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SUMMARY

Calculations on general point-set surfaces are attractive because of their flexibility and simplicity in the
preprocessing but present important challenges. The absence of a mesh makes it nontrivial to decide if
two neighboring points in the three-dimensional embedding are nearby or rather far apart on the manifold.
Furthermore, the topology of surfaces is generally not that of an open two-dimensional set, ruling out
global parametrizations. We propose a general and simple numerical method analogous to the mathematical
theory of manifolds, in which the point-set surface is described by a set of overlapping charts forming a
complete atlas. We proceed in four steps: (1) partitioning of the node set into subregions of trivial topology;
(2) automatic detection of the geometric structure of the surface patches by nonlinear dimensionality
reduction methods; (3) parametrization of the surface using smooth meshfree (here maximum-entropy)
approximants; and (4) gluing together the patch representations by means of a partition of unity. Each patch
may be viewed as a meshfree macro-element. We exemplify the generality, flexibility, and accuracy of the
proposed approach by numerically approximating the geometrically nonlinear Kirchhoff–Love theory of
thin-shells. We analyze standard benchmark tests as well as point-set surfaces of complex geometry and
topology.

KEY WORDS: shells; meshfree methods; partition of unity; point-set surfaces; maximum-entropy
approximants; nonlinear dimensionality reduction

1. INTRODUCTION

The Kirchhoff–Love theory of thin-shells is very attractive as compared with shear deformable shells
because only the middle surface (three degrees of freedom per node) needs to be described. It has
been shown to be a very good model for slender surface-like bodies. However, this theory involves
both the first and second fundamental forms of the surface, and consequently, the approximation of
the deformation needs to have second-order square integrable derivatives. For general unstructured
meshes, it is difficult to define C 1 finite element approximations, which has prompted a myriad of
techniques that avoid this requirement ([1–3] and references there in). Yet, C 0 approaches do not
perform well in the thin-shell limit.

Early meshfree approaches are among the first numerical methods with smooth approximants
for Kirchhoff–Love shells beyond Hermite approximations [4]. Following ideas from computer
graphics, smooth subdivision surfaces finite elements have been proposed for thin-shells [5, 6].
Subdivision finite elements provide a unified framework for geometric modeling and thin-shell
analysis. Along this line of work, isogeometric analysis [7, 8] is a new technology building on
computer-aided design smooth approximation methods, such as B-splines and non-uniform rational
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B-splines (NURBS). They have been successfully applied to beams, plates, and thin-shells [8–10].
These methods exhibit a high fidelity of the geometry representation, and their difficulties are
derived from the rigidity of the NURBS framework with regards to the structure of the grid, which
are the topic of current research [11]. On the other hand, discontinuous Galerkin formulations
have been proposed recently for plates, beams, and thin-shells [12–16]. These methods avoid the
C 1 continuity requirement by designing suitable numerical fluxes conjugate to the deformation
jumps. An advantage of this method is the ease in the imposition of the rotation essential boundary
conditions. As disadvantages, the formulation and implementation of these methods is cumbersome,
and they typically exhibit a poorer accuracy for a given number of degrees of freedom as compared
with methods based on smooth approximants.

Despite the advances made in the area of computer graphics to process point-set surfaces, that
is, surfaces discretized merely as a set of points in space [17–24], meshfree methods for thin-shell
analysis are still restricted to simple surfaces admitting a single parametrization [4, 25–27]. In a
recent work, we presented a methodology based on linear statistical learning techniques to process
a general smooth surface defined by a set of points alone [28]. The performance of the method
was assessed by confronting a classical obstacle course of linear benchmarks proposed in [29]. The
method is in principle applicable to embedded manifolds in any dimension. In our previous work,
the method results from combining three ingredients:

1. The local geometric structure of the manifold is detected from the node set using weighted
PCA (wPCA), which identifies the hyperplane closest to the points in a given neighborhood
that we call patch. The number of patches is in general comparable with the number of points.

2. A smooth local parametrization is defined in the two-dimensional wPCA projection of the
points of each patch. This can be realized with a variety of methods, from other meshfree
methods such as moving least squares (MLS) approximants to mesh-based methods such
as subdivision finite elements. In the latter case, no global mesh is required. Here, the
local maximum-entropy (max-ent) approximants [30] are chosen because of their smoothness,
robustness, and relative ease of quadrature compared with other meshfree approximants.

3. The local parametrizations are then glued together with a partition of unity (PU) defined in the
ambient space, which consequently is also a PU on the manifold.

In spite of being able to deal with shells of complex topology and geometry, this method presents
a serious practical drawback: wPCA produces a massive overlapping between the patches. The
patches cannot be too large; otherwise, the local hyperplane approximates poorly the manifold, and
the local parametrization may become very distorted or even not injective. The massive overlapping,
needed to glue the local patches with the PU, results in great redundancy of quadrature points and a
very large computational cost.

In the present work, our goal is to greatly expand the range of applicability of the ideas presented
in [28], building more efficient and robust local parametrizations of the point-set surface. We exploit
nonlinear dimensionality reduction (NLDR) techniques, instead of the linear PCA. By doing so, the
point-set surface can be partitioned into a small number of regions, which exhibit a small overlap.
The calculations are significantly faster and more accurate. We illustrate with a numerical example
the amount of overlapping with both methods. We consider a scattered set of points distributed on a
sphere and compute the ratio between the number of quadrature point needed with a method based
on wPCA or NLDR and the number of quadrature points if no overlap at all was needed (Figure 1).
It can be observed that the redundancy factor for the method based on wPCA can be as large as 15,
whereas with the proposed method, this factor approaches the optimal value of 1 as the discretization
is refined.

In Section 2, a concise introduction to dimensionality reduction in the context of data-driven
methods is presented. Additionally, two additional steps are proposed to obtain high-quality
low-dimensional embeddings, which are motivated with a simple example. Section 3 describes
the proposed methodology for point-set manifold processing. Section 4 provides a short account
of the geometrically exact Kirchhoff–Love shell theory. Numerical experiments to evaluate the
performance of the method are presented in Section 5. Some remarks and conclusions are collected
in Section 6.
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Figure 1. Overlapping ratio comparison between a linear (wPCA) and a nonlinear dimensionality reduction
(NLDR) method for a spherical point-set surface. The overlapping measures the amount of redundancy of

quadrature points caused by the overlapping of the local parametrizations.

2. DIMENSIONALITY REDUCTION

The goal of statistical learning is extracting meaningful information from empirical data, a
general endeavor with many applications in science and engineering. In particular, dimensionality
reduction tries to address the curse that dimensionality researchers confront when dealing with high
D-dimensional data. It proceeds by finding a lower d -dimensional representation, d � D,
which captures the most relevant features of the data, that is, these methods identify the hidden
variables that best explain the behavior of a given system. Generically, given an input data set
X D ¹x1,x2, : : : ,xN º � RD , the problem is finding a lower dimensional representation „ D
¹�1, �2, : : : , �N º � Rd with d < D, which in some sense retains the essential information in the
original data.

2.1. Linear dimensionality reduction

The most widespread technique of dimensionality reduction was introduced in 1901 by
Pearson [31]. In this seminal work, Pearson developed a method to obtain the best affine fit that
minimizes the distance from the input data (Figure 2). Throughout the years, this method has been
rediscovered and extended in many areas, where it goes by different names: principal components or
Hotelling transform [32], Karhunen–Loève transform [33,34], empirical orthogonal functions [35],
and proper orthogonal decomposition [36]. Here, we will refer to it as PCA. See [37] for a modern
reference to this subject.

