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Abstract

For functional data lying on an unknown nonlinear low-dimensional space, we study

manifold learning and introduce the notions of manifold mean, manifold modes of func-

tional variation and of functional manifold components. These constitute nonlinear rep-

resentations of functional data that complement classical linear representations such as

eigenfunctions and functional principal components. Our manifold learning procedures

borrow ideas from existing nonlinear dimension reduction methods, which we modify to

address functional data settings. In simulations and applications, we study examples of

functional data which lie on a manifold and validate the superior behavior of manifold

mean and functional manifold components over traditional cross-sectional mean and func-

tional principal components. We also include consistency proofs for our estimators under

certain assumptions.
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1. INTRODUCTION

Nonlinear dimension reduction methods, such as locally linear embedding (Roweis and Saul,

2000), isometric mapping (Tenenbaum et al., 2000) and Laplacian eigenmaps (Belkin and

Niyogi, 2003), have been successfully applied to image data in recent years. A commonly

used example is the analysis of photos of a sculpture face taken under different angles and

lighting conditions. The number of pixels of these images is huge, but their structure only

depends on a few variables related to angle and lighting conditions. It is then advantageous

to treat the observed image data as a manifold that is approximately isomorphic to a low-

dimensional Euclidean space.

Unlike shape analysis (Kendall et al., 1999) and the recent diffusion tensor imaging (Huck-

emann, 2011), where it is assumed that the form of the manifold is known a priori, nonlinear

dimension reduction methods usually are manifold-learning procedures, where the manifold

is not known but it is assumed that it possesses certain features which are preserved in the

observed data. For instance, locally linear embedding preserves the manifold local linear

structure while isometric mapping preserves geodesic distance. Their inherent flexibility pre-

disposes these methods for extensions to functional data, where one rarely would have prior

information available about the nature of the underlying manifold.

Our goal is to explore manifold representations of functional data. Which observed sets of

functions are likely to lie on a low-dimensional manifold? And how should this be taken into

consideration? In contrast to multivariate data, functional data are recorded on a time or

location domain, and commonly are assumed to consist of sets of smooth random functions.

Auspicious examples where functional manifold approaches may lead to improved represen-

tations include time-warped functional data (Wang and Gasser, 1999; Gervini and Gasser,

2004), density functions (Kneip and Utikal, 2001), and functional data with pre-determined

and interpretable modes (Izem and Marron, 2007). In such situations, the established lin-

ear functional approaches, such as cross-sectional mean and functional principal component

analysis (FPCA) often fail to represent the functional data in a parsimonious, efficient and
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interpretable way. Manifold approaches are expected to be useful to represent functional data

inherently lying on a low-dimensional nonlinear space.

In this paper, we develop a framework for modeling L2 functions on unknown manifolds

and propose pertinent notions, such as manifold mean, manifold modes of functional varia-

tion and functional manifold components, as elements of a functional manifold component

analysis (FMCA). Manifold means complement notions of a specifically modified functional

mean, such as the “structural mean” (Kneip and Gasser, 1992). A major motivation for this

proposal is that functional principal component plots, e.g., second versus first component

plot, are quite often found to exhibit “horseshoe” shapes, i.e., nonlinear dependence in the

presence of uncorrelatedness (as principal components by definition are always uncorrelated).

An example of this “horseshoe shape” is provided by the Berkeley growth data (see upper

right panel of Figure 5). In such situations, one may wish to “unwrap” the “horseshoe”

into linear structures by techniques similar to those used in nonlinear dimension reduction.

When attempting to “unwrap” functional data, one encounters specific difficulties: Often the

underlying smooth functions are not directly observed, but instead need to be inferred from a

limited number of noise-contaminated measurements that contain the available information

for each subject in the sample. To address these problems, we develop a modified ISOMAP

(Tenenbaum et al., 2000) procedure, by adding a data-adaptive penalty to the empirical

geodesic distances, and employ local smoothing to recover the manifold.

