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ABSTRACT

We study both theoretically and experimentally the interference pattern in a nonlinear
Mach–Zehnder interferometer formed by two aperiodically-poled crystals, where broadband
squeezed light is generated by both crystals via parametric down-conversion with a common quasi-
monochromatic pump. This configuration is important formeasuring the squeezingproducedby the
first crystal and also for measuring a small phase shift introduced by a sample between the crystals.
On the basis of the approximate quantum Rosenbluth formula for each crystal we develop an ana-
lytic model for the field evolution in the interferometer. We report an experimental observation of
the interference fringes, caused by the dispersion of the generated PDCwaves in both crystals form-
ing the interferometer. We observe a displacement of the interference pattern caused by a sample
between the crystals and infer the phase shift within a band of 20 nm. The experimental data are in a
good agreement with the predictions of the developed model, up to imperfections of the samples.
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1. Introduction

High-gain parametric down-conversion (PDC) in aperi-

odically poled crystals leads to the generation of bright

squeezed vacuum twin beams with massively broadened

spectra. Such twin beams are of considerable interest for

quantum photonics and quantum information, due to

their multimode structure, ultrashort correlation times

and, most importantly, non-classical features such as

broadband squeezing (1–3). Bright squeezed vacuum is a

macroscopic quantum object exhibiting photon-number

entanglement (4) and suitable for quantum metrology.

In particular, squeezed vacuum is known to increase the

phase sensitivity of an interferometer: by feeding it into

the empty port of a Mach–Zehnder interferometer one

can overcome the shot-noise limit and under ideal condi-

tions reach the ultimate Heisenberg limit (5). Moreover,

by producing squeezed vacuum in an optical paramet-

ric ampli�er (for instance, a nonlinear crystal) and then

sending it to another optical parametric ampli�er one

obtains a nonlinear Mach–Zehnder interferometer (6,7).

This scheme, also known as an SU(1,1) interferome-

ter, not only enables sub-shot-noise phase measurement

(ideally reaching the Heisenberg limit), but also provides
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tolerance to ine�cient detection. Broadband squeezing

in combination with a nonlinear interferometer would

allow one to perform sub-shot-noise phase measurement

in a wide band of frequencies, comprising tens of THz.

In a recent work (8), broadband bright twin beams

have been generated in an aperiodically poled lithium

niobate crystal and their sub-picosecond correlation

times have been observed. The observation of quadra-

ture squeezing is, however, more challenging. Standard

continuous-variable homodyne detection is inapplicable

in this case because of a very large squeezing bandwidth,

above 40 THz in the experiment (8), which surpasses the

photodetector bandwidth by several orders ofmagnitude.

Temporal imaging technique (9,10) is widely used for

matching the bandwidth of light to that of the photode-

tector, but the application of this technique to squeezed

light requires a parametric time lenswith high conversion

e�ciency (11,12), which is technologically challenging.

Pulsed homodyne detection (13) requires frequency tai-

loring of the local oscillator, which is quite demanding,

given the complicated spectrum of the twin beams.

Recently a method was proposed (14) to mea-

sure quadrature squeezing by using a Mach–Zehnder
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nonlinear interferometer (6,7). The mean number of

photons at the output of the second ampli�er scales then

as the variance of a certain quadrature at the output of

the �rst ampli�er; the phase of the quadrature under test

depends on the phases of the pump, signal, and idler pho-

tons inside the interferometer. This ‘optical homodyne’

technique will be extremely helpful for the investiga-

tion of broadband squeezing for twin beams generated

in aperiodically poled crystals.

The aim of this article is to consider a nonlinear inter-

ferometer consisting of two aperiodically poled crystals

placed into a common pump and generating broad-

band twin beams through high-gain PDC. The long-term

motivation for considering this con�guration is twofold:

(i) measuring the broadband squeezing, produced by

the �rst crystal (14), to determine the frequency band

available for quantum operations, and (ii) measuring the

phase shift introduced by a sample between the crystals

in a wide band of frequencies (15,16). Our short-term

objectives are building an analyticmodel of such an inter-

ferometer and observing the interference fringes as well

as their displacement caused by the sample.

The paper has the following structure. In Section 2

we derive the equations describing the nonlinear inter-

ferometer consisting of two aperiodically poled crystals.

Section 3 presents the analytic modelling of the spectra,

both for a single crystal and for a combination of two

crystals. Section 4 describes the experiment where the

nonlinear interference fringes were observed and a phase

shift measured. The last Section 5 concludes the paper.

