model obviously uses

consistent SI units that take the displacement in meters in

calculations). It is apparent that the quadratic and cubic terms

dominate the nonlinearity, and are relatively comparable to

each other in strength. Specifically, if the displacement is O

(1) (‘order 1’ in cm scale) the cubic nonlinearity dominates

the nonlinear part and comparable contribution is also due to

the quadratic nonlinearity (this O(1) response physically

happens for primary resonance excitation). On the other hand,

if the displacement response is O(0.1) (‘order 0.1’ in cm-

scale, or ‘order 1’ in mm-scale – which is expected to happen

in secondary resonance excitation, e.g. superharmonic

resonance), there is a predominant effect of quadratic

nonlinearity, rather than cubic nonlinearity. This discussion

will be revisited in the ‘secondary resonance for super-

harmonic response’ section.

The equivalent mass, linear damping coefficient, and

electromechanical coupling coefficients are obtained from

linear energy harvesting resistor sweep experiments, and the

harvester capacitance is measured directly. Note that the

equivalent mass is simply ω=m k / n1
2 (where ωn is the short-

circuit natural frequency). Linear viscous damping coefficient

is simply ζ ω=b m2 ,n where the mechanical damping ratio (ζ)

is identified from half-power points of the short-circuit

vibration frequency response (it could as well be identified

from free vibrations [54] under short-circuit condition by

using the logarithmic decrement). Finally, the quadratic

damping term, b ,a in equation (1) is found to account for

overestimates of peak response with linear damping alone.

The physical justification of quadratic (or velocity-squared)

damping is nonlinear fluid damping [59, 60] associated with

drag force resulting from large amplitude vibration. These

model parameters are summarized in table 2.

3.4. Linear frequency response

The linear regime energy harvesting tests allow the measuring

of the velocity, voltage, current, and power frequency

response functions (FRFs) by means of white noise type

random base excitation. For this system, white noise excita-

tion is preferable to a chirp or sine sweep, because the

threshold for nonlinear behavior is extremely low (which is

the advantage of the configuration to exploit nonlinear

broadband behavior for low excitation intensities), on the

order of × −5 10 3g RMS base acceleration. A finite set of

resistive loads has to be used in the experiments and it is

preferable to cover a broad range between the short-circuit

( →R 0)l and open-circuit ( → ∞R )l extremes. While the

system is not too weakly coupled, ω≅R C1/l n p can be used

to estimate the optimal load resistance neighborhood as an

approximation. For this system, ω C1/ n p yields approximately

300 kΩ, so the range of 30 kΩ to 3 MΩ is selected to include

electrical boundary conditions ranging from nearly short cir-

cuit to nearly open circuit.

Figure 5 shows the velocity, voltage, current and power

FRFs for the five chosen load resistances. Once again, to

eliminate strong piezoelectric softening nonlinearity [46], the

level piezoelectric coupling is designed to be relatively low

(as mentioned in section 2.2) by locating the piezoceramic

patches outside the clamps, and therefore the short- and open-

circuit resonance frequencies are quite close, approximately

13.91 and 13.94 Hz, respectively. In the linear regime,

mechanical dissipation is extremely light, with a viscous

damping ratio of ζ ≅ 0.001 (identified from the short-circuit

voltage FRF). As anticipated, the 300kΩ load is a reasonable

approximation to the optimal electrical load neighborhood,

yielding a peak normalized power of approximately 5.4W/g2

(linear estimate). As the linear model parameters are extracted

empirically, the model yields an excellent match in figure 5. It

should be noted that the linear system has very low bandwidth

(0.05 Hz for 300 kΩ load resistance). It is of interest how

much this bandwidth increases with increased base accelera-

tion levels, which is discussed next.

3.5. Nonlinear frequency response

The nonlinear energy harvesting experiments consist of

controlled (i.e. constant base acceleration) up and down fre-

quency sweeps to capture the jump phenomenon associated

with saddle-node bifurcation [23, 24] that provides nonlinear

bandwidth enhancement. Primary resonance tests refer to

excitation frequencies that are near the linear natural fre-

quency of the energy harvester, i.e. Ω ω≈ .n In this work,

secondary resonance behavior refers to excitation that is either

one half or one third of the linear natural frequency (i.e. rather

than subharmonic we focus on these superharmonic reso-

nances). In the case of the one half secondary resonance,

excitation at Ω will yield a response at Ω ω≈2 n that will

resonate. Similarly, the one third secondary resonance would

involve a response at Ω ω≈3 n .

