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Abstract:Thepresent paper aims at studying thenonlinear

ultrasonic waves in a magneto-thermo-elastic armchair

single-walled (SW) carbon nanotube (CNT) with mass sen-

sors resting on a polymer substrate. The analytical formu-

lation accounts for small scale e�ects based on the Erin-

gen’s nonlocal elasticity theory. The mathematical model

and its di�erential equations are solved theoretically in

terms of dimensionless frequencies while assuming a non-

linear Winkler-Pasternak-type foundation. The solution

is obtained by means of ultrasonic wave dispersion rela-

tions. A parametric work is carried out to check for the

e�ect of the nonlocal scaling parameter, together with

the magneto-mechanical loadings, the foundation param-

eters, the attachedmass, boundary conditions and geome-

tries, on the dimensionless frequency of nanotubes. The

sensitivity of the mechanical response of nanotubes inves-

tigated herein, could be of great interest for design pur-

poses in nano-engineering systems and devices.

Keywords: Nonlocal elasticity, Armchair, Mass sensor,

CNT, Euler-beam theory, NEMS

1 Introduction

Magneto-thermo-elastic armchair single-walled (SW) car-

bon nanotubes (CNTs) represent an advanced material
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largely adopted in many nanostructural applications. The

application ofMnO2-FeTiO3 (MFT)-based nanocomposites

in a polymer matrix, as surrounding medium, has at-

tracted the attention of the scienti�c community, due to

the increased e�ciency of embedded nanostructures [1].

Among nonlocal continuum theories, the nonlocal Euler-

Bernoulli and Timoshenko beammodels enable a satisfac-

tory size-dependent assessment of CNTs, see Refs. [2, 3].

Some pioneering studies on the topic were presented by

Eringen [4–6], who proposed some nonlocal continuum

theories that were validated for di�erent nanomaterials.

Wang et al. [7] applied some nonlocal continuum models

to investigate the size-dependent buckling response and

vibration modes of CNTs.

Fang [8] applied a nonlocal elasticity theory to study

the nonlinear free vibration of double walled CNTs. He

found that the surrounding elastic medium plays a key

role in the nonlinear propagation and amplitudes devel-

opment. Saadatnia and Esmailzadeh [9] performed a sys-

tematic study of the nonlinear harmonic vibration of a

piezoelectric-layered nanotube conveying �uid �ow,while

verifying the e�ect of the small scale parameters on the

frequency response of the system in presence of �uid. In

a further work, Askari and Esmailzadeh [10] investigated

the forced vibration of �uid conveying CNTs, including

the thermal e�ects andnonlinear foundations. Gheshlaghi

and Hasheminejad [11] investigated the nonlinear vibra-

tional behaviour of homogenous nanobeams and its de-

pendence on the surface properties.

Sadeghi-Goughari et al. [12] studied the vibration re-

sponse of a CNT conveying magnetic �uid under a lon-

gitudinal magnetic �eld. Similarly, Ya-Xin Zhena et al.

[13] modeled the free vibration behaviour of viscoelas-

tic nanotubes under a longitudinal magnetic �eld and

veri�ed the nonlocal parameter-dependence of the natu-

ral frequencies. Dai et al. [14] explored theoretically the

postbuckling properties of nonlocal nanobeams in a lon-

gitudinal magnetic �eld. Ebrahimi and Barati [15] inves-

tigated the wave propagation in nonlocal porous multi-

phase nano-crystalline nanobeams under a longitudinal

https://doi.org/10.1515/cls-2020-0012
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magnetic �eld e�ect. They found that wave frequencies

and phase velocities may increase or decrease with re-

duced inhomogeneity magnitudes. Li et al. [16] applied a

nonlocal strain gradient theory to study the wave propaga-

tion in viscoelastic single-walled CNTs under a magnetic

�eld, while checking for the sensitivity of the response

to the surface properties and damping parameters. Arani

et al. [17] discussed the longitudinal magnetic �eld e�ect

on the wave propagation of �uid-conveyed SWCNTs using

the Knudsen number and surface considerations. Zhang

et al. [18] investigated the vibration of horn-shaped SWC-

NTs embedded in a viscoelastic medium under a longitu-

dinal magnetic �eld. A two-scale coe�cient model was de-

veloped by Güven [19] to study the propagation of longi-

tudinal stress waves under a longitudinal magnetic �eld

in a uni�ed nonlocal elasticity context. Wang [20] vali-

dated the nonlocal elastic shell model for the study of lon-

gitudinal waves in SWCNTs and found that the microstruc-

ture and the coupling e�ect of the longitudinal wave and

radial motion play a key role in the dispersion of waves.

Azarboni [21] explored the magneto-thermal primary fre-

quency response of CNTs, including the surface e�ect,

under di�erent boundary conditions. They inferred that

an increased longitudinal magnetic �eld moves the back-

ward jumpingathigher excitationamplitudes, for di�erent

boundary conditions. Pradhan andPhadikar [22] applied a

nonlocal continuum model to analyse the size-dependent

vibration of embedded multi-layered graphene sheets.