2. Nonlinear interferometer

We consider a nonlinear Mach–Zehnder interferome-

ter (MZI) composed of two aperiodically poled crystals

(1,2,8), as shown in Figure 1. The signal and idler pro-

duced in the �rst crystal arrive at the second crystal with

a frequency-dependent phase shift φ(�), which can cor-

respond to passing through a dispersive sample or just to

a time delay in the free space.

In each crystal, collinear type-I PDC annihilates one

pump photon with the frequency ωp and creates two

photons with the same direction and polarization, and

frequencies ω0 + � and ω0 − �, where ω0 = ωp/2. The

phase mismatch for this process has the form �(�) =

kp − k(�) − k(−�), where kp is the wave vector of

the pump wave, assumed to be an undepleted quasi-

monochromatic plane wave, and k(�) is the wave vector

of the down-converted wave at the frequency ω0 + �. In

general there is no phase matching at degeneracy, kp �=

2k0, where k0 = k(0). Let us direct the z axis along the

propagation of the waves, placing the origin on the front

edge of the �rst crystal and denoting its length by L1.

For the description of the �eld we use the sideband pho-

ton annihilation operator a(�, z) corresponding to fre-

quency ω0 + � and position z, so that the �eld operator

(in the photon-�ux units) is

E(+)(t, z) =

∫

a(�, z) ei(k0z−(ω0+�)t) d�. (1)

The �eld transformations in both crystals have the forms

of the Bogoliubov transformations

a(�, L1) = U1(�)a(�, 0) + V1(�)a†(−�, 0), (2)

a(�, zout) = U2(�)a(�, L1 + d)

+ V2(�)a†(−�, L1 + d), (3)

where d is the distance between the crystals, zout = L1 +

d + L2 is the position of the second crystal output. The

functionsUn(�) and Vn(�), where n denotes the crystal

number, satisfy the relations |Un(�)|2 − |Vn(�)|2 = 1

andUn(�)/Vn(�) = Un(−�)/Vn(−�), required by the

unitarity of the �eld transformation.We denote the phase

acquired between the crystals by the �eld component at

the frequency ω0 + � as φ(�). Writing a(�, L1 + d) =

a(�, L1)e
iφ(�), we obtain from Equations (2) and (3) the

total input–output �eld transformation as

a(�, zout) = Uint(�)a(�, 0) + Vint(�)a†(−�, 0), (4)

Figure 1. Nonlinear interferometer formed by two aperiodically poled crystals. Both crystals are pumped by a strong coherent wave at
frequency ωp and are quasi-phase-matched for parametric downconversion in a broad range of frequencies. The signal and the idler
waves from the first crystal acquire a frequency-dependent phase shift φ(�) and then pass through the second crystal, where they
are further amplified or attenuated depending on the relative phase with the pump. The power spectrum of the signal is measured
at the output of the second crystal by a spectrometer (SM). The colour of the crystal layers shows schematically the signal frequency
phase-matched at the given position.
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where

Uint(�) = U2(�)U1(�) eiφ(�)

+ V2(�)V∗
1 (−�) e−iφ(−�), (5)

Vint(�) = U2(�)V1(�) eiφ(�)

+ V2(�)U∗
1 (−�) e−iφ(−�) (6)

are the Bogoliubov coe�cients for the entire inter-

ferometer.

Each transformation can be parametrized by four real

functions of the frequency detuning (17):

rn(�) = ln (|Un(�)| + |Vn(�)|) , (7)

ψ0
n(�) = 1

2 arg
[

U−1
n (�)Vn(�)

]

, (8)

ψL
n (�) = 1

2 arg [Un(�)Vn(−�)] , (9)

κn(�) = 1
2 arg

[

Un(�)U−1
n (−�)

]

, (10)

where rn(�) is known as the squeezing parameter at fre-

quency ω0 + �, while ψ0
n(�) and ψL

n (�) are the input

and the output squeezing angles, respectively.

The power spectrum of the signal wave at the

interferometer output S(ω0 + �) = |Vint(�)|2 is readily

obtained from Equations (6)–(9) as

S(ω0 + �)

= sinh2(r2 + r1) cos
2(ψL

1 − ψ0
2 + φS)

+ sinh2(r2 − r1) sin
2(ψL

1 − ψ0
2 + φS), (11)

where φS(�) = (φ(�) + φ(−�))/2 is the frequency-

symmetrized phase shift. Note that in general r1(�) �=

r2(�), because the gain values in the crystals may be dif-

ferent. The �rst obvious consequence of Equation (11) is

the invariance of the spectrum to the distance between

the crystals when the phase shift is due to propagation in

the free space. Indeed, in this case φ(�) = �d/c and, as

a consequence, φS(�) = 0 for any distance d between the

crystals.