Table 1. Identified nonlinear spring coefficients.

k1

(N cm–1)

k2

(N cm–2)

k3

(N cm–3)

k4

(N cm–4)

k5

(N cm–5)

2.441 0.286 0.363 0.103 0.021

Table 2. Identified mass, dissipation, electromechanical coupling,
and capacitance terms.

m (g) b (Ns m–1) ba (Ns2 m–2) θ (N V–1) Cp (nF)

31.9 5.5 × 10−3 1.2 × 10−2 1.7 × 10−4 34.27
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3.5.1. Primary resonance. By using the feedback shaker

system (figure 3), up and down frequency sweep experiments

are conducted at RMS (root-mean-square) base acceleration

levels of 0.01g, 0.02g, 0.03g, and 0.04g. Only the results of

the 0.04g experiments are shown in figure 6 for brevity. There

is a very good match between the model predicted behavior

(5-term harmonic balance solution) and the experimental

results at all studied base acceleration levels and load

resistance values. The main discrepancy is that the model

underestimates the response magnitude somewhat in every

case. While both the nonlinear restoring force and dissipative

forces play a role in this, even with no velocity squared

dissipation ( =b 0 ),a the model still under predicts the

response. Part of the error can be attributed to unmodeled

inertial nonlinearity. Because the potential (and expectedly

minor) ferroelastic (stress-strain) nonlinearity due to

piezoelectric laminates would be captured within the force–

displacement relationship, part of the unmodeled nonlinearity

might be due to electromechanical coupling [43] associated

with increased forcing. The energy harvesting performance of

the M-shaped device at near optimal load conditions and

various base acceleration amplitudes is summarized in table 3.

Due to the dominant hardening nonlinearity and jump

phenomenon, a saturation of the response amplitude and a

Figure 5. Linear electromechanical FRFs: (a) velocity, (b) voltage, (c) current, and (d) power output per base acceleration at various load
resistance levels (obtained by very low intensity white noise excitation). Circles represent experimental data and solid curves represent model
predictions.

Figure 6. Nonlinear electromechanical frequency response curves in the neighborhood of primary resonance excitation (Ω ω≈ ):n (a)

velocity, (b) voltage, (c) current, and (d) power output (base acceleration: 0.04g RMS). Circles represent experimental data and solid curves
represent model predictions.
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widening of the response bandwidth are observed. Despite the

aforementioned errors, the model shows the correct trends and

provides very good predictions of harvester performance. For

the largest excitation level studied in this work (0.04g RMS

case, i.e. figure 6), the bandwidth of the system for 300 kΩ

load resistance is 0.38 Hz, which is 660 % larger than the

linear bandwidth (0.05 Hz) summarized in the previous

section.

Note that the nonlinear frequency response bandwidth is

shorter for the optimal load case inevitably due to dissipation

as a result of Joule heating in the resistor that is used to

quantify the electrical power output. This phenomenon is

inevitable in more complex nonlinear energy harvesting

circuits [61, 62] as well (due to power transfer from the

mechanical to electrical domain) and is the nonlinear

counterpart of damping resulting from energy harvesting

(see Lesieutre et al [63] for its linear counterpart in the sense

of classical shunt damping). As one moves away from the

optimal electrical load condition, the nonlinear bandwidth

increases at the expense of reduced power output as a

tradeoff.

The individual harmonics contributing the relative

displacement and voltage output frequency response curves

in the 5-term (N = 5) harmonic balance solution are reported

in figure 7. Note that the voltage response has no DC (zero

frequency) component whereas the DC component in the

displacement response is the second major content in the

frequency response after the first harmonic. Crossing of the

curves at certain frequencies is also noteworthy. The effects

of individual harmonics on the dynamics of the M-shaped

oscillator is discussed in detail elsewhere [54]. Next we

consider the secondary resonance behavior, specifically

superharmonic response in the M-shaped piezoelectric energy

harvester.