(A) Least Squares Fitting (B) Principal Component Analysis

Figure 2. (A) Least squares and (B) PCA fits to a set of scattered points in two dimensions. The least-squares
fit depends on the choice of axis and requires solving a linear system of equations, whereas the PCA fit is

geometrically objective and requires finding eigenvalues and eigenvectors.
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Principal component analysis is a standard tool in computer graphics [19], data analysis [38],
manifold learning [39], or model reduction techniques in computational mechanics [40, 41]. PCA
identifies the low d -dimensional subspace that best explains the variance of a higherD-dimensional
data set. The original data are transformed to a new orthogonal coordinate system such that the
projection of the data on the subspace defined by the first d coordinate directions, d 6D, maximizes
the variance as compared with any other projection onto a d -dimensional subspace. Given a data
set in high dimension X D ¹x1,x2, : : : ,xN º � RD , we define the matrix X 2 RD�N , where the
centered coordinates of the points, xa � Nx for a D 1, : : : ,N , are placed as column vectors. The
average position of all the points Nx is

Nx D
1

N

NX
aD1

xa.

The covariance matrix is then

C D
1

N
XXT 2RD�D .

This positive (semi-)definite symmetric matrix has real eigenvalues and diagonalizes in an
orthonormal basis of eigenvectors. We define V 2 RD�d as the eigenvector matrix formed by the
d eigenvectors corresponding to the largest d eigenvalues. These vectors span the affine space of
dimension d passing through Nx, which best describes the data. The matrix V defines an orthogonal
projection …PCA relative to Nx onto the reduced space of dimension d , that is,

…PCA WR
D �!Rd

x 7�! V T.x � Nx/.

The low-dimensional representation of the data is then given by �a D…PCA.xa/ for aD 1, : : : ,N .
Another classical method of linear dimensionality reduction is multidimensional scaling (MDS).

MDS is more suitable when, instead of data coordinates, we have similarity scores between each
pair of stimuli. MDS is a standard tool in psychophysics and sensory analysis. Here, we describe the
classical metric MDS [42]. Extensions and details about non-metric MDS can be found for instance
in [43] and references therein. The data are given in terms of a full N � N matrix D containing
the squares of the similarities between each pair of points. MDS projects the data set into the affine
space that best preserves the similarity scores between the data points. If the similarity score is
simply the distance derived from the Euclidean metric, that is, Dab D jxa � xbj2, then the method
tries to find a nearly isometric low-dimensional embedding of the data, and it can be shown to
coincide with PCA. In this case, the Gram matrix formed by the scalar products between pairs of
centered data is simply

S DXTX 2RN�N .

In general, the Gram matrix is obtained from the matrix of squared distances (similarities) D
through a double-centering step, S D �1=2HDH , where Hij D ıij � 1=N . The most expensive
step in the method is the singular value decomposition of the Gram matrix S D UƒU T, where
the eigenvalues are sorted in decreasing order. The data points expressed in the latent variables
„D ¹�1, �2, : : : , �N º �Rd are computed in matrix form as

„D IddNƒ
1=2U T 2Rd�N ,

where IddN is a d � N matrix formed by the first d rows of the N � N identity matrix. The
low-dimensional embedding of out-of-sample points x 2 RD can be obtained from the MDS
projection …MDS (see [44] for details).

The PCA and MDS share important features: both define a linear implicit mapping from the
high-dimensional space into the low-dimensional embedding, and the core operation for both
methods is the computation of the eigenvalues and eigenvectors of a full matrix. If the data are
not too high dimensional but the number of points N is very large, PCA is preferable in terms of



NONLINEAR MANIFOLD LEARNING FOR MESHFREE THIN-SHELL ANALYSIS

memory and computational cost because the covariance matrix isD�D. By contrast, MDS is better
suited when dimensionality is very high but the number of points is moderate, as the Gram matrix
is N �N .

2.2. Nonlinear dimensionality reduction

In many cases, the high-dimensional data do not conform to an affine subspace but rather to a
nonlinear manifold embedded in RD . Linear methods are not able to capture this manifold and
instead detect its affine hull, which can be of significantly higher dimension. This results in a less
compact representation of the data, and what is more, the linear representation glosses over the
intrinsic and meaningful structure of the data. NLDR methods have emerged over the last decades
for the statistical learning of complex data sets with hidden nonlinear structures in areas such as
multivariate data analysis [45], pattern recognition [38], and image processing [46, 47] to mention
a few. For an extended NLDR literature and insightful remarks, the reader is referred to [44, 48].
Some years ago, two landmark methods have invigorated this field: Isomap [49] and locally linear
embedding (LLE) [50, 51]. Each of these papers has collected some 4000 citations over the last
decade. They have expanded the range of the applicability of NLDR and have motivated new
developments in the field [39, 52–57]. Successful applications of these techniques include climate
data analysis [58], the study of the conformation dynamics of molecules [59,60], and galaxy spectra
classification [61].

2.2.1. Isomap. Isomap tries to embed isometrically the high-dimensional data in Rd , where the
distance between data points is an approximate geodesic distance on the manifold. It is a mere
application of MDS, and the core of the method is in the calculation of the matrix D. This method
builds a graph whose vertices are the data points and whose links are the union of the k-nearest-
neighbor connections for each vertex. The graph is weighted by the Euclidean distance in RD

between nearby neighbors. The underlying assumption is that, if the manifold is sufficiently well
sampled, the k-neighborhood of a point will look Euclidean. Then, the geodesic distance on the
manifold is approximated as the shortest path distance on this graph and is used to fill in the matrix
of squared distances. Isomap has been shown to be robust (more than LLE) for data polluted with
noise or for non-uniformly distributed data points. However, as a corollary of Gauss’s Theorema
Egregium [62], we know that it is not possible to isometrically embed in two dimensions a surface
with non-zero Gaussian curvature. This fact leads to a frustration in the algorithm, which can become
unstable. As discussed previously for MDS, Isomap has a very high computational cost and memory
requirements when the number of points is high but can deal easily with very high-dimensional data.

2.2.2. LLE. Locally linear embedding assumes that the manifold can be locally approximated by
a linear small patch, and hence, each point xa, a D 1, : : : ,N can be reconstructed from its nearest
neighbors as

xa D
X
b2Nxa

Wab xb ,

where Nxa is the list of indices of the closest k-neighbors to xa and Wab are the elements of an
N �N sparse matrix containing unknown weights. The sparsity comes from the fact that each point
is reconstructed in terms of its nearest neighbors alone. LLE computes these weights by minimizing
the cost function

E.W /D

NX
aD1

ˇ̌̌
ˇ̌̌xa � X

b2Nxa

Wab xb

ˇ̌̌
ˇ̌̌
2

.

In this optimization program, each row of the weight matrix W is constrained to sum up to 1
to enforce the invariance with respect to translations. These linear weights contain the intrinsic
information about the local geometrical structure of the manifold. They are invariant with
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respect to translations, scaling, and rotations. Then, with the weights fixed to the solution of the
aforementioned program, the low-dimensional embedding is obtained from minimizing

F.„/D
NX
aD1

ˇ̌̌
ˇ̌̌�a � X

b2Nxa

Wab �b

ˇ̌̌
ˇ̌̌
2

,

subject to .1=N /„„T D I . This constraint removes the affine invariance of the solution, by
requiring the low-dimensional points to have unit covariance. Thus, this method computes a
low-dimensional embedding that respects the local geometric structure contained in the sparse
matrix W . This minimization problem has a global minimum, which can be solved by finding the
smallest eigenvalues and eigenvectors of the N �N sparse matrix M D .I �W /T.I �W /. The
reader is referred to [50, 51] for full details and to [63] for a concise mathematical description.

Locally linear embedding does not try to be isometric and, in fact, ignores metric information
altogether by producing a low-dimensional embedding of unit covariance. It is more sensitive to
the number of neighbors than Isomap. From an efficiency viewpoint, in contrast with Isomap, the
N � N matrix whose eigenvalues and eigenvectors need to be computed is sparse for the LLE
method. Therefore, this method is applicable to problems with large numbers of sampling points.
LLE presents instabilities due to the ill conditioning of the optimization problem that selects the
weights, leading often to spurious distortions. The stability of the LLE method has been enhanced
in subsequent modifications, such as Hessian LLE [54] or the modified LLE (MLLE) method [57].
These methods produce better-quality embeddings of low dimension in general, and the MLLE
method has a small computational overhead as compared with LLE.