The paper is organized in the following way. In section 2, we describe what we mean by

a functional manifold, manifold mean, manifold modes of functional variation and functional

manifold components. We develop corresponding estimates in section 3 and discuss their

asymptotic properties in section 4. Sections 5 and 6 are devoted to illustrations of the

proposed methodology for both simulated and real data.
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2. MANIFOLDS IN FUNCTION SPACE

2.1 Preliminaries

A manifoldM can be expressed in terms of an atlas consisting of a group of charts (Uα, ϕα),

where Uα are open sets coveringM and ϕα, the coordinate maps, map the corresponding Uα

onto an open subset of Rd. Additional assumptions on ϕα are usually imposed in order to

study the structure of M (Do Carmo, 1992; Helgason, 2001).

In this paper, we only consider “simple” functional manifolds M in L2 space, where M

is isomorphic to a subspace of the Euclidean space, i.e., the manifold can be represented

by a coordinate map ϕ : Rd → M ⊂ L2, such that ϕ is bijective, and both ϕ, ϕ−1 are

continuous, in the sense that if θn,θ ∈ Rd and ||θn − θ|| → 0, ||ϕ(θn) − ϕ(θ)||L2 → 0; if

xn, x ∈M and ||xn− x||L2 → 0, ||ϕ−1(xn)−ϕ−1(x)|| → 0. Here, d is the intrinsic dimension

of the manifold M. Such “simple” manifold settings have been commonly considered in the

dimension reduction literature, e.g., Tenenbaum et al. (2000).

For a continuous curve defined on the manifold γ : [0, 1]→M, define the length operator

L(γ) = sup
n−1∑
i=0

||γ(si+1)− γ(si)||L2 , (1)

where the supremum is taken over all partitions of the interval [0, 1] with arbitrary break

points 0 = s0 < s1 < . . . < sn = 1. We call ϕ an isometric map if L(γ) = L(ϕ−1 ◦ γ) for

any continuous γ, where L(ϕ−1 ◦ γ) is similarly defined as in (1) with the L2 norm replaced

by the Euclidean norm. We say M is an isometric manifold if there exists an isometric

coordinate map ϕ. The isometry assumption is pragmatically desirable and can be found in

many approaches (Tenenbaum et al., 2000; Donoho and Grimes, 2003). Donoho and Grimes

(2005) discuss conditions under which isometry holds for image data.

We use the notation ψ ≡ ϕ−1 and refer to ψ as the representation map. The manifold

M is naturally equipped with the L2 distance, which, due to the nonlinearity of M, is not

an adequate metric (Tenenbaum et al., 2000). More useful is the geodesic distance

dg(x1, x2) = inf{L(γ) : γ(0) = x1, γ(1) = x2}, (2)
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where the infimum is taken over all continuous paths γ on M. The geodesic distance is the

length of the shortest path onM connecting the two points, and therefore is adapted toM.

2.2 Manifold mean and manifold modes of variation

Suppose M is a functional manifold of intrinsic dimension d and ψ is a representation map

for M. Define

µ = E{ψ(X)}, µM = ψ−1(µ), (3)

where µ is the mean in the d-dimensional representation space, and µM is the manifold mean

in L2 space. If M is isometric, the manifold mean µM is uniquely defined for all isometric

representation maps, as the following results shows.

Proposition 1. Suppose the random function X lies on a functional manifoldM of intrinsic

dimension d and ψ is a representation map for M. If ψ is isometric, the manifold mean µM

in (3) has the following alternative expression:

µM =arg min
x∈M

Ed2
g(x,X), (4)

where dg denotes the geodesic distance defined in (2).