The thermal buckling properties of zigzag SWCNTs

were investigated by Semmah et al. [23], using a re�ned

nonlocal model, while checking their dependence on the

scale e�ect and chirality. Naceri et al. [24] investigated nu-

merically the wave propagation in armchair SWCNTs un-

der thermal conditions. Baghdadi et al. [25] proposed a

nonlocal parabolic beam theory to analyze the thermo-

mechanical vibration properties of armchair and zigzag

SWCNTs. Based on awide systematic numerical campaign,

the authors veri�ed a meaningful dependence of the nat-

ural frequencies on the temperature variation and chiral-

ity of armchair and zigzag CNTs. In a similar directions

moves the work by Benzair et al. [26], where a nonlocal

Timoshenko beam theory was employed to analyze the

thermal sensitivity of SWCNTs, whose vibration response

was compared to predictions based on a nonlocal Euler

beam model. For further studies on the coupled vibration

of CNTs based on a nonlocal elasticity, the reader is re-

ferred to [27–45].

In recent years, di�erent studies on nanoscale struc-

tures coupled with mass sensors have been performed in

literature [46–54]. More speci�cally, Wu et al. [46] anal-

ysed the resonance frequency of a SWCNT via a contin-

uum mechanics-based �nite element method (FEM). Li

and Chou [47] modeled the CNT nano-mass sensors with a

molecular structural mechanics method. Another similar

study was presented by Barati and Shahverdi [48] to exam-

ine the frequency shift behavior of plate-type nano-mass

sensors made of FG nanostructures. The potential of SWC-

NTs as mass sensors was recently investigated by Chowd-

hury et al. [49] based on a continuummechanics theory.

Arda and Aydogdu [50] analysed the vibration re-

sponse of CNT mass sensors considering its sensitivity to

the mass and sti�ness ratios, along with the position of

the detected elastic mass and nonlocal parameters. Sim-

ilarly, Liu and Lyu [51] proposed a nonlocal strain gradi-

ent plate theory to model a novel nanoscale mass sensor

madeof a smart functionally-graded (FG)magneto-electro-

elastic nano�lm integratedwith graphene skins. In the fur-

ther work by Lee et al. [52], the frequency equation of CNT-

based cantilever sensors with an attached mass was de-

rived theoretically using a nonlocal elasticity theory. More-

over, Nematollahi et al. [53] solved theoretically an inverse

problem to determine the �uid velocity and mass ratio

of a piezoelectric nanotube conveying �uid �ow, accord-

ing to the Eringen’s nonlocal elasticity approach and the

Euler–Bernoulli beam theory. Based on the same assump-

tions, Aydogdu and Filiz [54] performed a parametric anal-

ysis of the axial small-scale vibration behaviour of SW-

CNT-based mass sensors, considering the nonlocal e�ect

together with the length of CNTs and the attached mass.

Based on the available literature, however, it seems

that there is a general lack of studies focusing on the non-

linear ultrasonic waves in a magneto-thermo-elastic arm-

chair SW-CNTs with mass sensors resting on polymer ma-

trix. This is here proposed and analysed by means of a

nonlocal Euler beam theory, in agreement with the Erin-

gen’s assumptions, in order to account for small scale ef-

fects. Thus, we determine the solutions of the ultrasonic

wave dispersion relations governing the problem,whereby

a parametric study is carried out systematically to check

for the in�uence of the magneto-electro-mechanical load-

ing, attached mass, nonlocal parameter, and aspect ratio,

on the de�ection properties of nanotubes.

2 Mathematical formulation

2.1 Eringen nonlocal theory of elasticity

Based on the Eringen’s nonlocal theory of elasticity, we as-

sume that the stress state at a reference point x in the body

depends not only on the strain state at the same point x,
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but also on the strain states at all other points X′ of the

body. The general form of the constitutive equations in a

nonlocal form contains an integral over the entire region

of interest. The integral contains a non-local kernel func-

tion, which describes the relative in�uence of the strain

�eld at various locations on the stress state at a given lo-

cation. The constitutive equations of linear, homogeneous,

isotropic, nonlocal elastic solid with zero body forces, are

given by Eringen [4–6] as follows

σij + ρ(fj − üj) = 0 (1)

σij(X) =

∫

v

π(
∣

∣X − X′
∣

∣), τ)σij
c(X′)dv(X′) (2)

σij
c = Cijklεkl (3)

eij(X
′) =

1

2

(

ui,j + uj,i
)

(4)