2.2.3. Intrinsic dimensionality. In the algorithms outlined earlier, the manifold dimensionality
is assumed to be given, and for thin-shells, d D 2. Yet, in other applications, the manifold
dimensionality may not be known, and we cannot resort to visual inspection in high dimensions.
The estimation of the intrinsic dimensionality underlying a high-dimensional data set is an impor-
tant question in data exploration. There are many methods to estimate d ; here, we give a brief
account of the correlation dimension method, local PCA, and tracking the reconstruction error
[44, Chapter 3].

The correlation dimension method, originally proposed in [64], considers a closed ball of radius
� at the center of each data point and counts the number of points inside this ball. The dimension is
estimated by noting that the average number of counts should grow linearly with � for 1D objects,
quadratically for two-dimensional entities, and so on. Details about practical implementations and
insightful remarks can be found in [44]. Local PCA analyzes small local subsets of the data. The
intrinsic dimension d for each of these patches is selected such that it preserves a given fraction of
the variance of the original data, for example,

0.956

dP
iD1

�i

DP
iD1

�i

,

where �i are the eigenvalues of the covariance matrix arranged in decreasing order. In contrast with
the global correlation dimension, this method provides a local estimation of the intrinsic dimension.
The reconstruction error is a measure of the dissimilarity between the original high-dimensional
data points xa 2RD and their reconstruction from the low-dimensional points, generally computed
as a weighted average of the neighbors of �a 2R

d . Whereas for PCA, the notion of reconstruction
is straightforward, this is not the case for NLDR methods.

The preceding techniques are easy to implement and robust for data not polluted with noise. For
noisy measurements, the notion of intrinsic dimension becomes strongly scale dependent, and these
methods cannot be used as a black box. In such situations, physical understanding of the system
should be combined with dimension estimation methods.
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(A) (B)

Figure 3. (A) Set of scattered points quasi-uniformly distributed on a truncated sphere. (B) Two-dimensional
embedding obtained by locally linear embedding (LLE), exhibiting unavoidable high distortions. The color

coding is a visual guide.

2.3. Illustrative examples, point-set partitioning, and affine isometric correction

We show here a few toy examples illustrating the challenges that need to be addressed to use the
low-dimensional embeddings given by NLDR techniques as local parametric patches in processing
point-set manifolds. We first consider uniformly sampled points lying on a sphere, describing a
large portion of the full sphere (Figure 3A). Isomap is not able to embed this cloud of points in
two dimensions, despite them clearly representing a surface with the topology of a two-dimensional
open set. The frustration arising from the impossibility of embedding isometrically such a large
portion of a sphere is too large, and the method fails. LLE provides satisfactory results, at the
expense of generating very large local distortions (Figure 3B), which are unavoidable and a corollary
of Gauss’s Theorema Egregium. Another notable feature of the results of LLE in this example is the
lack of a clear metric relationship between the low-dimensional embedding and the original data,
as noted earlier. Both the distortions and the lack of metric correspondence are problematic for our
purposes. Indeed, a good-quality sampling of a surface may become strongly distorted or scaled
in one direction if the surface is elongated. As a result, the H 1 norm of the parametrization from
the low-dimensional embedding into three dimensions may become very large and non-uniform,
leading to inaccurate numerical calculations.

We address the unavoidable distortions by partitioning the original data set into a small number
of patches (Figure 4A). We then embed each partition in two dimensions with NLDR techniques.
We use the METIS library to partition the data [65]. Not only is partitioning advisable to obtain
good-quality embeddings of low dimension, it also becomes unavoidable for surfaces of general
topology, as NLDR methods are applicable only to surfaces of trivial topology. It is always possible
to recursively partition a data set until all the partitions have trivial topology. Figure 4B–D shows the
low-dimensional embedding generated by Isomap, LLE, and MLLE, respectively. Isomap provides
a good-quality embedding of low dimension, whereas LLE produces spurious distortions. MLLE
corrects these distortions yet introduces a uniform stretching of the domain in one direction as a
result of its affine invariance and the unit covariance constraint.

To address the uniform distortions of LLE-based methods, that is, the lack of metric correspon-
dence between the low-dimensional embedding and the original data, we propose a simple iterative
method that we call affine isometric correction (AIC). This method finds the affine transformation
T that minimizes a measure of isometry [66], given by the discrete stress function

ES.T /D
1

2

NX
aD1

X
b2Nxa

�
jT .�a � �b/j � jxa � xbj

jxa � xbj

�2
,

where �a are the low-dimensional points given by a direct application of a NLDR method and T is
a d � d matrix with a positive determinant. By the polar decomposition theorem, it is sufficient to
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Figure 4. (A) Partition of the data set in Figure 3. Two-dimensional embeddings given by a direct applica-
tion of (B) Isomap, (C) locally linear embedding (LLE), and (D) modified LLE (MLLE). Two-dimensional

embeddings given by (E) Isomap, (F) LLE, and (G) MLLE after the affine isometric correction step.

Table I. Stress function ES for the quarter of a truncated sphere (Figure 4).

T Isomap LLE MLLE

I 25.9 30.6� 104 26.8� 104

arg minES 11.7 96.5 6.22

Here, we consider a k-rule search for neighbors [67], with k D 12.
LLE, locally linear embedding; MLLE, modified locally linear embedding.

minimize the function over symmetric positive-definite matrices. Computationally, we implement
Newton’s method with line search that converges very rapidly. The low-dimensional embedding
resulting from post-processing the raw NLDR results with AIC are shown in Figure 4E–G, and
the values of the stress function are given in Table I. It is clear that this simple procedure significantly
improves the isometric quality of LLE-based methods a posteriori, while it changes only marginally
the results of metric methods such as Isomap. In subsequent calculations, we choose the MLLE
method combined with the AIC, as it provides good-quality embedding of low dimension metrically
related to the original data, and it involves calculations on sparse matrices.



NONLINEAR MANIFOLD LEARNING FOR MESHFREE THIN-SHELL ANALYSIS

3. MANIFOLD DESCRIPTION FROM SCATTERED POINTS

3.1. General setting and partition of unity

We consider a smooth d -manifold M embedded in RD , d < D. Our goal is to numerically
represent M from a set of points and make computations on it. Let P D ¹P1,P2, : : : ,PN º �
RD be a set of control points representing M. We consider another set of geometric markers,
Q D ¹Q1,Q2, : : : ,QM º � RD , typically a subset of P but not necessarily. For simplicity, we
will denote the points in P and its associated objects with a lower case subindex, for example, Pa,
for a D 1, 2, : : : ,N , and the geometric markers in Q and its associated objects with an upper case
subindex, for example,QA, for AD 1, 2, : : : ,M .M 6N/.

We partition these geometric markers into L groups on the basis of proximity (METIS domain
decomposition with a k-nearest neighbor graph). We represent these groups of geometric markers
with index sets I� , � D 1, : : : ,L with [L�D1I� D ¹1, 2, : : : ,M º and I� \ I� D ; when � ¤ � , and
use Greek subindices to refer to entities associated with these groups of markers. As it will become
clear below, there is a one-to-one correspondence between these groups of geometric markers and
the local parametrizations of the surface, which we call patches.

We consider a Shepard PU associated with the geometric markers. Consider a set of non-negative
reals ¹ˇAºAD1,2,:::,M associated with each point in Q. We define the Shepard PU with Gaussian
weight associated to the set Q as the functions wA WRD!R given by

wA.x/D
exp

�
�ˇAjx �QAj

2
�

PM
BD1 exp

�
�ˇB jx �QB j

2
� .

For efficiency and given the fast decay of the Gaussian functions, these functions are numerically
treated as compactly supported.

We aggregate these PU functions by patches, as it is depicted in Figure 5 for d D 1 and D D 2,
yielding a coarser PU given by the functions

 �.x/D
X
A2I�

wA.x/.