An interesting case corresponds to a parametric gain

of the second crystal being signi�cantly higher than

that of the �rst one, exp(2r2) ≫ exp(2r1) ≫ 1. In this

case Equation (11) can be rewritten as S(ω0 + �) ≈

e2r2S1(ω0 + �)/4, where

S1(ω0 + �)

= e2r1(�) cos2
[

ψL
1 (�) − ψ0

2 (�) + φS(�)
]

+ e−2r1(�) sin2
[

ψL
1 (�) − ψ0

2 (�) + φS(�)
]

,

(12)

which is similar to the homodyne photocurrent spec-

trum withψ0
2 − φS playing the role of the local oscillator

phase. On the one hand, when the second crystal is cali-

brated, i.e. the values of r2(�) andψ0
2 (�) are knownwith

high precision, observation of an interferometric pic-

ture in accordance with Equation (11) can be interpreted

as ‘ultrabroadband nonlinear homodyne measurement’

(14) of the squeezed light produced by the �rst crys-

tal. On the other hand, Equation (11) can be used for

the measurement of small phase shifts introduced by a

dispersive sample between the crystals. It is clear that

the spectrum contains fringes, determined by the angle

ψL
1 (�) − ψ0

2 (�), and a small addition φS(�) results in

a shift of these fringes, which allows one to measure it.

It is important, however, that the fringes are resolved by

the spectrometer monitoring the signal output. To this

end the variation of the angleψL
1 (�) − ψ0

2 (�) should be

made as slow as possible by a proper crystal design.

In the next section we do the analytic modelling of

PDC in an aperiodically poled crystal and show how fre-

quency dependence of the angle ψL
1 (�) − ψ0

2 (�) can

be made rather weak, while in Section 5 we describe

an experimental observation of nonlinear interference in

such specially designed crystals.

3. Analytic modelling of aperiodically poled
crystals bymeans of the quantum Rosenbluth
formula

3.1. General formalism

In this section we consider one of the crystals forming

the nonlinear interferometer, described in the previous

section. We omit the subscript n denoting the crystal

number in the major part of formulas to simplify them,

but restore it when necessary. The �eld transformation

in an aperiodically poled crystal with the poling pro-

�le K(z) is described approximately by the Bogoliubov

coe�cients, given by the ‘quantum Rosenbluth formula’

(1,2):

U(�) = eπν(�) ei(k(�)−k0)L, (13)

V(�) =
√

e2πν(�) − 1 e−2iξ(�)+i(k(�)−k0)L+iϕA , (14)

with the frequency-dependent Rosenbluth parameter

ν(�) being de�ned as

ν(�) =
|γ |2

|K ′
(

zpm(�)
)

|
. (15)

Here γ is the coupling constant, including the pump

amplitude, and zpm(�) is the point of perfect phase

matching for the frequency �, de�ned by the equation

K(zpm) = �(�).
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The two phases in Equation (14) are de�ned as

ξ(�) = −
1

2

∫ zpm(�)

zin

(�(�) − K(z)) dz, (16)

where zin is the input coordinate of the crystal, i.e. zin,1 =

0 for the �rst crystal and zin,2 = L1 + d for the second

one, while ϕA = arg(iγ ) + ϕ1, where ϕ1 is the gain-

dependent phase, which can be approximated for ν ≤ 2

as ϕ1 ≈ −ν + ν2/4.

In many practical cases the phase mismatch function

can be approximated by the second-order polynomial in

frequency:

�(�) ≈ −α

(

�

ω0

)2

+ β . (17)

If this approximation holds, then the angle ξ(�), and

as consequence, the input and output squeezing angles

ψ0(�) and ψL(�) can be made quadratic in frequency

by employing the quadratic-hyperbolic shape of the ape-

riodic poling pro�le (2):

K(z) = −

(

�0�L

ω0

)2

×
α

[

�L − (�L − �0)(z − zin)/L
]2

+ β , (18)

where �0 and �L are the frequency detunings perfectly

phase matched at the crystal input and output, respec-

tively. The point of perfect phase matching for such a

pro�le depends on the frequency as

zpm(�) = zin +
�0�L

�L − �0

(

1

�0
−

1

�

)