The expected value in equation (4) is with respect to the probability measure that is

induced by the map ϕ, see also Bickel and Li (2007). Equation (4) defines the Fréchet mean

for geodesic distance dg(·, ·), and therefore does not depend on the choice of the isometric

map ψ. The motivation to consider the manifold mean is that the traditional cross-sectional

mean for functional data in L2 has significant drawbacks as a measure of location when the

data indeed lie on a nonlinear functional manifold. Estimates of L2 means, obtained by

averaging observed sample curves, can be far away from the data cloud in such situations,

and therefore do not represent the data in a meaningful way. Going beyond the mean, one

encounters analogous problems when linearly representing such random functions in an L2

basis, such as the Fourier, B spline or eigenfunction basis.
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Consider random functions X ∈ L2(T ) defined on a bounded domain T . With µ(t) =

EX(t) and G(t, s) = Cov(X(t), X(s)), according to Mercer’s theorem (Ash and Gardner,

1975), if the covariance function G(t, s) is jointly continuous in t, s, there is an orthonormal

expansion of G(t, s) in terms of the eigenvalues {λk : k ≥ 1} (ordered non-increasingly) and

associated eigenfunctions {φk : k ≥ 1},

G(t, s) =

∞∑
k=1

λkφk(t)φk(s) t, s ∈ T . (5)

By the Hilbert-Schmidt theorem (Grenander, 1950; Riesz and Sz-Nagy, 1990), X can be

expressed in terms of the so-called Karhunen-Loève representation,

X(t) = µ(t) +
∞∑
k=1

ξkφk(t) t ∈ T , ξk =

∫
T

(X(t)− µ(t))φk(t)dt, (6)

where the ξk are uncorrelated random variables with mean 0 and variance λk, known as

functional principal components (FPCs).

In the manifold case, the FPCs intrinsically lie on a d-dimensional manifold. Therefore we

expect that the FPCs do not provide a parsimonious representation of X. A better adapted

and more compact representation can be obtained through nonlinear manifold modes of

functional variation that are defined below. The established eigenfunction-based modes of

functional variation (Castro et al., 1986; Jones and Rice, 1992) are

Xj,α = µ+ αλ
1/2
j φj , j = 1, 2, . . . , α ∈ R, (7)

where factors λ
1/2
j standardize the scale for different j and the functional variation in the

direction of eigenfunction φj is visualized by the changing of functional shapes as α varies.

However, when the functional data lie on a manifold, neither µ nor Xj,α may belong to M,

so that these linear modes will not provide a sensible description of the variation in the data.

To address this problem, we define functional manifold component (FMC) vectors ej ∈ Rd,

j = 1, . . . , d, by the eigenvectors of the covariance matrix of ψ(X) ∈ Rd, i.e.,

Cov(ψ(X)) =
d∑
j=1

λMj (ej)(ej)
T , (8)
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where λM1 ≥ . . . ≥ λMd are the eigenvalues of Cov(ψ(X)). The manifold modes of functional

variation are

XMj,α = ψ−1
(
µ+ α(λMj )

1
2 ej
)
, j = 1, . . . , d, α ∈ R, (9)

where µ is the mean in the d-dimensional representation space according to measure Q, as

given in (3). A distinct advantage of manifold-based modes of functional variation over the

principal component based version (7) is that in (9) only finitely many modes are needed,

while (7) requires potentially infinitely many components. The manifold modes XMj,α are

unique for the case of isometric M, as shown in the following.

Proposition 2. Suppose ψ and ψ̃ are two isometric representation maps for a functional

manifold M of intrinsic dimension d. Let XMj,α be the jth manifold mode defined in (9)

based on representation map ψ, and X̃Mj,α be the jth manifold mode using map ψ̃. Then

XMj,α = X̃Mj,α for all α ∈ R and 1 ≤ j ≤ d, if the eigenvalues of Cov(ψ(X)) and of Cov(ψ̃(X))

are of multiplicity one.

For each X ∈ M, given the representation map ψ, X can be uniquely represented (due

to the bijectivity of ψ) by a vector ϑ = (ϑ1, . . . , ϑd) ∈ Rd in terms of

X = ψ−1(µ+

d∑
j=1

ϑjej), ϑj = 〈ψ(X)− µ, ej〉, j = 1, . . . , d, (10)

where µ and ej are defined in (3) and (8) respectively, 〈·, ·〉 is the inner product in Rd and

ϑj are uncorrelated r.v.s with mean 0 and variance λMj . We call ϑj the functional manifold

components (FMCs) in the representation space.