These functions form a PU in RD and consequently also in M. We consider the index sets of all
control points influencing each patch, J� , with [L�D1J� D ¹1, 2, : : : ,N º, but now J� \ J� ¤ ;
because of the overlap between patch PU functions. Roughly speaking, these sets are ¹a j Pa 2
sup �º, slightly enlarged so that the patch parametrization is smooth on the boundary of the support
of � . Note that, as can be seen in Figure 5, the partition unity functions � restricted to the manifold
are quite insensitive to the position of the geometrical markers QA in the direction normal to the
curve. Figure 6 illustrates the overlap regions for a partition of the sphere.

geometric
markers

control
points

(A) (B)

Figure 5. Illustration of the proposed method for a curve (d D 1) in the plane D D 2. (A) Illustration
of a function  �.x/ of the coarse partition of unity tied to the patches. (B) Visualization of the coarse

partition-of-unity overlap regions. The partition of the geometric markers is color coded.
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(A) (B)

Figure 6. (A) Visualization of a coarse partition of unity overlap regions on a sphere (contour map ofP
� jr � j

2). (B) Zoom from a selected region on the sphere; the partitioning of the geometric markers
(˘, color coded by the partitions), the width of the overlapping, and the control points ı can be appreciated.

3.2. Patch manifold learning and surface parametrization

For each patch, we obtain a low-dimensional embedding Rk of the points P� D ¹Paºa2J� � RD

with an NLDR technique, resulting in the representation „� D ¹�aºa2J� �Rd , this is

R� WR
D �!Rd

P� 7�!„� .

For instance, in meshfree thin-shell analysis, MLLE with AIC produces in general a
low-dimensional embedding of good geometric quality and can be computed efficiently. See
Figure 7 for an illustration in a complex example. If the automatic partitioning of the data creates
patches of complex topology, for example, a tubular partition in an ear of the bunny in the figure or
patches of high geometric complexity leading to excessive geometric distortions, such as the blue
partition at the tip of one ear, we proceed by recursively re-partitioning such patches.

Dimensionality

reduction of partition (*)
(*)

(A) Partitioned point-set surface

(B) Two views of partition (*)

(C) PCA embedding in 2D

(D) NLDR embedding in 2D

Figure 7. (A) The automatic partitioning of a point-set surface representing the Stanford bunny, performed
with METIS, can create patches of complex geometry and topology, for example, a tubular partition in an ear.
We recursively partition such patches. (B) Two views of the patch (*). Low-dimensional embedding of the
patch (*) by PCA (C) and by a nonlinear method (D). The colors of the points are provided to guide the visual
inspection of the embeddings of low dimension. PCA collapses large regions of the patch, whereas the NLDR

method successfully ‘irons’ the curved patch into a moderately distorted low-dimensional embedding.
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Hessian (xx-component)(C)

Basis functions(A)

Gradient (x-component)(B)

Figure 8. (A) Local maximum-entropy basis functions computed with an aspect ratio parameter � D 0.8 in
an unstructured and non-uniform two-dimensional distribution of points. (B, C) The x-components of the

gradient and the Hessian.

The low-dimensional space where the data points of a partition are embedded is a convenient
parametric space for the corresponding patch. It is important to note that the embedded points
are in general unstructured, and that, although here d D 2, the methodology is applicable to
higher-dimensional embedded manifolds. This is the topic of current research. The patch
parametrizations often need to be smooth, here because of the requirements of the Kirchhoff–Love
theory. Thus, a general method to process embedded smooth manifolds demands a smooth
approximation scheme for general unstructured nodes in multiple dimensions. There are not many
available methods fulfilling these requirements. In two dimensions, subdivision approximations may
be used. Here, we consider a general meshfree method to produce such approximants in any spatial
dimension d , the local max-ent approximants. See [28, 30] for the formulation, properties, and
evaluation of the basis functions and their derivatives. The local max-ent basis functions in two
dimensions are illustrated in Figure 8.

Let pa.�/ denote the local max-ent approximants associated to the point set „� on a domain
A� � Rd , a subset of the convex hull of the reduced node set conv „� . We locally parametrize the
manifold in this patch as

'� WA� �!RD

� 7�!
X
a2J�

pa.�/Pa.

Note that the images of the local patches, '�.A�/, overlap in the vicinity of the partition boundaries
and need not exactly coincide in these regions.

3.3. Partition of unity to evaluate integrals on M
A PU is a classical technique to patch together local objects on a manifold [62]. Consider for
instance the integral of a scalar function f over a manifold M, f W M ! R. Then, we have
the following identity

Z
M

f .x/ dMD
LX
�D1

Z
M

 �.x/ f .x/ dM.
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Combining the PU with the local parametrization of the �th patch, we can approximate numerically
integrals over the manifold M described by a set of scattered points as

Z
M

f .x/ dM'
LX
�D1

Z
A�

 �.'�.�// f .'�.�// J�.�/ d�,

where J� D
p

det Œ.D'�/TD'� � is the Jacobian determinant of the parametrization. In this way,
similar to finite element methods, we have split the integral into local contributions, which can
be evaluated using local parametrizations. The last integral can be subsequently approximated by
a numerical quadrature on the local parametric space. Here, we resort to Gauss quadrature on a
support triangulation defined over „� .

All variational models describing the mechanics of thin-shells are formulated in terms of integrals
over the mid-surface, for example, the elastic energy functional, or the weak form. Consequently,
all these theories can be approximated numerically following the preceding ideas. In such cases, the
function does not depend explicitly on x, but rather on other fields on the manifold, yet the method
is still applicable.

3.4. Single representation of a manifold described by multiple patches

We have avoided so far a precise definition of a numerical surface in the overlapping regions.
Although a single representation of the manifold given by multiple overlapping patches, which
do not coincide exactly at the overlap regions, is not needed to compute integrals and functionals on
the manifold, such a representation is useful in a number of situations such as visualization, contact
detection, or imposition of displacement at interior points. We describe now how we proceed. As a
starting point, we have an out-of-sample point x 2 RD in the vicinity of the embedded manifold.
This point could be a sampling of the actual surface or the image of a point in parametric space by
a patch parametrization. Our goal is to define an operator mapping x onto the manifold. We first
identify the patches that have an influence on x by building the index set

Nx D ¹� 2 ¹1, 2, : : : ,Lº j  �.x/ > TOLº.

We can then find the preimage of the closest point projection of x onto the multiple patch
representations, which we denote by �� D '

�1
� .��.x// for � 2Nx , where ��.x/ is the closest point

projection of x at each patch (Appendix A). We can then define the operator (almost a projection)

�.x/D
X
�2Nx

 �.x/ '�.��.x//,

which averages the position of the point as represented by the different overlapping parametriza-
tions. Similar to the definition of MLS point-set surfaces [18, 20], we can formally define the
numerical surface at overlapping regions as the fixed points of this operator. For MLS point-set
surfaces, the properties of the fixed points of a related operator have been mathematically analyzed,
and the properties of the resulting manifold established. Our numerical experiments indicate that
successive iterations of �.x/ converge extremely fast. In practice, we do not iterate the operator.

4. THIN-SHELL MODEL

In this section, we review the mechanics of thin-shells [5, 6], on the basis of a geometrically exact
formulation [3, 68]. We restrict our attention to the Kirchhoff–Love theory of shells, that is, we
neglect the shearing and stretching deformation normal to the shell mid-surface. In this theory, the
shell director remains normal to the mid-surface during the deformation.