Eq. (1) is the equilibrium equation, where σij,i, ρ, fj, uj re-

fer to the stress tensor, mass density, body force density

and displacement vector at a reference point x in the body,

respectively, at time t. Eq. (3) is the classical constitutive

relation where σc ij(X
′) is the classical stress tensor at any

point X′ in the body, which is related to the linear strain

tensor eij(X
′) at the same point. Eq. (4) refers to the classi-

cal kinematic relations. The kernel function π(
∣

∣X − X′
∣

∣ , τ)

is the attenuation function which includes the nonlocal ef-

fect in the constitutive equations. The volume integral in

Eq. (2) is de�ned over the volume V of the body. The non-

local modulus in Eq. (2) has dimensions (lengh)−3 and it

depends on a characteristic length (i.e. lattice parameter,

size of grain, granular distance, etc.) and on the external

characteristic length of the system l (i.e.wavelength, crack

length, size or dimensions of sample, etc.). Therefore, the

nonlocal modulus can be written in the following form

π = π(
∣

∣X − X′
∣

∣ , τ), τ =
eoa

l
(5)

where e0a is a constant parameter that must be deter-

mined for eachmaterial, independently. Then, the integro-

partial di�erential Eq. (2) for a non-local elasticity problem

can be simpli�ed into a partial di�erential equation, as fol-

lows

(1 − τ2l2∇2)σij(X) = σij
c(X) = Cijklekl(X) (6)

where Cijkl is the elastic modulus tensor of a classical

isotropic elasticity, and eij is the strain tensor;∇2 denotes

the second-order spatial gradient applied on the stress ten-

sor σij, and τ = eoa/l. In agreement with �ndings by

Eringen, we can consider eo = 0.39 by matching the dis-

persion curves via a nonlocal theory for place waves and

born-Karman model of lattice dynamics at the end of the

Brillouin zone (ka = π), where a is the distance between

atoms, and k is the wavenumber in a phonon analysis. On

the other hand, Eringen [5] assumed eo = 0.31 in his study

for a Rayleigh surface wave, via a nonlocal continuumme-

chanics and lattice dynamics.

2.2 Atomic structure of CNTs

CNTs are tubes formed by rolling a graphene sheet about

the ~T vector. A vector perpendicular to the ~T is the chiral

vector denoted by ~Ch. The chiral vector and corresponding

chiral angle de�ne the type of CNT. Zigzag, armchair and

chiral ~Ch can be expressed with respect to the base vectors

~a1 and ~a2 as follows

~Ch = n ~a1 + ~ma2 (7)

where n and m are indices of translation that de�ne the

structure around the circumference. Figure 1 descripts the

lattice of transition (n,m) along with the base vectors ~a1
and ~a2. If the indices of translation are such thatm = 0 and

m = n, the CNT corresponds to a zigzag or armchair struc-

ture, respectively. The diameter of an armchair SW CNT for

m = n is de�ned as [55]

d =
3na

π
(8)

Based on the connection between molecular mechanics

and solid mechanics, Wu et al. [56] developed an energy-

equivalent model for studying the mechanical properties

of SWCNT.Using the samemethod, the equivalent Young’s

modulus for an armchair nanotube is expressed as

ESWCNT =
4
√
3KC

9Ct + 4Ka2t
(

γ221 + γ222

) (9)

where K and C are the force constants; t is the thickness;

parameters γ21 and γ22 are de�ned as

γ21 =
−3

√
4 − 3cos2(π/2n) cos(π/2n)

8
√
3 − 2

√
3cos2(π/2n)

γ22 =
12 − 9cos2(π/2n)

16
√
3 − 4

√
3cos2(π/2n)

By assuming n → ∞, the Young’s modulus for a graphite

sheet becomes as

Eg =
16

√
3Kt

18Ct + Ka2t
(10)
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(a)

(b)

Figure 1: (a) Geometric properties of a SWCNT (b) Graphene struc-

ture for a CNT

2.3 Basic equations of the problem for a
magnetic �eld force

CNTs appear in a hollow structure formed by covalently

bonded carbon atoms, which can be imagined as a rect-

angular graphite sheet rolled from one side of its longest

edge, to form a cylindrical tube (see Figure 2). A cylindri-

cal coordinate system (X, θ, Z) is shown in Figure 3, where

X refers to the longitudinal direction of the shell, θ de�nes

its circumferential direction, and Z corresponds to the ra-

dial direction. Thismeans that the surfacede�nedby Z = 0

is set on the middle surface of the shell. By assuming that

themagnetic permeability, η, of CNTs equals themagnetic

permeability of the surroundingmedium,we canwrite the

Maxwell equation as follows

f = ∇ × s, ∇ × ε = −η ·
∂s

∂t
, divs = 0, (11)

s = ∇ × (U × H), ε = −η

(

∂s

∂t
× H

)

where f ,s, ε and U represent the current density, strength

vectors of electric �eld, disturbing vectors of magnetic

Figure 2: Single-walled carbon nanotube subjected to axial mag-

netic �eld

�eld and the vector of displacement respectively, ∇ is the

Hamilton operators for shells ∇ =
(

∂
∂X
~i + 1

R + ∂
∂θ
~j
)

. Ap-

pling a longitudinal magnetic �eld vector H(Hx,0, 0) on

the ith layer CNT with the cylindrical coordinate (R, θ, Z)

and thedisplacement vectorU = (Wi , Vi,Yi)of the ith layer

CNT to Eq. (11), we get the following relations

s = ∇ × (U × H) =

(

−Hx
Ri

· ∂Vi

∂θ
,

Hx ·
∂Vi

∂X
, Hx ·

∂Yi

∂X

)

(12a)

f = ∇ × s =

(

Hx
Ri

·
∂2yi
∂x∂θ

,

−Hx ·
∂2yi
∂x2

, Hx

Ri
2 ·

∂2vi
∂θ2

+ Hx ·
∂2vi
∂x2

)