3. ESTIMATING FUNCTIONAL MANIFOLDS

Suppose we observe noise-contaminated measurements {Yij : 1 ≤ i ≤ n; 1 ≤ j ≤ ni} made on

n independent realizations Xi of a random function X ∈M, according to the data model

Yij = Xi(tij) + εij .
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Here the tij are the time points where the functions are sampled, and the εij ∈ R are i.i.d.

errors with mean 0 and variance σ2. A first task is to find an approximation ψ̂ to the

representation map ψ based on the observed Yij . We also require the inverse ψ̂−1. Prior

knowledge about the data may suggest a specific form for ψ (Izem and Marron, 2007), or one

may have direct observations of ψ(Xi). But in general, the representation map ψ is unknown

and needs to be determined from the data.

3.1 Inferring d-dimensional manifold representations

Following Tenenbaum et al. (2000), we use the pairwise distances between observed data to

obtain a map ψ that preserves the geodesic distances. Alternative approaches include LLE

by Roweis and Saul (2000) and Laplacian eigenmaps by Belkin and Niyogi (2003). While

these methods have been developed for multivariate data, they can be adapted to functional

data in a two-step procedure as follows.

In a first step, given an intrinsic dimension d of M, adopt the proposal of Tenenbaum

et al. (2000) to obtain the function ψ : L2 → Rd only at the sample points {X1, . . . , Xn},

where Xi ∈ L2, by

ψ̂ = arg min
(ψ(X1),...,ψ(Xn))

n∑
i,j=1

{||ψ(Xi)− ψ(Xj)|| − dg(Xi, Xj)}2. (11)

Here, dg(·, ·) is the geodesic distance (2) and the minimum is taken over the vectors ψ(Xi) ∈

Rd, i = 1, . . . , n, formed by the values of ψ on the functionsXi, i.e., the goal is to find n vectors

ψ̂(Xi) ∈ Rd, i = 1, . . . , n that minimize (11). For this, one needs to estimate the geodesic

distances, and then the minimizer ψ̂(Xi) is obtained by multidimensional scaling (MDS)

based on estimates of dg(Xi, Xj) (Cox and Cox, 2001). Our asymptotic results pertain to a

second step, where the assumed smoothness of ψ is invoked to obtain global estimates for ψ̂,

as described in Section 3.2. As for ψ̂(Xi), i = 1, . . . , n, as determined by (11), we assume

that the minimization in (11) provides values on or defines the target manifold at the sample

points, i.e., that ψ̂(Xi) = ψ(Xi), i = 1, . . . , n, or alternatively, that vn = ψ̂(Xi)−ψ(Xi)→ 0.
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In order to approximate geodesic distances dg(Xi, Xj), we first aim at estimates of the

L2 distances ||Xi −Xj ||L2 . For this purpose, the Karhunen-Loève representation (6) can be

used to obtain fitted curves,

X̂K
i (t) = µ̂(t) +

∑
k≤K

ξ̂ikφ̂k(t). (12)

Here, µ̂(t) and Ĝ(t, s) are first obtained by applying local linear one-dimensional and two-

dimensional smoothers to the pooled data; then eigenfunctions φ̂k(t) and eigenvalues λ̂k

are extracted by classical vector spectral analysis applied to a discretized version of the

estimate Ĝ(t, s) of the covariance surface G(t, s) = Cov(X(t), X(s)); and then the FPCs ξik

are approximated by discretizing integrals

ξ̂ik =

ni∑
j=2

{Yij − µ̂(tij)}φ̂k(tij)(tij − ti,j−1), (13)

or alternatively by conditional expectation (for details on these steps, see Yao et al., 2005),

ξ̂ik = λ̂kφ̂
T

ikΣ̂
−1
Yi

(Yi − µ̂i), (14)

where φ̂ik = (φ̂k(ti1), . . . , φ̂k(tini)), (Σ̂Yi)jl = Ĝ(tij , til) + σ̂2I(j = l), 1 ≤ j, l ≤ ni, µ̂i =