We follow the usual convention for Latin and Greek indices (that is, i D 1, 2, 3; ˛ D 1, 2), a
comma denotes partial differentiation, subscripts refer to covariant components, and superscripts
denote contravariant components.
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4.1. Kinematics of the shell

We next describe the kinematics of a thin-shell body S in three-space (Figure 9). We assume that
this body can be described by the pair .', t/, where the mapping ' defines the shell middle surface,
�, and t is a field of unit vectors (a field of directors). We assume the thickness h of the shell to be
uniform for simplicity, and also we assume that the change in shell thickness after deformation is
negligible. Then, the thin-shell body S is given by

S D

²
ˆ 2R3j ˆ D '.	˛/C 	 t.	˛/, �

h

2
6 	 6 h

2
,
�
	1, 	2

�
2A

³
,

where A � R2 is the parametric space for the middle surface. Hence, we view a configuration
ˆ as a mapping from a parametric domain A � Œ�h=2,h=2� into R3. The parametric domain is
described by the coordinates ¹	1, 	2, 	3º (where we identify 	 D 	3), whose corresponding dual
basis is ¹E iº. The area element of the middle surface can be computed as d�D Nj d	1d	2, where
Nj D

ˇ̌
',1 �',2

ˇ̌
. The tangent map of a given configuration Tˆ can be computed from the convective

basis vectors gi as

T x D
@ˆ

@	 i
˝E i D gi ˝E

i ,

with g˛ D @ˆ=@	
˛ D ',˛ C 	 t ,˛ and g3 D @ˆ=@	 D t. The covariant components of the metric

tensor in convected coordinates are given by gij D gi � gj .
The subscript 0 denotes quantities in the reference configuration, for instance, '0 parametrizes

the reference middle surface. A deformation mapping is a mapping from a reference body into
R3, ˆ ıˆ�10 . Consequently, the deformation gradient is F D Tˆ .Tˆ0/

�1, and the Jacobian is
J D det.F /D j=j0, where j D det.Tˆ/D g3 � .g1 � g2/.

The shell director in the reference configuration t0 coincides with the normal to the undeformed
middle surface of the shell and hence

t0 D
'0,1 �'0,2

Nj0
, '0,˛ � t0 D 0, jt0j D 1, t0 � t0,˛ D 0.

In general, the director in the deformed configuration of the shell, t, is allowed to be an arbitrary
vector field over �Dˆ.A � ¹0º/.

The local shell deformations can be characterized by the Green–Lagrange strain tensor. Because
the convected components of the metric tensor coincide with the components of .Tˆ/TTˆ in the
basis associated with ¹	 iº, the Green–Lagrange strain tensor can be expressed as the difference
between the metric tensors on the deformed and undeformed configurations of the shell, that is,

Eij D
1

2
.gij � g0ij /D

1

2
.ˆ,i �ˆ,j �ˆ0,i �ˆ0,j /.

Figure 9. Reference, deformed and parametric configurations of the middle shell surface.
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Plugging the basic kinematic ansatz ˆ D '.	˛/ C 	 t.	˛/ into the preceding expression and
grouping terms, we obtain

Eij D "ij C 	 
ij C .	/
2 #ij ,

which admits the following interpretation in terms of the symmetric tensors "ij , 
ij , and #ij :

� The membrane strain tensor "˛ˇ D .1=2/.',˛ � ',ˇ � '0,˛ � ',ˇ /, which lives on the middle
surface, measures the in-plane deformation of the surface; the components "˛3 D .1=2/',˛ � t
measure the shearing of the director t0; and the component "33 D .1=2/.t � t�1/ measures the
stretching of the director t0.
� The bending or change in curvature of the shell is measured by the tensor 
˛ˇ D ',˛ � t ,ˇ �
'0,˛ � t0,ˇ , and 
˛3 D .1=2/t ,˛ � t measures the shearing originating from the director elonga-
tion; the in-plane tensor #˛ˇ D .1=2/.t ,˛ � t ,ˇ � t0,˛ � t0,ˇ / is exclusively related to changes of
the middle-surface directors. The rest of the components vanish, 
33 D #3i D #i3 D 0.

4.2. Kirchhoff–Love hypothesis

In the remainder of this section, we restrict our attention to the Kirchhoff–Love theory of thin-shells,
that is, we constrain the deformed director t to coincide with the unit normal of the deformed middle
surface of the shell, that is,

t D
',1 �',2

Nj
, ',˛ � t D 0, jtj D 1, t � t ,˛ D 0.

This assumption is well suited when the ratio between the shell thickness and its characteristic
size is�1. With the Kirchhoff–Love hypothesis, the only remaining non-zero components of the
Green–Lagrange strain tensor are

E˛ˇ D
1

2
.a˛ˇ � a0˛ˇ /C 	.�˛ˇ � �0˛ˇ /C

.	/2

2
.t ,˛ � t ,ˇ � t0,˛ � t0,ˇ /

D "˛ˇ C 	 
˛ˇ C .	/
2 #˛ˇ ,

(1)

where we have introduced the first and second fundamental forms expressed in convected
components

a˛ˇ D ',˛ �',ˇ ,

�˛ˇ D ',˛ � t ,ˇ D�',˛ˇ � t.

Thus, the Kirchhoff–Love kinematic assumption leads to a formulation of the shell exclusively in
terms of the middle surface.

4.3. Equilibrium configurations

The potential energy of an elastic shell body with bulk internal energy densityW can be expressed as

…Œˆ�D

Z
S0

W.Eij / dV0C…extŒˆ�,

where …ext is the potential energy of the external loads. For concreteness, we consider an isotropic
Kirchhoff–St. Venant elastic material [69]

W D
1

2
C ijklEijEkl ,

where C ijkl are the contravariant components of the elasticity tensor.
For thin-shell bodies, the Green–Lagrange tensor components are commonly retained up to first

order in h (Equation (1)), and the effect of curvature on the Jacobian away from the middle surface
is neglected, that is, j0= Nj0 D 1 [3, 68]. Assuming that the elasticity tensor does not vary through
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the thickness, the internal energy density can be integrated through the thickness, resulting in an
internal energy density per unit area

W.E˛ˇ /D
1

2

h=2Z
�h=2

C ˛ˇ�ıE˛ˇE�ı
j0
Nj0

d	 '
1

2
C ˛ˇ�ı

�
h"˛ˇ"�ı C

h3

12

˛ˇ
�ı

�
,

with

C ˛ˇ�ı D
E

.1� �2/

�
�a
˛ˇ
0 a

�ı
0 C

1

2
.1� �/

�
a
˛�
0 a

ˇı
0 C a

˛ı
0 a

ˇ�
0

�	
,

where a˛�0 .a0/�ˇ D ı
˛
ˇ

, E is Young’s modulus, and � is Poisson’s ratio. Thus, the internal potential
energy is a functional of the middle-surface configuration, which can be written as an integral over
the reference middle surface

…intŒ'�D

Z
�0

W.E˛ˇ / d�0,

and the external potential becomes

…extŒ'�D�

Z
�0

q �' d�0 �
Z
@�0

h �' d`0,

where q is the external body load per unit area, h are the forces per unit length applied on the
boundary of the middle surface, and d`0 is the line element of the boundary of the middle surface.
Distributed torques can be also applied at the boundary of the thin-shell.

Following [3], we introduce the elastic constitutive relations between the shell stresses and the
strains as

n˛ˇ D
@W
@"˛ˇ

D h C ˛ˇ�ı"�ı ,

m˛ˇ D
@W
@
˛ˇ

D
h3

12
C ˛ˇ�ı
�ı ,

where n˛ˇ is the membrane stress resultant and m˛ˇ is the bending stress resultant.
The stable equilibrium configurations of the shell minimize the total potential energy, subject to

the boundary conditions, and, consequently, satisfy the principle of virtual work, expressed here in
terms of integrals over the parametric space A :

0D ı…Œ', ı'�D
Z
A

.ı" � nC ı� �m/ Nj0 d	1d	2C ı…extŒı'�.

4.4. Ritz–Galerkin discretization

We consider now the discrete equilibrium equations for a shell whose middle surface in the reference
configuration is numerically represented with the procedure described before, in terms of a set of
nodes P0 D ¹P01, : : : ,P0N º and a set of L patches. We follow a total Lagrangian approach, with
the same parametric space and basis functions for the reference and deformed configurations. Let
'0� be the reference configuration mapping for the middle surface of a specific patch �, defined
over the parametric space A�

'0�.�/D
X
a2J�

pa.�/ P0a,
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as described in Section 3.2. We represent the deformed configuration in a given patch � as

'�.�/D
X
a2J�

pa.�/ Pa.