L, (19)

Performing the integration in Equation (16), we obtain

the angle ξ(�), which gives us by Equations (13), (14),

(8), (9) the two squeezing angles as follows:

ψ0(�) = −
αL

2ω2
0

�L(� − �0)2

�L − �0
+

ϕA

2
, (20)

ψL(�) = −
αL

2ω2
0

�0(� − �L)2

�L − �0
+

ϕ′
A

2
, (21)

where ϕ′
A = ϕA + αL�0�L/ω2

0 − βL. We see, that these

angles are quadratic functions of the frequency, as

required. As consequence, the angle ψL
1 (�) − ψ0

2 (�)

entering Equation (12), is also a quadratic function of

the frequency, and can, in principle, be compensated by

a passive dispersive element introduced into the signal

beam between the crystals. In the experiment described

in Section 4 this compensation was not performed, and

the major part of the fringes in the output spectrum was

not resolved by the spectrometer, because the oscillations

appeared on a very low frequency scale.

Substituting Equation (18) into Equation (15) we

obtain the Rosenbluth parameter for the quadratic-

hyperbolic pro�le:

ν(�) =
ν0

2

�L�0(�L − �0)

�3
, (22)

where we have introduced the normalized pump

intensity,

ν0 =
|γ |2L

|K(0) − K(L)|
=

|γ |2L

α

ω2
0

|
(

�L
)2

−
(

�0
)2

|
, (23)

which has a physical meaning of the Rosenbluth param-

eter for the linear pro�le, providing a quasi-phase-

matching in the same frequency band for the given crys-

tal length. ν0 corresponds roughly to ν(�) at the centre

of the signal spectrum.

3.2. Spectrum of a single crystal

Let us start the study of the interferometer with the spec-

trum of the �rst crystal alone. We choose (as in the

experiment described in the next section) a crystal of

5% MgO-doped congruent aperiodically poled LiNbO3

of length L =5 mm, pumped with relatively long (∼ 10

ps) pulses at the wavelength λp = 532 nm. The quadratic

approximation of the phase mismatch for this case gives

α = −�′′(0)ω2
0/2 = 735 rad/mm, and β = �(0) = 901

rad/mm. The signal band is chosen to be from 1.25ω0

to 1.5ω0, and the idler band from 0.5ω0 to 0.75ω0. This

corresponds to signal wavelengths of 709–851 nm, and to

idler wavelengths of 1419–2128 nm. The corresponding

detunings are �L = 0.25ω0 to �0 = 0.5ω0.

The spectrum of the signal �eld of one crystal, calcu-

lated as

S(ω0 + �) = |V(�)|2 , (24)

is shown in Figure 2(a) for ν01 = 0.01. It is the same

for both orientations of the crystal. We see that the

Rosenbluth approximation (red dashed line) gives a

good description of the spectrum, except for the ‘rip-

ples’ having a quasi-period about 2 nm in the vicinity of

770 nm. The corresponding idler spectrum is shown in

Figure 2(b).

For comparison, we show in Figure 2(c,d) the same

spectra for higher pump intensity, corresponding to ν0 =

0.2. The width of the spectrum reduces as the gain

increases, in contrast to the case of a uniform crystal (18).

The physicalmeaning of the absolute value of the spec-

trum can be understood as the ratio of the total number

of photons in the pump coherence time �t = 6 ps to
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Figure 2. Signal (a,c) and idler (b,d) spectra of aperiodically poled crystal with a quadratic-hyperbolic poling profile: numerical solution
of the wave equation (solid line) and the quantum Rosenbluth approximation, Equations (13), (14) (dashed line).

the time-bandwidth product �t��/2π = 420, where

�� = 2π × 70 THz is the signal bandwidth.

3.3. Nonlinear interferometer

Now we consider the full interferometer shown in

Figure 1, where both crystals have quadratic-hyperbolic

pro�les, de�ned by Equation (18), and the �rst crystal

is phase matched from �0
1 = 0.5ω0 to �L

1 = 0.25ω0, as

above, while the second crystal is its inverted copy, i.e.

it is phase matched from �0
2 = 0.25ω0 to �L

2 = 0.5ω0.