(µ̂(ti1), . . . , µ̂(tini)), and σ2 is estimated from the difference between empirical variances of

Yij and Ĝ(t, s). The conditioning method (14) is the only available option if the data are

sparsely sampled. To ensure that a sufficiently large number of components is included in

the truncated expansion (12), one may choose K by requiring a large fraction of variance

explained (FVE), i.e.,

K = min
k
{k :

∑
l≤k λ̂l∑∞
l=1 λ̂l

≥ 1− α}, (15)

for α = 0.05, where the λ̂l are estimates of the eigenvalues λl in (5). The resulting L2

distances are ||X̂K
i − X̂K

j ||L2 = {
∑K

k=1(ξ̂ik − ξ̂jk)2}
1
2 .

Note that alternatively to representation (12), one can also directly apply local constant

or local linear smoothing to obtain smooth trajectories in the case of dense and balanced

designs, e.g.,

X̃i(t) =

∑ni
j=1 κ1

(
h−1

1 (tij − t)
)
Yij∑ni

j=1 κ1

(
h−1

1 (tij − t)
) , (16)
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where κ1 and h1 are smoothing kernel and bandwidth. For the smoothing kernel one can

use any standard kernel such as the standard Gaussian density function or the Epanechnikov

kernel, while in practice h1 can be chosen by cross-validation or generalized cross-validation.

Then the pairwise L2 distances are simply ||X̃i−X̃j ||L2 . We will not explicitly explore this

alternative smoothing approach in our theoretical analysis, but note that essentially the same

results as those reported below hold for this alternative approach, by minor extensions of our

arguments. In the implementations (simulation and data analysis), we use both approaches

(12) and (16). The estimated random trajectories, obtained though (12) or (16), generally

are not lying on the manifold M, as they are merely approximations to the true unknown

functions, due to additional noise and discrete sampling of the random trajectories. However,

these estimates, owing to their consistency, will fall inside a small L2-neighborhood around

M. Asymptotic properties are discussed in Section 4.

Since the geodesic is the shortest path connecting points on a manifold, one may first

connect the points inside small L2 neighborhoods and then define the path between two far

away points by moving along these small neighborhoods, and then find the geodesic by the

shortest path connecting through such neighborhoods. This is essentially the idea of the

ISOMAP algorithm (Tenenbaum et al., 2000). The performance of this method however

proved somewhat unstable in our applications, as functional data typically must be inferred

from discretized and noisy observations of underlying smooth trajectories and therefore do

not exactly lie on the manifold, as is assumed by ISOMAP.

In such situations, due to random scattering of the data around the manifold, the shortest

path found by the ISOMAP criterion may pass through “empty areas” outside the proper

data cloud. This problem can be effectively addressed by modifying the ISOMAP criterion,

by additionally penalizing against paths that include sections situated within “empty regions”

with few neighboring data points. Density-penalized geodesics are characterized by sequences

of L2 functions (W1,W2, . . . ,Wm) from the starting point Ws = W1 to the end point We =

Wm of the geodesic, where each of the Wj stands for one of the observed functions Xi (with
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unrelated index), and are defined as

S(Ws,We) = arg min
W2,...,Wm−1

{
m−1∑
i=1

||Wi−Wi+1||L2

(
1+Pδ(Wi,Wi+1)

)
: ||Wi−Wi+1||L2 < ε}. (17)

Here the parameter ε limits the step length, and the penalty function Pδ is determined by

the density of the data cloud around Wi and Wi+1, Pδ(Wi,Wi+1) = ρ−2
i,i+1I(ρi,i+1 < δ), where

ρi,i+1 = min
{

#{Wj : ||Wj −Wi||L2 < ε},#{Wj : ||Wj −Wi+1||L2 < ε}
}

and # denotes the

cardinality of a set. By selecting the parameter δ, one can control the threshold of the local

density of points, below which the penalty Pδ kicks in. The ISOMAP algorithm corresponds

to the special case where δ = 0, Pδ = 0.