(12b)

The Lorentz force q induced by a longitudinal magnetic

�eld can be written as

q(qX , qθ , qZ) = f × B (12c)

= f × ηH = η

(

0,
Hx

2

Ri
2

∂2Vi

∂X2
+ Hx

2
·
∂2Vi

∂X2
, Hx

2
·
∂2Yi
∂X2

)

where qX, qθ and qZ express the Lorentz force along the X,

θ and Z direction as follows (Figure 3)

qX = 0 (12d)

qθ = η

(

Hx
2

R2
·
∂2vi
∂x2

+ Hx
2
·
∂2vi
∂x2

)

(12e)

qZ = η

(

Hx
2
·
∂2Y

∂X2

)

(12f)

The external force qmag consists of the Lorentz force qZ
due to the longitudinal magnetic �eld, and the distributed

transverse force Fs due to the e�ect of surface tension,

namely

q(mag) = qZ(x) + Fs (13)

where the Lorentz force qZ is de�ned by Eq. (12f), [16], and

the distributed transverse force Fs can be de�ned as [51]

Fs =

(

Hs ·
∂2Y

∂X2

)

(14)
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(a)

(b)

Figure 3: Geometry of SWCNT in (a) polymer matrix; (b) nonlinear

foundation

Here, η is the magnetic permeability, Hx is the component

of the longitudinal magnetic �eld vector exerted on the

SWCNTs in the x direction, and Hs is a constant, de�ned

as

Hs = 2µ(d + h) (15)

where µ denotes the residual surface tension. The term qZ
is the magnetic force per unit length due to Lorentz force

exerted on the tube in z-direction, where the e�ect bend-

ing sti�ness EI is de�ned as [57, 58]

EI* = EI + QsEs (16)

In the last relation, Qs =
π
8 (d + h)

3, Es denotes the surface

Young’s modulus, h is the e�ective thickness of SWCNTs,

and d is de�ned by Eq. (8).

3 Euler Bernoulli beam theory (EBT)

based on nonlocal relations

The partial di�erential equation governing the free vibra-

tion of a nanotube under a thermal and Lorentz force can

be expressed as

∂Π

∂X
+ Nt

∂2Y

∂X2
+ q(mag) + βy + f (x) = ρA

∂2Y

∂t2
(17)

where f (x) is the interaction pressure per unit axial

length between the nanotube and the surrounding elastic

medium; A is the cross section of CNT, and

β =
f

1 −
(

α
L2

)

f
(18a)

f =
mω2L2

EA
, α =

Mp

mL
(18b)

where f is the non-dimensional frequency parameter, α is

themass ratio (attachedmass/mass of CNT),m is themass

per unit length according to a nonlocal elasticity approach.

The resultant shear force
∏

on the cross section of the nan-

otube is de�ned as
∏

=
∂M

∂X
(19)

where Nt denotes the temperature-dependent axial force

with thermal expansion coe�cient α. This constant force

is de�ned as [59]

Nt = −EAαT (20)

where T is the temperature variable. The longitudinalmag-

netic �ux due to a Lorentz force exerted on the tube in Z-

direction is represented by qZ, which is de�ned as

qz = ηAHx
2 ∂

2Y

∂X2
− EAαT (21)

being Hx the magnetic �eld strength and η the magnetic

permeability. For the Euler-beam theory, the resultant

bending moment M in Eq. (19) reads

M =

∫

A

zσxxdA (22)

where σxx is the nonlocal axial stress de�ned by the non-

local continuum theory. The constitutive Eq. (6) for a ho-

mogeneous isotropic elastic solid in a non-local form for

one-dimensional nanotube gets the following form

σxx − (e0a)
2 ∂

2σxx
∂X2

= Eεxx (23)

where E is the Young’s modulus of the tube, εxx is the ax-

ial strain, (e0a) is a nonlocal parameter; a is the internal

characteristic length. The temperature-dependent nonlo-

cal relations in Eq. (23) can be rewritten as

σxx − (e0a)
2 ∂

2σxx
∂X2

= Eεxx − EαT (24)

According to a Euler –Bernoulli beam model, the axial

strain εxx for small de�ection is de�ned as

εxx = −z
∂2Y

∂X2
(25)
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where z is the transverse coordinate in the positive di-

rection of de�ection. By combining Eqs. (24)-(25), with

Eq. (22), the bending moment M can be expressed as

M − (e0a)
2

[

∂2M

∂X2

]

= EI*
∂2Y

∂X2
(26)

where I =
∫

A

z2dA is the moment of inertia. By substituting

Eq. (26) into Eq. (17), the nonlocal bendingmomentM and

shear force
∏

become

M − (e0a)
2

[

(ρA) ∂
2Y
∂t2

+ q(mag)

−f (x) + EAαT

]

= EI*
∂2Y

∂X2
(27)

∏

− (e0a)
2







(ρA) ∂3Y
∂X2∂t2

+
∂2q(mag)

∂X2

−
∂f (x)
∂X

+ EAαT






= EI*

∂3Y

∂X3
(28)