In this con�guration the �rst crystal has a poling pro�le

with the increasing vector K1(z), it starts with long peri-

ods and endswith short ones, while the second crystal has

a decreasing poling pro�le K2(z), which starts with short

periods and ends with long ones. PuttingφS(�) = 0, cor-

responding to equal delays in the signal and the idler

channels, we obtain for the angle in Equation (12)

ψL
1 (�) − ψ0

2 (�) = 2αL
(� − 0.25ω0)

2

ω2
0

+ ϕID. (25)

where ϕID is a constant phase, speci�c for the considered

con�guration.

Figure 3. Signal spectrum at the output of the nonlinear MZI
given by the quantum Rosenbluth formula for the configuration
shown in Figure 1,where the poling profile is increasing in the first
crystal and decreasing in the second one.

We choose the normalized pump intensity ν01 = 0.01

for the �rst crystal and ν01 = 0.05 for the second one.

The spectrum S(�) for this con�guration is shown in

Figure 3, where it is convolved with a Gaussian �l-

ter of standard deviation 0.72 nm, corresponding to the
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resolution 1.2 nm of the spectrometer used for the detec-

tion of the visible light in the experiment (see the next

section).

The general shape of this spectrum can be under-

stood from simple considerations. The growth of power

with the wavelength is characteristic for the quadratic-

hyperbolic pro�le and is present in the spectra of individ-

ual crystals in Figure 2. The oscillations in the spectrum

are caused by dispersion experienced by a wave of given

frequency between its generation in the �rst crystal and

ampli�cation in the second one. For the longest wave-

lengths the oscillation frequency is minimal, since this

wave is generated at the very end of the �rst crystal and

ampli�ed at the very beginning of the second crystal,

so that it does not experience dispersion at all (see red

coloured areas in Figure 1). For the shortest wavelengths

the e�ect is opposite: they propagate through the major

parts of both crystals and are highly dispersed, which

results in rapid spectral oscillations, washed out by the

�nite resolution bandwidth of the spectrometer.

From the inset of Figure 3 we see that between 810

and 830 nm there are about 7 periods of the interference

pattern, which have been identi�ed in the experiment,

described in the next section.

4. Experiment

4.1. Observation of broadband nonlinear

interference

In the experiment, we used the same samples pro-

duced by Gooch and Housego as in Ref. (8), the pol-

ing period designed to follow the quadratic-hyperbolic

dependence (18). Unfortunately, at present the technol-

ogy of producing aperiodically poled crystals is not yet

well developed. Detailed investigation of the samples

showed that the actual pro�le K(z) had deviations from

this dependence, up to values of 10mm−1. Moreover,

although the samples had a thickness of 500µm, the pol-

ing was pronounced only up to a depth of about 100µm

from the surface and even within this range, it was not

uniform. Because of these imperfections, the spectra var-

ied considerably depending on the sample position, as

well as from sample to sample. In particular, the positions

of the ‘ripples’ in the experimental spectra were never

reproducible anddid not correspond to the ones expected

from the theory.

Figure 4 shows the spectra of the signal (left) and idler

(right) beams obtained by pumping a single aperiodically

poled crystal with 18 ps pulses at 532 nm, the repeti-

tion rate being 1 kHz and the mean power 20.8mW. The

spectra were measured with the spectrometers AvaSpec-

ULS3648 (for the signal beam) and NIR QUest256 (for

the idler beam). The pump was focused into the crys-

tal with a waist of 170µm full width at half maximum

(FWHM). Under this relatively high-gain PDC, the spec-

trum of signal/idler beams covered a bandwidth of about

25 THz FWHM, which is close to the case shown in the

right panel of Figure 2. While the signal beam occupies

the accessible range between 725 nm and 825 nm, the

idler one is in a more ‘di�cult’ range 1500−2000 nm.

Therefore we observed interference by measuring the

spectrum of the signal beam. The observed signal spec-

trum is rather symmetric and centred at about 775 nm, in

contrast to the theoretically predicted spectra in Figure 2.

We explain this di�erence by misalignment in the signal

collection system. Note that the idler spectrum is closer

to the shape predicted by the theory.

Further, we have placed two aperiodically poled sam-

ples of lithium niobate into the common pump beam in

such a way that the poling pro�le was increasing in the

�rst crystal and decreasing in the second one, as shown

in Figure 1. The spectra of the �rst crystal (further called

‘the source’) and the second one (further called ‘the anal-

yser’) are shown in Figure 5 by blue dashed and green

dotted lines, respectively. Due to the imperfections in the

poling, they di�er both from each other and from the one

presented above (Figure 4). Nevertheless, they overlap

over a rather broad spectral band (810−830 nm), which

enables the observation of the nonlinear interference.