3.5.2. Secondary resonance for superharmonic response.

Superharmonic and subharmonic resonance behaviors [22]

can be observed in the M-shaped piezoelectric energy

harvester. However, we consider only the superharmonic

resonance range as it may have more practical implications

(such as MEMS configurations or other compact designs

under high excitation intensities with frequency content well

below the primary resonance frequency neighborhood). In

order to study the 1:2 and 1:3 superharmonic resonance

behaviors of the M-shaped energy harvester, simulations and

frequency sweep tests are conducted for frequency ranges

near one half of the linear natural frequency and one third of

the linear natural frequency. To become apparent, secondary

resonances typically require higher forcing amplitudes, as

they are effectively excited internally by the nonlinearities

acting on the quasilinear response, as opposed to being

excited by the external forcing directly as with the primary

resonance. Tests and simulations are therefore carried out at

RMS base acceleration levels of 0.1, 0.2, 0.3, and 0.4g.

Figure 8 shows the displacement and voltage response

frequency contents predicted by the 5-term harmonic

balance analysis for the cubic and quadratic superharmonic

resonance neighborhoods for 0.4g RMS base acceleration.

As anticipated previously in section 3.3 based on the

quadratic and cubic stiffness terms in table 1, the quadratic

nonlinearity is more significant than the cubic nonlinearity for

response levels on the order ∼0.1 cm (which is indeed the

displacement response level under 0.4g RMS excitation in the

range of 4–8 Hz). Therefore, figure 8 confirms the fact that the

predominant secondary resonance behavior should be

expected in the neighborhood of Ω ω≈ ≅/2 7Hz;n that is,

quadratic superharmonic resonance is expected to be the

dominant secondary resonance. Figure 9 shows the experi-

mental RMS velocity, voltage, current, and average power

output frequency response curves of the M-shaped harvester

along with model predictions. Surprisingly, the experimental

data shows significant mismatch around Ω ω≈ ≅/3 4.7Hzn

with an unexpected resonance behavior contradicting the

previous argument, which is explained next.

In figure 9, unlike model predictions, the experimental

data shows large responses for both the quadratic and cubic

superharmonic resonances, with the cubic resonance unex-

pectedly being the larger of the two. As discussed previously

in section 2.5, superharmonic resonance experiments are

made more complicated as harmonic distortion in the

excitation signal generates response at the same frequencies

as those created by the nonlinearities of interest in the

harvester. Therefore the major suspect that might cause this

unexpected resonance around Ω ω≈ ≅/3 4.7Hzn is potentially

the distortion in the excitation signal itself (i.e. failure of the

shaker to produce pure harmonic excitation at low frequen-

cies). The time histories of base acceleration signals at 4.7 Hz

(i.e. Ω ω≈ /3)n and 7 Hz (i.e. Ω ω≈ /2)n are shown in

figure 10 along with their FFTs. For frequencies under

approximately 5 Hz, the shaker and vibration controller used

for these experiments are unable to produce a suitably pure

sinusoidal acceleration. The motion of the shaker is

corrupted by a number of sources of error, including

measurement noise from the accelerometer (sent to the

controller), quantization errors in the digital controller, and

perhaps most important for the low frequencies as in these

experiments, dry friction in the shaker armature. Dry friction

in the shaker armature can cause unwanted stop-start (or

Table 3. Summary of experimental results and model predictions at
various base acceleration levels (load resistance: 300 kΩ).

gRMS 0.01 0.02 0.03 0.04

̇xRMS (mm s–1) Experiment 244 415 564 708

Model 230 395 536 647

vRMS (V) Experiment 9.2 15.9 22.0 28.0

Model 8.7 14.9 20.0 23.0

iRMS (μA) Experiment 30.5 52.8 73.4 93.3

Model 29.0 49.6 66.6 79.8

PAVG (mW) Experiment 0.28 0.84 1.62 2.61

Model 0.25 0.74 1.33 1.91

fPEAK (Hz) Experiment 14.00 14.13 14.31 14.51

Model 14.01 14.20 14.40 14.59

Δf (Hz) Experiment 0.12 0.18 0.27 0.38

Model 0.08 0.19 0.28 0.37
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‘stick-slip’) like motion. This causes the desired sinusoidal

output acceleration to become distorted into a shape more

resembling a square wave, i.e. a signal with content at three

times the fundamental frequency (figure 10(a)). It is

therefore concluded that the peak at ω 3n seen in experi-

ments is not due to secondary resonance nonlinear behavior,

but rather due to harmonic distortion in the input base

acceleration exciting the primary resonance directly. Next,

knowing the frequency content (figure 10) of the multi-

harmonic excitation caused by the shaker, the frequency

response in 4–8 Hz (figure 9) can be modeled more

accurately as a combined exercise of multi-harmonic

excitation and superharmonic secondary resonance.