With the strategy presented in Section 3.3 and the preceding definitions, the internal elastic energy
of the discretized shell can be split into patch contributions

…h
int.P1,P2, : : : ,PN /D

LX
�D1

Z
A�

. � ı'0�/W.E˛ˇ / Nj0 d	1d	2,

where E˛ˇ and Nj0 are evaluated with the �th patch approximation of the undeformed and deformed
configurations. Note that only E˛ˇ depends on the unknown control points defining the deformed
configuration. The external potential is numerically computed likewise. Equilibrium configurations
satisfy that the out-of-balance forces vanish

0D
@…h

@Pa
.P /D f aint.P /� f

a
ext.P /.

Stable equilibrium configurations are obtained by numerically minimizing …h.P /, where the
essential displacement and rotation boundary conditions are imposed with Lagrange multipliers
in an augmented Lagrangian framework. Within the augmented Lagrangian loop, we first obtain
a coarse and robust approximation of the equilibrium point with a limited-memory Broyden–
Fletcher–Goldfarb–Shanno method and then switch to Newton’s method combined with line search
to refine the minimization. Details about the calculation of the out-of-balance forces, the tangent
stiffness matrix, the boundary constraints, and the solution method are given in Appendices C, D,
and E, respectively.

5. NUMERICAL EXAMPLES

We exercise the proposed method with some standard numerical linear and nonlinear benchmark
tests. For the linear analysis of thin-shells, we consider the classical problem of a hemisphere
loaded with two pairs of facing concentrated forces [29]. Then, we analyze two popular nonlinear
problems [70], an open hemispherical shell subjected to alternating radial forces and the pullout of
a cylindrical shell with open ends. Finally, the flexibility of the proposed methodology to deal with
shells of complex topology and geometry is illustrated by two additional examples at the end of this
section. A collection of videos highlighting the nonlinear mechanics of these geometrically exact
shells can be found at [71].

5.1. Numerical aspects

We refer to [28] for a detailed account on the max-ent basis functions and the numerical
parameters involved. We only note here, from this reference, that linearly reproducing local
max-ent approximants with relatively wide support can very accurately approximate thin-shell
problems with functionals involving second-order derivatives. The smoothness or aspect ratio of
the basis functions is controlled by a nondimensional parameter, �LME. We choose �LME D 0.8,
which provides accurate solutions at a moderate computational cost. Similarly, for the PU Shepard
functions, we select �PU D 4.0, which results in moderately narrow overlap regions. In all the
examples, we build a Delaunay triangulation in the low-dimensional embedding of each meshfree
macro-element and generate a standard Gauss–Legendre cubature rule of 12 points (order 6) per tri-
angle, an overkill integration rule. At the boundary curves, to integrate the boundary constraints, we
choose a quadrature scheme of four Gauss–Legendre points per integration cell. As in [28, 72], we
resort to ghost nodes at the boundaries of the middle surface to avoid the loss of accuracy caused by
the excessive flattening of the max-ent approximants at the boundary of the convex hull of the nodes.
The number of marker points is one order of refinement lower than the number of control points.
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Smooth convex approximants, such as local max-ent methods, B-splines, and NURBS basis
functions, are in general not interpolating. Therefore, if the set of control points lies on the manifold,
a systematic error is introduced, which for shells generally results in a stiffer behavior. Here, we fit
the control points so that the reconstruction error of the original surface is minimized in a
least-squares sense (Appendix B). This procedure improves the accuracy of the method, although it
is not required for optimal convergence rate, as shown in the next example.

5.2. Pinched closed hemisphere

In this example, a hemispherical shell of radius R D 10 and thickness hD 0.04 is subjected to two
pairs of radial loads F D 2 acting along diametral directions (Figure 10A). This is a challenging
test, which assesses the method’s ability to represent inextensional deformations under complex
shell bending conditions with curvature in two directions. The convergence of the relative error for
the radial displacement is shown in Figure 10B. The displacements are normalized by a deflection
of ır D 0.09241 obtained by an overkill calculation, which agrees with the lower bound given
in [1, 29], that is, ır D 0.0924. In this figure, we plot the convergence results reported in [72] for
subdivision finite elements based on Loop’s scheme (triangular elements) and on Catmull–Clark’s
scheme (quadrilateral elements), as well as results with the previous version of our method reported
in [28]. The excellent convergence properties of the proposed method is clear from the figure. We
obtain more accurate results for a given number of degrees of freedom than arguably the most
competitive method for thin-shells. Our method is more expensive than subdivision finite elements
because of the quadrature and the larger sparsity pattern of the stiffness matrix, which makes a
full comparison difficult. We can also see that the results of the present method are very similar to
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Figure 10. (A) Sketch of the pinched closed hemisphere shell test. (B) Convergence of the normalized radial
displacement for two subdivision schemes [72], for the weighted PCA (wPCA) method proposed in [28] and

for the present method based on modified locally linear embedding.

(A) (B)

Figure 11. Pinched hemisphere: geometric markers ˘, control points ı, and reference configuration (A) and
deformed surface (B). In this linear problem, the deformation has been amplified by a factor of 100.
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those obtained with our previous local linear manifold learning method, which nevertheless is much
more expensive, as discussed earlier (Figure 1). Finally, we note the effect of fitting the control
points to better represent the geometry. The control and patch points and the deformation are shown
in Figure 11.

5.3. Pinched open hemisphere

This is a classical nonlinear benchmark analyzing a hemispherical shell with a hole of 18ı in its
pole. The shell is pinched by two opposite pairs of forces, as shown in Figure 12A. Figure 12B
plots the radial displacements under the loads. We compare our results against the results given by
ABAQUS’s S4R four-node shell element [70]. The agreement is remarkable.

5.4. Pullout of an open-ended cylindrical shell.

It is a challenging nonlinear benchmark, which shows the capabilities of the method to deal
with problems with comparable membrane and bending energies. The material and geometrical
properties for this benchmark are indicated in Figure 13A, whereas the radial displacements of
the test points A,B , and C are plotted in Figure 13B. Again, we compare our results against
those in [70], and the agreement is excellent. The biggest difference is at the indentation points.
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Figure 12. (A) Sketch for the pinched open hemisphere problem. (B) Load–deflection curves for the open
hemispherical shell subjected to two pairs of facing concentrated forces.
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We interpret this small disagreement as an overestimation of the S4R elements caused by their
non-smooth interpolating character. Figure 14 shows selected snapshots along the deformation,
illustrating the buckling event for a force of around 2 � 104.

Figure 14. Selected snapshots of the deformation process during the pullout of an open-ended cylindrical
shell (deformation not magnified), showing the buckling event for a force of about 2 � 104.

Figure 15. Control points of the bunny and depiction of the imposed displacement, which moves along the
blue arrow.

Energy Density

Figure 16. Elastic energy density at selected equilibrium configurations for the bunny thin-shell under a
static incremental loading.
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5.5. Indentation of a bunny

We illustrate now the ability of the method to deal with shells of complex geometry defined by a
set of points alone, without the need for a global surface mesh. The only requirement on the nodes
is that they sample sufficiently well the geometric features. This problem is treated with the full
geometric nonlinearity. The height of the object is around 1.5, and the thickness of the thin-shell is
h D 0.005. The material parameters are E D 107 and � D 0.3. Figure 15 shows a sketch of 54,867
control points sampling the Stanford bunny [73], which is deformed by an imposed displacement
moving incrementally in the direction of the blue arrow.

Figure 16 shows four snapshots along the deformation process, experiencing a number of buckling
events (see [71] for illustrative movies). The deformation is not magnified. The simulation proceeds
robustly and exhibits very large deformations and localized creases with strain energy density
concentrations, typical of the post-buckling response of thin-shells.

5.6. Connected pipes

We now illustrate the ability of the proposed method to deal with extremely complex topologies
(Figure 17). The boundary curves of the bottom pipes are clamped, and the top boundary curves

Figure 17. Point-set for the example of the connected pipes.

Energy Density

Figure 18. Selected snapshots of the deformation process of the shell with complex topology. Nonmagnified
deformation and color map of the strain energy density.
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are incrementally displaced in the (�1,�1,�1) direction. The lateral dimension of the system is
6.2, and the shell thickness is h D 0.03. Figure 17 illustrates the discretization with 14,176 control
points. Figure 18 shows the energy density on the deformed configuration at four snapshots, without
magnification of the displacements. Again, the shell undergoes several geometric instabilities and
exhibits localized elastic deformations. We insist on the fact that this thin-shell cannot be studied
with previous meshfree approaches because it does not admit a single parametric space.