For the transverse vibration of the nanostructure under

a distributed pressure and thermal interaction with the

surrounding polymer elastic medium, the equation of mo-

tion (17) takes the following form

f (x) = EI*
∂4Y

∂X4
+ EAαT

∂2Y

∂x2
(29)

+ (β + ρA)
∂2Y

∂t2
+ q(mag)

∂2Y

∂x2
+ Fs

∂2Y

∂X2

−





(e0a)
2







EAαT ∂4Y
∂X4

+β ∂4Y
∂X2∂t2

+ q(mag)
∂4Y
∂X4

+Fs
∂4Y
∂X4 −

∂2 f (x)
∂X2













The pressure per unit axial length acting on the nanotube

surface due to the surrounding elastic medium, can be de-

scribed by a Winkler-Pasternak type model [59]

f (x) = −(−Kw + Kp + Knl) (30)

where Kw, Kp, Knl refer to theWinkler, Pasternak and non-

linear constant foundation. The introduction of Eq. (30)

into Eq. (29) yields

EI*
∂4Y

∂X4
+ EAαT

∂2Y

∂X2
+ (β + ρA)

∂2Y

∂t2
(31)

+

(

ηAHx
2 ∂

2Y

∂X2
+ Hx

∂2Y

∂X2

)

− (e0a)
2

















EAαT ∂4Y
∂X4 + ρA

∂2Y
∂X2

+β ∂4Y
∂X24∂t2

+

(

ηHx
2
·
∂4y
∂X4

−Hx
∂4Y
∂X4

)

−(−Kw + Kp + Knl)
∂2Y
∂X2

















= −(−Kw + Kp + Knl)

4 Ultrasonic wave solution

Eq. (29) can be transformed in a frequency domain using

the Fourier transformation [60]

Y(x, t) =

N
∑

n=1

Ŷ(x)e−j(kn−ωn t) (32)

where Ŷ is the amplitude of the wave motion, j =
√
−1, k

is the wave number, ωn the circular frequency of a sam-

pling point, and N is the Nyquist frequency. The sampling

rate and the number of sampling points should be su�-

ciently large to reach a good resolution for both high and

low frequencies, respectively. By substitution of Eq. (32)

into Eq. (30), we get
[(

EI* ∂
4 Ŷ
∂X4 + EAαT

∂2 Ŷ
∂X2

+(β + ρA) ∂
2 Ŷ
∂t2

+

(

ηAH2
x
∂2Ŷ

∂X2
+ Hx

∂2Ŷ

∂X2

)

(33)

− (τ)
2





EAαT ∂2 Ŷ
∂X2 + (β + ρA)

∂4 Ŷ
∂X2∂t2

−

(

ηAHx
2 ∂2 Ŷ
∂X2

+Hx
∂2 Ŷ
∂X2

)

− (−Kw + Kp + Knl)
∂2 Ŷ
∂X2









+ (−Kw + Kp + Knl)

]

eiωn t = 0

This equation must be satis�ed for each N and hence can

be written as the ordinary di�erential equation in a single

variable X as

N
∑

n=1

[(

EI*
∂4Ŷ

∂X4
+ EAαT

∂4Ŷ

∂X4
+ (β + ρA)

∂2Ŷ

∂t2
(34)

+

(

ηAH2
x
∂2Ŷ

∂X2
+ Hx

∂2Ŷ

∂X2

)

−(e0a)
2

(

(β + ρA) ∂4 Ŷ
∂X2∂t2

−

(

ηAH2
x
∂2 Ŷ
∂X2 + Hx

∂2 Ŷ
∂X2

)

−(−Kw + Kp + Knl)
∂2 Ŷ
∂X2 + EAαT

∂2 Ŷ
∂X2

))

+ (−Kw + Kp + Knl)

]

eiωnx = 0

The last equation can be rewritten in terms of the single

variable X, reducing as follows































EI* ∂
4 Ŷ
∂X4 + EAαT

∂4 Ŷ
∂X4

+
(

ηAHx
2 ∂2 Ŷ
∂X2 + Hx

∂2 Ŷ
∂X2

)

− ∂2

∂t2
(β + ρA)























β + ρA−

(−Kw + Kp + Knl)+

EAαT







(

ηAHx
2 ∂2 Ŷ
∂X2 −

Hx
∂2 Ŷ
∂X2

)

(τ)2 ∂2 Ŷ
∂X2

















+(−Kw + Kp + Knl)































= 0 (35)

The dimensionless variables are de�ned as

X

L
= x,

Y

L
= y, αi =

Ii
l
, (36)
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τ =
e0a

l
Kw =

kwL
4

EI*
, Kp =

kpL
4

EI*
, Knl =

knlL
4

EI*
,

η =
1

(1 + EAαT)
, NT =

NtL
2

EI*

By substituting Ŷ(x) = Ŷe−iωx into Eq. (35) we get

(

1 + EAαT − ηAH2
x

) ∂4y

∂x4
(37)

+
[

EAαT − ηAHx
2 + β − kw + kp + knl) + τ

2
] ∂2y

∂x2

+ 2iβρA
∂y

∂x
− [ρA + (kw + kp + knl)] = 0

Anon-trivial solution of thewave amplitude Y implies that

y(x, t) = ye−i kn x (38)

Thus, by substituting Eq. (38) into Eq. (37), we get the fol-

lowing equation
(

1 + EAαT − ηAHx
2
)

kn
4 (39)

+
[

EAαT − ηaHx
2 + β − (−kw + kp + knl) + τ

2
]

kn
2

+ (2iβρA) kn − [ρA + (−kw + kp + knl)] = 0

which represents the characteristic equation for a contin-

uum structure (ECS) coupled with a surrounding medium

of SWCNT.