In order to better model the experimental behavior

around 4.7 Hz (i.e. Ω ω≈ /3)n and 7 Hz (i.e. Ω ω≈ /2 ),n the

true (non-ideal) representation of the base acceleration can be

Figure 7.Harmonic content of (a) relative displacement and (b) voltage output obtained by model simulation for the neighborhood of primary
resonance excitation (Ω ω≈ ,n base acceleration: 0.04g RMS, load resistance: 300 kΩ).

Figure 8. Frequency content of (a) relative displacement and (b) voltage output obtained by model simulation for the neighborhood of
secondary resonance excitation (covering Ω ω≈ /3n and Ω ω≈ /2,n base acceleration: 0.4g RMS, load resistance: 300 kΩ).

Figure 9. Nonlinear electromechanical frequency response curves in the neighborhood of secondary resonance excitation: (a) velocity, (b)
voltage, (c) current, and (d) power output (base acceleration: 0.4g RMS). Substantial mismatch for Ω ω≈ /3n is due to the shaker’s limitation

in low-frequency (roughly for <5 Hz) excitation that results in higher harmonics in base acceleration. Circles represent experimental data and
solid curves represent model predictions.

10

Smart Mater. Struct. 24 (2015) 055021 S Leadenham and A Erturk



used based on figure 10:

Ω α Ω ϕ

α Ω ϕ

̈ = + +

+ +

( )

( )

y t A t t

t

( ) cos( ) cos 2

cos 3 . (29)

2 2

3 3

⎡
⎣

⎤
⎦

Here, A is the nominal acceleration amplitude (at the intended

single-frequency excitation), and α2 and α3 are the amplitudes

of the harmonics of interest expressed as fractions of the

nominal acceleration (for ideal single frequency excitation,

α α= = 0 ).2 3 The values of the coefficients of the higher

harmonic components in the base acceleration signal are

found by recording time histories of steady-state base

acceleration signals at the frequencies of interest and

extracting their frequency content (as shown in figure 10

for 0.1g RMS base acceleration). The coefficients needed to

properly model the base acceleration seen in the performed

experiments are summarized in table 4.

Using this more accurate model of the base acceleration

signal and the ability of the method of harmonic balance to

simulate the response of the M-shaped harvester to multi-

harmonic excitation, the observed behavior can be simulated.

The experimental RMS velocity, voltage, current, and average

power output and model predictions with the multi-harmonic

base acceleration model are shown in figure 11. The 3-

harmonic model for the base acceleration signal (given by

equation (29)) used in the 5-term harmonic balance solution

results in a much better prediction of the observed experi-

mental responses amplitudes. The model simulation still

differs from the observed response in that the model predicts

hardening jump phenomenon behavior, while the experi-

mental data shows no clear jump, which may be attributed to

the fact that the experimental base acceleration is significantly

noisier than the ideal 3-harmonic excitation used in the

model.

An interesting observation is regarding the optimal

resistance of the maximum power output. When attempting

to harvest energy from superharmonic resonances, the optimal

load impedance for the energy harvester will be close to the

optimal load impedance for the same harvester under primary

resonance excitation. This is because the optimal load

impedance depends on the dominant frequency content of

the harvester’s response, not the dominant frequency content

of the excitation. For a properly tuned linear resonant

vibration energy harvester (and for a nonlinear harvester

operating under primary resonance excitation), the dominant

frequency of the response will match the dominant frequency

of excitation, but this is not the case for secondary resonance

behavior of a nonlinear energy harvester as it is the response

frequency content that matters. Beyond the intriguing nature

of secondary resonance excitations as a nonlinear dynamics

exercise, superharmonic resonance behavior may be exploited

for energy harvesting purposes as it allows low frequency

ambient vibrations to excite energy harvesting devices that

might have higher natural frequencies due to size and mass

Figure 10. Base acceleration time series produced by the shaker for excitation at (a) 4.7 Hz (i.e. Ω ω≈ /3)n and (b) 7 Hz (i.e. Ω ω≈ /2)n

along with their FFTs (0.1g RMS base acceleration). Clearly the time series at 4.7 Hz results in multi-harmonic excitation of the harvester due
to the shaker’s inability to produce pure harmonic excitation at low frequencies.