Indeed, the spectrum of the nonlinear interferome-

ter (red solid line in Figure 5) shows regular interference

fringes, di�ering considerably from the ‘ripples’ observed

in the spectra of the source and analyser taken separately.

Within the range where the spectra of both crystals are

overlapping, there are about 7 periods, as predicted by the

theory in the previous section.

Extraction of the amount of squeezing from the inter-

ference pattern requires a calibration procedure (14)

including, in particular, the blocking of only signal or

only idler beam inside the nonlinear interferometer.

Under our experimental conditions, with both crystals

placed into the same pump beam, performing such a pro-

cedure is di�cult. In addition, the crystals were uncoated,

which leads to about 30% re�ection loss of the pump

inside the interferometer. The measurement of quadra-

ture squeezing is therefore posed as the next goal of our

experiments.

4.2. Measurement of the phase

As was mentioned above, a nonlinear interferometer can

be used for measuring a phase shift experienced by light

passing through a sample. A phasemeasurementwas per-

formed for a plane-parallel BK7 glass slide of thickness

ls = 4mm, inserted between the two crystals of Figure 1,
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Figure 4. Spectra of the signal (left) and idler (right) beams generated by one aperiodically poled crystal, as observed in the experiment.

Figure 5. The experimental spectrum (solid line) obtained for the
configuration of the nonlinear interferometer shown in Figure 1:
the first crystal has the poling profile increasing and the second
one, decreasing. The spectra of the first crystal (source) and the
second one (analyser) are shown with the dashed and dotted
lines, respectively. The oscillations between 810 and 830 nm are a
result of interference and are in a good correspondence with the
theoretically predicted fringes shown in Figure 3.

so that pump, signal and idler beams all passed through.

This resulted in a phase change of the PDC phase of

φPDC(�) = [k(�) + k(−�) − k(0)] ls. The phase φPDC

changed the interference fringes in the spectrum after the

second crystal. From eachmeasured spectrum, we recon-

structed the spectral phase without �tting. Taking the

phase di�erence due to the glass slide, we obtained φPDC

up to the usual 2π ambiguity. In Figure 6 it is compared

with the phase predicted by the Sellmeier equation for the

BK7 glass. Despite the fringe noise in the present mea-

surement, there is a good agreement with the prediction.

The slope, which is the group delay, can be extracted.

Figure 6. Phase change φPDC for a slide of BK7 glass, obtained
from its Sellmeier equation (dashed line) and measured from
the observed interference fringes in the spectrum (solid line).
The inset is a zoom into the measured data. The full band of
shownwavelengths is potentially accessiblewith lower losses and
higher-quality aperiodically poled crystals.

Thismethod allows one potentially to perform a phase

shift measurement in a very broad band of wavelengths

with a precision at theHeisenberg limit. In our �rst exper-

iment, because of many imperfections the band is limited

to 20 nm and the precision is far from the limit. How-

ever, lowering losses and improving the quality of the

aperiodic poling will provide an ultrabroadband phase

measurement at a precision surpassing that of the inter-

ferometry with classical light. A similar recent experi-

ment (16) reported a phase measurement in a band of

80 nm but in the low-gain regime, where at most one

photon pair is produced for each pair of conjugated

frequencies.
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5. Conclusion

We have considered, both theoretically and experi-

mentally, a nonlinear interferometer formed by two

aperiodically poled nonlinear crystals with a common

quasi-monochromatic pump. Each crystal of this inter-

ferometer provides quasi-phase-matching for PDC in an

ultrabroad range of frequencies, which can span the full

octave of the visible light. On the theoretical side, we have

analysed the operation of such an interferometer in terms

of input and output squeezing angles, not used before. On

the basis of the approximate ‘quantum Rosenbluth for-

mula’ we have developed an analytic model for the �eld

evolution in the interferometer. On the experimental side

we have observed the interference fringes, caused by the

dispersion of the generated PDC waves in both crystals

forming the interferometer. We have also observed a dis-

placement of the interference pattern caused by a sample

between the crystals and inferred the phase shift within a

band of 20 nm.Our experimental observation is in a good

agreement with the predictions of the developed model,

up to imperfections of the samples. The obtained results

pave the way to ultrabroadband nonlinear homodyning

and to precise measurements of optical phase shifts in an

octave-spanning spectral range.
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