The choice δ > 0 leads to “penalized ISOMAP” or P-ISOMAP, where the penalty param-

eter δ may be selected data-adaptively by cross-validation. The choice of δ and also of the

step size parameter ε is discussed in Section 3.3. If the manifold is very smooth, a large ε and

small m will lead to a sufficiently good estimate of the geodesic distance. A detailed discus-

sion of the convergence of the estimated geodesics in the framework of ISOMAP can be found

at http://isomap.stanford.edu/BdSLT.pdf. For the proposed P-ISOMAP, we implement the

minimization of S(Ws,We) by Dijkstra’s algorithm, which selects m and the geodesic paths

(Ws = W1,W2, . . . ,Wm−1,We = Wm). The resulting estimated geodesic distance is

d̂g(Ws,We) =

m−1∑
j=1

||Ŵj − Ŵj+1||L2 , (18)

where Ŵj = W̃j or ŴK
j , depending on which preliminary approximation is used for Wj . Once

these distances have been determined, an application of MDS yields ψ̂(Xi), in the same way

as in the standard ISOMAP method.

3.2 Obtaining the global mapping and representing sample trajectories

For any location θ ∈ Rd, we find ψ̂−1(θ) by local weighted averaging, i.e.,

ψ̂−1(θ) =

∑
i κ
(
H−1(ψ̂(Xi)− θ)

)
X̂i∑

i κ
(
H−1(ψ̂(Xi)− θ)

) , (19)
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where κ is a d-dimensional kernel, such as the Epanechnikov kernel

κ(u1, . . . , ud) = (
3

4
)d

d∏
k=1

{(1− u2
k)I(|uk| < 1)}, with H = hId×d

for a suitably chosen bandwidth h, X̂i could be either X̃i as in (16) or X̂K
i as in (12),

and ψ̂(Xi) is defined after (18). We use cross-validation to select h (see section 3.3). The

asymptotic properties of (19) will be discussed in section 4.

Specifically, as predictor of Xi, we propose

X̂Mi =

∑
j 6=i κ

(
H−1(ψ̂(Xi)− ψ̂(Xj))

)
X̂j∑

j 6=i κ
(
H−1(ψ̂(Xi)− ψ̂(Xj))

) , (20)

borrowing strength from local neighbors in the d-dimensional representation space. This can

be seen as an alternative to representation (12), where we use the FPCs and borrow strength

from the whole data set to estimate functional mean and eigenbasis. As before, we note

that (20) is not necessarily inM, but will be in a small neighborhood asymptotically and in

comparison with (12), (20) usually proves to be a much better predictor of Xi for functional

manifold data as shown in the simulations and applications in section 5. The asymptotic

properties are discussed in Section 4.

Definition (3) suggests to estimate the manifold mean by

µ̂M =

∑
i κ
(
H−1(ψ̂(Xi)− µ̂)

)
X̂i∑

i κ
(
H−1(ψ̂(Xi)− µ̂)

) , (21)

where µ̂ = 1
n

∑
i ψ̂(Xi). The FMC vectors ej defined in (8) are estimated by eigendecompo-

sition of the sample covariance matrix of ψ̂(Xi), i.e., λ̂Mj and êj are such that

d∑
j=1

λ̂Mj (êj)(êj)
T =

1

n− 1

{ n∑
i=1

ψ̂(Xi)ψ̂
T (Xi)−

1

n

( n∑
j=1

ψ̂(Xj)
)( n∑

j=1

ψ̂(Xj)
)T}

, (22)

where the λ̂Mj are ordered to be non-increasing in j. From (9) and (19), we obtain estimates

of the manifold modes as

X̂Mj,α =

∑
i κ
(
H−1{ψ̂(Xi)− µ̂− α(λ̂Mj )1/2êj}

)
X̂i∑

i κ
(
H−1{ψ̂(Xi)− µ̂− α(λ̂Mj )1/2êj}

) , j = 1, . . . , d, α ∈ R. (23)
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3.3 Selection of auxiliary parameters

We use 10-fold cross-validation to simultaneously choose the step size ε, the truncation param-

eter δ, and the smoothing bandwidth h (see sections 3.1 and 3.2). The number of candidates

for ε and δ is kept small so that the cross-validation procedure runs reasonably fast. Can-

didates for the step size ε are the median distance of the 5th, the 8th and the 12th nearest

neighbor; those for δ are selected such that 0%, 2%, 5% and 10% of the data with the lowest

local density estimates are penalized. Each of 10 subgroups of curves denoted by V1, . . . , V10

is used as a validation set, one at a time, while the remaining data are used as training set.