5 Boundary conditions

In the following we provide an analytical solution of the

governing vibration equations for a simply-supported (S-

S) and clamped-clamped (C-C) nanobeam.

5.1 Simply supported SWCNT

For a S-S SWCNT we have to enforce the following condi-

tions at (X) = (0, L)

Y(x)|X=0 = 0, (40)

M(X) =













−EI*
∂2Y(X)

∂X2
+ (e0a)

2













(ρA)
∂2Y(X)
∂t2

+

q(mag)
∂2Y(X)
∂X2 −

f (x) ∂
2Y(X)
∂X2 +

EAαT ∂2Y(X)
∂X2

























X=0

= 0,

Y(x)|X=L = 0,

M(X) =













−EI*
∂2Y(X)

∂X2
+ (e0a)

2













(ρA)
∂2Y(X)
∂t2

+

q(mag)
∂2Y(X)
∂X2 −

f (x) ∂
2Y(X)
∂X2 +

EAαT ∂2Y(X)
∂X2

























X=L

= 0,

∏

(X) =













−

(

EI* ∂3Y
∂X3

)

+

(e0a)
2







(ρA) ∂3Y
∂X2∂t2

+
∂2q(mag)

∂X2 −
∂f (x)
∂X

+ EAαT



















X=0

= 0

Y(x)|X=L = 0,

∏

(X) =

















−

(

EI* ∂
3Y
∂X3

)

+(e0a)
2











(ρA) ∂3Y
∂X2∂t2

+
∂2q(mag)

∂X2 −
∂f (x)
∂X

+

EAαT



























X=L

= 0

5.2 Clamped - Clamped SWCNT

Let us now assume a C-C SWCNT subjected to an axial com-

pressive load. In this case,wehave to enforce the following

boundary conditions

Y(x)|X=0 = 0,
∂Y(X)

∂X
|X=0 = 0, (41)

Y(x)|X=L = 0,
∂Y(X)

∂X
|X=L = 0

6 Numerical results and discussion

In this section we analyse the nonlinear vibration of a

SWCNT embedded in a polymer matrix subjected to a

magneto-thermo-elastic force. The geometrical and mate-

rial properties assumedwithin thenumerical investigation

is shown in Table 1, whose results are summarized in Ta-

bles 2-4 in terms of natural frequencies for di�erent non-

local constants and foundations parameters. Based on re-

sults in these tables, it is worth noticing that frequencies

decrease for an increasing value of the nonlocal parame-

ter, for both C-C and S-S boundary conditions. It is also vis-

ible that themagnitudeof frequency increases, as the foun-

Table 1:Material properties [27, 61]

Materials PZT

EI 1.1122×10−25 N m9

α0 −1.5×10−6 C−1

ρ 2.3 g/cm3

e0 0.31 nm

a 0.142 N/m

Es 35.3 N/m

µ 4π×10−7 N/m

Hx 2×108 A/m



160 | R. Selvamani et al.

Table 2: Nonlocal constant and Winkler foundation e�ects on fre-

quency of nanotube, (Kp = 0), (Knl = 0)

C − C S − S

τ Kw = 25 Kw = 50 Kw = 25 Kw = 50

0.5 1.5142 1.5609 1.3239 1.3701

1 1.2204 1.2310 1.0926 1.0970

1.5 0.9665 0.9721 0.8442 0.8663

2 0.6416 0.6776 0.5919 0.6116

2.5 0.3633 0.3638 0.4350 0.4551

Table 3: Nonlocal constant and Pasternak foundation e�ects on

frequency of nanotube (L/h = 10), (Kw = 0), (Knl = 0)

C − C S − S

τ KP = 25 KP = 50 KP = 25 KP = 50

0.5 1.5651 1.6725 1.9367 1.9583

1 1.3495 1.3576 1.8640 1.9356

1.5 1.1019 1.1117 1.8129 1.8345

2 0.9543 0.9656 0.7296 0.7712

2.5 0.7792 0.7930 0.7149 0.7188

Table 4: Non local constant and nonlinear foundation e�ects on

frequency nanotube (L/h = 10), (Kw = 0), (Kp = 0)