Table 4. Coefficients of higher harmonics in base acceleration to
explore the superharmonic resonance accounting for the multi-
harmonic nature of true (experimental) excitation.

Ω ω=3 n Ω ω=2 n

gRMS α2 α3 α2 α3

0.1 0.0342 0.3823 0.0214 0.0206

0.2 0.0296 0.1095 0.0116 0.0572

0.3 0.0178 0.0320 0.0248 0.0240

0.4 0.0069 0.0456 0.0340 0.0257
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constraints (e.g. MEMS energy harvesters) in the sense of

nonlinear frequency-up converter [41]. Since secondary

resonances require higher forcing amplitudes to become

apparent, power generation efficiency will be smaller than for

primary resonance excitation.

4. Conclusions

Nonlinear frequency bandwidth enhancement in vibration

energy harvesting can be achieved most effectively in the

presence of strong nonlinearities and under high excitation

levels. This constitutes a fundamental challenge in enabling

nonlinear energy harvesters for low-intensity environments.

To overcome the need for high excitation intensities that

are required to exploit nonlinear dynamic phenomena, we

developed an M-shaped piezoelectric energy harvester con-

figuration that can exhibit a nonlinear frequency response

under very low vibration levels (below 0.1g). This config-

uration was made from a continuous bent spring steel with

piezoelectric laminates and a proof mass but no magnetic

components. Properly locating the piezoelectric patches (to

avoid substantial piezoelectric softening) in this design

enables achieving the jump phenomenon in hardening at a

few milli-g base acceleration levels.

We explored for both primary and secondary (super-

harmonic) resonance excitations at different vibration levels

and load resistance values. The primary resonance excitation

case that offers a 660 % increase in the half-power bandwidth

as compared to the linear system at a root-mean-square

excitation level as low as 0.04g. The secondary resonance

behavior was investigated with a focus on 1:2 and 1:3

superharmonic resonances. Following the development of an

empirical model, a multi-term harmonic balance framework

was developed for a computationally effective yet high-fide-

lity analysis of this high-quality-factor system with cubic and

quadratic nonlinearities. Experimental measurements and

electromechanical model predictions resulted in very good

match for both primary and secondary resonance cases

explored in this work.

Overall, substantial nonlinear bandwidth is achieved for

very low base acceleration levels under primary resonance

excitation. The secondary resonance of interest in this work

was superharmonic resonance for nonlinear frequency-up

conversion. It has been pointed out that the optimal electrical

load of superharmonic response is close to that of the same

harvester under primary resonance excitation. This is because

the optimal load impedance depends on the dominant fre-

quency content of the harvester’s response, rather than the

dominant frequency content of the excitation (no such dis-

tinction exists in linear harvesters or nonlinear ones under

primary resonance excitation). Superharmonic resonance

behavior may be exploited for energy harvesting purposes as

it allows low frequency ambient vibrations to excite energy

harvesting devices that might have higher natural fre-

quencies due to size and mass constraints (e.g. MEMS

energy harvesters), as a nonlinear frequency-up conversion

mechanism.

In low-frequency superharmonic resonance experiments,

an experimental imperfection of the electrodynamic shaker

(which fails to produce pure harmonic signal for excitations

roughly below 5 Hz) was pointed out and used as an oppor-

tunity to formulate and explore nonlinear response to multi-

harmonic excitation in the secondary resonance regime.

Multi-term harmonic balance solution resulted in very good

match for the complex case of multi-harmonic excitation

combined with secondary resonance behavior.

Figure 11. Nonlinear electromechanical frequency response curves in the neighborhood of secondary resonance excitation (covering

Ω ω≈ /3n and Ω ω≈ /2)n by accounting for multi-harmonic excitation effects of the shaker in modeling: (a) velocity, (b) voltage, (c) current,

and (d) power output (base acceleration: 0.4g RMS). Circles represent experimental data and solid curves represent model predictions.
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