6. CONCLUSIONS

We have extended the methodology proposed in [28] to build smooth numerical representations
of d -dimensional point-set manifolds embedded in RD , which avoids a global parametrization or
a mesh. The proposed method exploits modern NLDR techniques, such as Isomap and LLE, to
find embeddings of low dimension of good geometric quality for large patches of surface defined
by automatic partitioning of the set of points. A meshfree parametrization of the patches is then
defined, with local max-ent approximants. The different patches can be glued together with a PU
associated to the patches, which allows us to split the evaluation of functionals on the manifold in
patch-by-patch calculations.

Although the method is applicable in higher dimensions, we have exercised it on the geometrically
exact theory of Kirchhoff–Love thin-shells. Our work significantly extends the applicability of
meshfree methods to thin-shell analysis. Previous methods were limited to very simple surfaces
admitting a single parametric space. The proposed method is very robust and general and can deal
very easily with shells of very complex geometry and topology. Furthermore, we have shown that it
is very accurate and competitive with state-of-the-art mesh-based methods such as subdivision finite
elements. Interestingly, although the local max-ent approximants are only linearly reproducing, we
obtain excellent results for the fourth-order partial differential equations of thin-shells. We have
observed the same behavior in the numerical approximation of a fourth-order phase-field model for
biomembranes [74]. This suggests further mathematical analysis of the method [75]. The proposed
method can be easily enhanced to account for internal connections or non-manifold shells [72, 76].
We are also working on a boundary representation avoiding ghost nodes, by describing the boundary
curves by B-spline or NURBS curves [77].

The general methodology proposed here can be applied to many problems in science and
engineering. We are currently exploiting it for the quantitative analysis of swimming strokes
in micro-organisms, the compact model reduction of dynamical systems whose near-invariant
manifold is nonlinear, or the automatic detection of meaningful collective variables in biomolecular
simulations.

APPENDIX A: CLOSEST-POINT PROJECTION ONTO THE MANIFOLD

We describe here how to perform the closest-point projection of a point x 2 RD close to the
manifold onto the manifold. To simplify the notation, we restrict ourselves to a given patch. If
x 2MD , this can be interpreted as ‘inverting’ the parametrization to find a point � 2Rd such that
'.�/D x. For this purpose, we minimize the cost function f .�/D .1=2/j'.�/� xj2. We solve this
nonlinear optimization problem with Newton’s method

�iC1 D �i � J�1.�i / r.�i /,

where r.�/ D rf .�/ is the gradient and J .�/ D Hf.�/ is the Hessian of the cost function. The
gradient of the cost function is given as

rf .�/DD'.�/ � .'.�/� x/,

where

D'.�/D
X
a

rpa.�/˝Pa.
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The Hessian of the cost function can be written as

Hf.�/DD2'.�/ � .'.�/� x/CD'.�/˝D'.�/,

where

D2'.�/D
X
a

Hpa.�/˝Pa.

As a starting point for Newton’s method, we select �0 D
P
a w

P
a .x/ �a; here, wPa are the local

linear weights from the kth nearest neighbors of x belonging to P . The local weights are computed
in the spirit of LLE [50, 51]. This procedure is very robust and fast. We denote the solution
of the minimization problem, the preimage of the closest point projection of a point in the
high-dimensional space, by � D '�1.�.x//.

APPENDIX B: CONTROL POINTS BY A LEAST-SQUARE FIT TO THE
SAMPLED MANIFOLD

Let X D ¹x1, : : : ,xKº, K > N be a good sampling of the manifold M 2 RD . Let us assume
we have a reasonably good set of control points, for example, lying on the manifold, which we
use to define the embedding and the max-ent basis functions. We wish to find the control points
Pa, aD 1, : : : ,N such that the numerical surface best fits the data in an L2 sense. For this purpose,
we minimize the cost function

g.P/D
1

2

KX
iD1

jI.xi /� xi j
2,

where P denotes a vector with the coordinates of all the control points. The reconstruction operator
can be rewritten as

I.x/D
X
�2Nx

 �.x/
X
a2J�

pa.��.x//Pa DMP ,

where M 2 RK�N is a sparse matrix. The unique solution to this linear least-squares problem
follows from the sparse linear system of equationsMTMP DMTX , whereX is a vector collecting
all the coordinates of the sampling points.

APPENDIX C: OUT-OF-BALANCE FORCES AND TANGENT STIFFNESS MATRIX

We provide here expressions for the gradient and the Hessian of the potential energy. With a view on
the implementation, we resort to Voigt’s notation for symmetric tensors. To keep the notation clean,
depending on the context, we ignore the subscript indicating the patch number, that is, for instance,
we denote '0� , a reference configuration of the middle surface in the �th patch simply by '0. By
the chain rule, the gradient of the discrete internal energy is

@…h
int

@Pa
D

LX
�D1

Z
A�

��
nT @"

@Pa
CmT @�

@Pa

�
Nj0

	
�

. � ı'0/ d	1d	2,

where the subindex � means that the expression between the brackets is computed with the local
parametrization of the �th patch.

The derivatives of the membrane and bending strain tensors with respect to the ath control point
can be expressed in terms of the nonlinear membrane and bending strain–displacement matrices,
Ma and Ba, respectively, as

@"

@Pa
DMa,

@�

@Pa
DBa.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:685–713
DOI: 10.1002/nme
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We express the strain–displacement matrices by introducing auxiliary vectors

M a
ij DM

a
i � ej and Baij DB

a
i � ej ,

which can be written as

Ma
˛ D pa,˛ ',˛ ,

Ma
3 D pa,2 ',1C pa,1 ',2,

Ba˛ D�pa,˛˛ t

C Nj�1


.',˛˛ �',2/pa,1C .',1 �',˛˛/pa,2

�
C Nj�1.t �',˛˛/



.',2 � t/pa,1C .t �',1/pa,2

�
,

Ba3 D�2pa,12 t

C 2 Nj�1


.',12 �',2/pa,1C .',1 �',12/pa,2

�
C 2 Nj�1.t �',12/



.',2 � t/pa,1C .t �',1/pa,2

�
.

By ej , we denote the canonical basis vectors of R3. Note that repeated indices in the expressions
forMa

˛ and Ba˛ do not imply summation.
For the tangent stiffness matrix, ignoring follower loads, we compute the second-order partial

derivatives of the internal potential energy with respect to the control point positions as

@2…h
int

@Pa@Pb
D
1

2

LX
�D1

Z
A�

�
@2." � nC � �m/

@Pa@Pb
Nj0

	
�

. � ı'0/ d	1d	2,

where

@2." � nC � �m/

@Pa@Pb
D nT @2"

@Pa@Pb
C hMaT

CM b CmT @2�

@Pa@Pb
C
h3

12
Ba

T
CBb ,

and C denotes the Voigt representation of C ˛ˇ�ı . The second derivatives of the membrane and
bending strain tensors can be computed as

@2"

@Pa@Pb
D

0
@ pa,1 pb,1

pa,2 pb,2

pa,1 pb,2C pa,2 pb,1

1
A˝ I ,

and

mT @2�

@Pa@Pb
D� Nj�1

�
@ Nj

@Pa
˝ f b� C f

a
� ˝

@ Nj

@Pb

	
C Nj�1

�
mTH' t

� @2 Nj

@Pa@Pb

� Nj�1 .m �Hpa/ Œwb�� � Nj
�1 .m �Hpb/ Œwa�

T
�

� Nj�1.pa,2pb,1 � pa,1pb,2/


.mTH'/T

�
�

.