C − C S − S

τ Knl = 25 Knl = 50 Knl = 25 Knl = 50

0.5 1.2321 1.2541 1.1512 1.2349

1 1.1881 1.2101 0.9926 1.0704

1.5 1.2221 1.1441 0.8458 0.9177

2 1.0121 1.0141 0.7469 0.7671

2.5 0.9681 0.9901 0.6404 0.6475

dation sti�ness increases. The natural frequency, for both

simply and clamped supports, is computed for di�erent

thermal parameters and nonlocal values in Table 5. From

results, it is observed that as the thermal parameter grows,

the frequency increases but the small scale e�ects reduces

the values of frequency for both boundary conditions. In

Table 6, the natural frequency values are reported for dif-

ferent densities and Poisson’s ratios. As listed in Table 6,

the density andPoisson’s ratio variation does not a�ect sig-

ni�cantly the natural frequency (below 2%). Table 7 also

presents the numerical results froma comparative study in

terms of maximum transverse de�ection for a C-C CNT ac-

counting (or not) possible surface e�ects. Our results are in

reasonable agreement with predictions from the literature,

which con�rms the accuracy of the proposed formulation.

Table 5: Natural frequency (THz) of a CNT in both local and nonlocal

boundary conditions

α0 α0 α0

= −1.5 × 10−6 C−1 = −2.0 × 10−6 C−1 = −2.5 × 10−6 C−1

τ L.BC. NL.BC. L.BC. NL.BC. L.BC. NL.BC.

0 0.0180 0.0178 0.0176 0.0173 0.0259 0.0256

0.5 0.0145 0.0142 0.0169 0.0167 0.0231 0.0229

1 0.0134 0.0131 0.0150 0.0148 0.0212 0.0214

1.5 0.0039 0.0027 0.0116 0.0113 0.0207 0.0205

Table 6: Natural frequency (THz) of a S-S CNT for di�erent densities

and Poisson’s ratios

Density Poisson’s ratio

L/R ρ1 =

2.16

ρ2 =

2.3

ρ3 =

2.7

v1 v2 v3

1 1.1634 1.0575 0.8226 1.0618 1.0604 1.0527

2 0.7977 0.7821 0.7664 0.7593 0.7554 0.7546

3 0.4114 0.4087 0.4002 0.4964 0.4924 0.4918

4 0.3498 0.3382 0.3157 0.3454 0.3453 0.3396

5 0.2539 0.2459 0.2391 0.2377 0.2374 0.2362

6 0.1913 0.1852 0.1790 0.1947 0.1931 0.1927

7 0.1513 0.1435 0.1353 0.1295 0.1287 0.1268

8 0.1435 0.1353 0.1265 0.0904 0.0863 0.0804

9 0.1171 0.1069 0.0956 0.0690 0.0633 0.0629

10 0.0976 0.0869 0.0777 0.0438 0.0432 0.0425

15 0.0828 0.0676 0.0478 0.0216 0.0213 0.0199

Table 7:Maximum transverse deflection in a C-C nanotube incorpo-

rating surface e�ects (S.E.)

Basutkar, et al. [62] Present

(L/h) (S. E) (S. E ≠ 0) (S. E = 0) (S. E ≠ 0)

10 0.6343 0.6334 0.6396 0.6363

15 0.9472 0.9459 0.9450 0.9432

20 1.2550 1.2530 1.2934 1.2914

In Figures 4 and 5 we show the dimensionless fre-

quency versus the dimensionless amplitude for various

non-local parameters, while assuming L/h = 10-20, V = 0,

Kp = 20, ∆T = 20∘ and α = 0.5. Based on the results, it

is found that the dimensionless frequency increases with

the amplitude. When the nonlocal parameter increases,

the frequencymagnitude decreases, thus revealing the im-

portance of considering nonlocalities within such vibra-

tion problems. A softening frequency behaviour is also ob-

served for an increased structural slenderness, as shown

in Figure 5. A similar systematic investigation is, thus, re-

peated for di�erent Winkler parameters, while keeping

L/h = 10, V = 0, α = 0.5, Kp = 20, ∆T = 20∘ and 30∘, as

plotted in Figures 6 and 7, respectively. All the plots in both

�gures, increase monotonically, where an increased Win-
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kler’s parameter yields higher frequencies for each �xed

dimensionless amplitude. This corresponds to an overall

hardening behaviour of the structural sti�ness of the nan-

otube.

 

 

  

 

 

 
        

 

 

 

0

0,5

1

1,5

2

2,5

3

3,5

0 0,5 1

D
im

e
n

si
o

n
le

ss
 f

r
e

q
u

e
n

c
y

Dimensionless amplitude

τ=0.1τ=0.2τ=0.3τ=0.4

Figure 4: Dimensionless frequency vs. dimensionless amplitude for

various non-local parameter. (L/h = 10, V = 0, Kw = Kp = 20,

∆T = 20∘, α = 0.5)
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Figure 5: Dimensionless frequency vs. dimensionless amplitude for

various non-local parameter. (L/h = 20, V = 0, Kw = Kp = 20,

∆T = 20∘, α = 0.5)

The frequency variation of the nanotube is presented

in Figures 8 and 9, in dimensionless form, with respect to

the amplitude for a varying voltage level, under the follow-

ing assumptions: L/h = 10–20, α = 0.5, Kp = Kw = 20–

30 and ∆T = 20∘. It is found that an increased amplitude

gets higher frequencies, whose variation is strictly depen-

dent on the applied voltage. An axial tensile or compres-

sive force is produced within the nanotube by applying a

positive or negative voltage, respectively. It is also found

that the dimensionless frequency is slightly dependent on
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Figure 6: Dimensionless frequency vs. dimensionless amplitude for

di�erent foundation parameter values. (L/h = 10, V = 5, Kp = 20,

∆T = 20∘, α = 0.5)
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Figure 7: Dimensionless frequency vs. dimensionless amplitude for

di�erent Pasternak foundation values. (L/h = 10, V = 5, Kp = 20,

∆T = 30∘, α = 0.5)
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for various for various electric voltages. (L/h = 20, Kw = Kp = 30,
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Figure 10: Dimensionless frequency vs. dimensionless amplitude

for di�erent nonlinear foundation values. (L/h = 10, V = 0,

Kw = Kp = 10, ∆T = 10∘, α = 0.5)

the slenderness ratio and foundation parameter, under a

�xed temperature ∆T = 20∘. The e�ect of the frequency

vs. amplitude for the nanotube is plotted in dimensionless

form in Figures 10 and 11, for a di�erent nonlinear foun-

dation parameter, and for �xed values of L/h = 10–20,

Kp = Kw = 20–30 and ∆T = 20∘. One can observe that the

dimensionless frequency increases in a wave propagation

trend for an increasing amplitude, when L/h = 10, and

Kp = Kw = 20. Moreover, the frequency increases with the

oscillationmodes, for increased values of slenderness and

foundation parameters.

Figures 12 and 13 also depict the bending moment re-

sponse for the �rst threemodes along the nanotube length,

while assuming L/h = 10, V = 0, α = 0.5, Kw = Kp = 20,

∆T = 20∘, ∆H = 10. Based on the plots in these two �g-

ures, it is worth noticing that, as the length grows, the
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Figure 11: Dimensionless frequency vs. dimensionless amplitude for

di�erent nonlinear foundations. (L/h = 20, V = 0, Kw = Kp = 20,

∆T = 20∘, α = 0.5)
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Figure 13: Bending moment vs. length for di�erent modes. (L/h =

10, V = 0, Kw = Kp = 20, ∆T = 20∘, ∆H = 20, α = 0.5)

bending moment attains a tensile and compressive nature

when moving versus higher modes. The in�uence of the

magnetic �eld is also clearly observable in the wave trend.

Figures 14 and 15 present the dimensionless frequency vs.

the attached mass ratio, for L/h = 10, V = 0.2, Kw =
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Figure 14: Dimensionless frequency vs. attached mass ratio. (L/h =

10, V = 0.2, KwKp = 20, ∆T = 10∘, ∆H = 10)
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Figure 15: Dimensionless frequency vs. attached mass ratio. (L/h =

10, V = 0.2, Kw = Kp = 20, ∆T = 20∘, ∆H = 20)

Kp = 20, and for di�erent environmental conditions, (∆T,

∆C) = (10,10), (20,20), respectively. It is seen that the fre-

quencyparameter decreases as the attachedmass ratio val-

ues increases. It should be also pointed out that thermal

and hygro-thermal environment degrades the plate sti�-

ness for an increasedmass ratio. Moreover, it is found that

the e�ects of a varying temperature and moisture concen-

tration, are more pronounced at lower mass ratios. Gen-

erally, by attaching a particle on a SWCNT, the total mass

of the system ampli�es although the sti�ness remains un-

changed, with a consequent decreased frequency. As far

as the nonlocal e�ect is concerned, we can �nally observe

that an increasing nonlocal parameter decreases the fre-

quency response of the structure, along with its sti�ness.

7 Conclusion

This paper studies the nonlinear magneto-thermo- elastic

waves in an armchair SWCNT resting on a polymer matrix

via an Euler beam theory and the Eringen’s nonlocal elas-

ticity assumptions to account for small scale e�ects. The

ultrasonic wave dispersion problem is de�ned and solved

theoretically, where a parametric investigation checks for

the in�uence of the magneto-electro-mechanical loading,

nonlocal parameter, and aspect ratio, on the de�ection re-

sponse of nanotubes. Based on the results from the system-

atic study, themain conclusions can be summarized as fol-

lows:

• The nonlocal scaling constant ampli�es the natural

frequencies of CNTs.

• An increased foundation parameter enhances the

sti�ness and frequency of the nanostructure, es-

pecially when assuming clamped boundary condi-

tions.

• Armchair CNTs embedded in an elastic foundation,

feature an improved dynamic behavior. Moreover,

the Pasternak parameter a�ects the structural re-

sponse more signi�cantly than a Winkler-type foun-

dation.

• The natural frequency variation between local and

non local boundary conditions, maintains below

1%, in presence of thermal coe�cients.

• The vibration modes of SWCNT are softened by an

attached mass and for small length scale values.

• The results from this work can be useful bench-

marks for the study and design of nanodevices that

make use of the wave propagation properties of

armchair SWCNTs embedded on a polymer matrix,

i.e. nano-oscillators, micro wave absorbing, nano-

electron technology and nano–electro–magneto–

mechanical systems (NEMMS).
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