In the preceding equation, f a� D Œm
TBa�T, Œv�� denotes the skew-symmetric matrix

Œv��
def
D

0
@ 0 �v � e3 v � e2

v � e3 0 �v � e1
�v � e2 v � e1 0

1
A ,

and we introduce

wa D�pa,1 ',2C pa,2 ',1
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and

H'D

0
B@

',11 � e1 ',11 � e2 ',11 � e3

',22 � e1 ',22 � e2 ',22 � e3

2',12 � e1 2',12 � e2 2',12 � e3

1
CA Hpa D

0
B@

pa,11

pa,22

2pa,12

1
CA ,

to keep the notation compact.
The first-order and second-order partial derivatives of the Jacobian are

@ Nj

@Pa
D pa,1.',2 � t/C pa,2.t �',1/

and

@2 Nj

@Pa@Pb
D� Nj�1

@ Nj

@Pa
˝

@ Nj

@Pb
C Nj�1Œwa�

T
�Œwb��C .�pa,1 pb,2C pa,2 pb,1/Œt��.

To conclude, we give the explicit first and second derivates of the normal contracted with an
auxiliary vector, v 2R3:

@t

@Pa
D� Nj�1

�
t ˝

@ Nj

@Pa
� Œwa��

�
,

�
vT @t

@Pa

�T

D� Nj�1
�
.v � t/

@ Nj

@Pa
�
�
pa,1.',2 � v/C pa,2.v �',1/

�	
,

and

vT @2t

@Pa@Pb
D� Nj�1

"
.v � t/

@2 Nj

@Pa@Pb
C

@ Nj

@Pa
˝

�
vT @t

@Pb

�T

C

�
vT @t

@Pa

�T

˝
@ Nj

@Pb

#

C Nj�1.�pa,1 pb,2C pa,2 pb,1/Œv��.

These expressions are needed, for example, to impose essential boundary conditions of rotation
(Appendix D).

APPENDIX D: ESSENTIAL BOUNDARY CONDITIONS

We describe here the numerical constraints needed to impose the essential boundary conditions, for
both displacements and rotations. We describe the variational formulation with Lagrange multipliers
and the matrices needed in the augmented Lagrangian scheme.

Let us consider first the integral of a function f over the lateral boundary surface @S0 of a
thin-shell object S0 (@S0 excludes the body boundary surfaces parallel to the middle surface).
Assuming the function does not change through the thickness, we have

Z
@S0

f dS0 D
Z
@�0

f

0
BB@

h
2Z

�h2

ˇ̌̌
@ˆ0
@�
� @ˆ0

@t

ˇ̌̌
ˇ̌
'0,t

ˇ̌ d	

1
CCA d`0,

where t is a tangent coordinate along the boundary curve @A . By introducing @ˆ0=@t D '0,t C
	 t0,t , we obtain

h
2Z

�h2

ˇ̌̌
t0 �

@ˆ0
@t

ˇ̌̌
ˇ̌
'0,t

ˇ̌ d	 D h

ˇ̌
t0 �'0,t

ˇ̌
ˇ̌
'0,t

ˇ̌ .
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With the previous expressions and the PU, the integral of a function f on the boundary surface
@S0 becomes Z

@S0

f dS0 D
Z
@�0

h f

ˇ̌
t0 �'0,t

ˇ̌
ˇ̌
'0,t

ˇ̌ d`0

D

LX
�D1

Z
@A�



h .f ı'0/

ˇ̌
t0 �'0,t

ˇ̌�
�
. � ı'0/ d`� .

Here, subindex � means that the expression between the brackets is computed with the local
parametrization of the �th patch.

Displacement constraints on a curve

Let �u be the Lagrange multipliers field associated to the displacement constraints 'D N' on @�u.
We discretize the Lagrange multipliers as �u D

P
i Ni .	/ƒ

u
i , where Ni are the standard piecewise

linear basis functions defined from the boundary nodes. With the PU, the displacement constraints
can be expressed variationally as

0D

Z
�u
0

h �u � .'� N'/

ˇ̌
t0 �'0,t

ˇ̌
ˇ̌
'0,t

ˇ̌ d`0 D
LX
�D1

Z
@A u
�

®
h �u � .'� N'/

ˇ̌
t0 �'0,t

ˇ̌¯
�
. � ı'0/ d`� ,

where @A u
� D '

�1
0� .@�

u \ supp. �//, for all Lagrange multipliers. Recalling their discretization,
we can write the constraint in matrix form as C u.P /D 0, where

C ui .P /D

LX
�D1

Z
@A u
�

®
h Ni .'� N'/

ˇ̌
t0 �'0,t

ˇ̌¯
�
. � ı'0/ d`� .

These constraints are linear, with

@C ui
@Pa

D

0
B@ LX
�D1

Z
@A u
�

®
h Ni pa

ˇ̌
t0 �'0,t

ˇ̌¯
�
. � ı'0/ d`�

1
CA I ,

and @2C ui =@Pa@Pb D 0.

Rotation constraints on a curve

Let �0 D '0,t=
ˇ̌
'0,t

ˇ̌
be a unit vector tangent to the boundary curve of the middle surface �0

satisfying t0 � �0 D 0. The rotation boundary conditions take the form �0 � t D Ng� on @�� , where
�0 D t0 � �0 is the outward tangent vector to the boundary curve. With �� denoting the Lagrange
multiplier field associated with this constraint, the variational statement of the constraint is

0D

Z
@��
0

h �� .�0 �t� Ng� /

ˇ̌
t0 �'0,t

ˇ̌
ˇ̌
'0,t

ˇ̌ d`0 D
LX
�D1

Z
@A �
�

®
h �� .�0 � t � Ng� /

ˇ̌
t0 �'0,t

ˇ̌¯
�
. � ı'0/ d`� ,

for all Lagrange multipliers. With the discrete representation of the Lagrange multipliers
�� D

P
i Ni .	/ ƒ

�
i , the discrete constraints become

0D C �i .P /D

LX
�D1

Z
@A �
�

®
h Ni .�0 � t � Ng� /

ˇ̌
t0 �'0,t

ˇ̌¯
�
. � ı'0/ d`� .
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These constraints are nonlinear. For the augmented Lagrangian implementation, we need

@C �i
@Pa

D

LX
�D1

Z
@A �
�

´
h Ni

�
�T
0

@t

@Pa

�T ˇ̌
t0 �'0,t

ˇ̌μ
�

. � ı'0/ d`�

and

@2C �i
@Pa@Pb

D

LX
�D1

Z
@A �
�

²
h Ni

�
�T
0

@2t

@Pa@Pb

� ˇ̌
t0 �'0,t

ˇ̌³
�

. � ı'0/ d`� .

Imposed displacement on a point

Suppose we want to constrain a point x0 2 �0 to be at location x1 in the deformed configuration.
By defining �0 D '

�1
0 .x0/, the preimage of this point by the reference configuration of the middle

surface, we can write this constraint as

0D C p.P /D '.�0/� x1.

APPENDIX E: AUGMENTED LAGRANGIAN SOLUTION METHOD

The equilibrium solutions of the nonlinear constrained minimization problem described in
Section 4.4 are stationary points of the Lagrangian

L.P ,ƒ/D…h.P /�ƒTC .P /,

where C collects all the discrete constraints of the previous sections and ƒ collects the
corresponding Lagrange multipliers (reaction forces and torques). The Kuhn–Tucker optimality
conditions, @PL D 0, @ƒL D 0, may be solved with Newton’s method, yet this approach may
lead to unstable equilibria and avoid physically relevant buckled stable solutions.

A robust strategy that guarantees stable equilibria is based on the augmented Lagrangian method,
which combines the standard Lagrangian with penalties. This method retains the exactness of the
Lagrange multipliers method and the minimization principle of penalty methods. The minimization
is performed iteratively on the control points only for frozen Lagrange multipliers, which are
updated explicitly (see [78, 79] for further details). The augmented Lagrangian is

LA.P ,ƒ/D…h.P /�ƒTC .P /C
1

2�
C .P /TC .P /,

where � is the penalty parameter. We solve the problem in two stages. First, we find an approximate
minimizer with a slow, robust method and a coarse tolerance. For this, in the augmented Lagrangian
inner minimization loop, we adopt the limited-memory Broyden-Fletcher-Goldfarb-Shanno
algorithm. Then, the minimizer is refined by resorting to Newton’s method with line search.
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