In an initial step, we use the whole data set and a given ε, δ to determine ψ̂(Xi), followed

by estimation of Xi = ψ−1(ϑi) for Xi in the validation set, using (19) and assuming that only

those X̂j in the training set are known. Denoting the value of the estimated trajectory Xi,

evaluated at time til, by X̂il, the sum of squared prediction errors for the validation set Vk is

SSPEk =
∑

i∈Vk

∑ni
l=1(X̂il−Yil)2, where Yil = Xi(til) + εil is the observed value of trajectory

Xi at time tij . The cross-validation choice is the minimizer of MSPE(ε, h, δ) =
∑10
k=1 SSPEk∑n
i=1 ni

.

Following Tenenbaum et al. (2000), the intrinsic dimension d can be chosen by the 1− β

fraction of distances explained (FDE), that is,

d = min
p
{p :
||D̂p −D||F
||D||F

< β}, (24)

where β = 0.05 and D, D̂p are n by n distance matrixes with Dij = d̂g(Xi, Xj) as in (18),

D̂p
ij = ||ψ̂p(Xi)− ψ̂p(Xj)||, where ψ̂p denotes the MDS solution (11) in Rp, and || · ||F is the

matrix Frobenius norm, ||D||F = {
∑

i,j D
2
ij}

1
2 . Note that ||D̂p − D||F is the square root of

the minimized value of (11).

4. ASYMPTOTIC PROPERTIES

We provide the specific convergence rate of X̂K
i , defined in (12), under assumptions (A1)-

(A5) in the Appendix. Note that condition (A3) requires that the random functions are

sampled at a dense design. Our starting point is that the manifold can be well identified at
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the sample points through ISOMAP, or alternatively, that the ISOMAP identified manifold

may be viewed as the target. The difference between the target and the identified manifold

from ISOMAP is quantified by a rate vn that is assumed as given; if the target manifold

corresponds to the manifold as identified at the sample points, we may set vn = 0. The

theoretical analysis aims to justify the new manifold representations that we propose, and for

this it is essential to consider the behavior of the estimates across the entire function space.

Therefore, our theoretical results demonstrate how to extend local behavior at the sample

points to obtain global consistency of the proposed functional manifold representations.

As the convergence is for K = Kn →∞ as n→∞, the rate of decline of the eigenvalues in

(5) and also lower bounds on the spacing of consecutive eigenvalues, as postulated in (A4) are

relevant, with a requirement of polynomially fast declining eigenvalues. Required smoothness

and boundedness assumptions for X ∈M are as in (A5).

Proposition 3. Assume (A1)-(A5) in the Appendix, and let rn = max{ 1√
nh2G

, 1√
nhµ

, 1√
nhV
}.

If there are infinitely many nonzero eigenvalues λk in (5), which are all of multiplicity one,

then for sequences K = Kn →∞, subject to rnK
α2+ 1

2 → 0, where α2 is a constant such that

λk − λk+1 > C2k
−α2 for some C2 > 0 and where K ≤ K0 with K0 = min{i : λi − λi+1 ≤

2Dn}−1 and Dn = {
∫
T 2(Ĝ(t, s)−G(t, s))2dtds}1/2 where G is defined in (5) and Ĝ is defined

after (12), it holds that

||X̂K
i −Xi||L2 = Op(rnK

α2+ 1
2 +K−

1
2

(α1−1)), (25)

for X̂K
i defined in (12), where α1 is such that λk < C1k

−α1 for all k and some C1 <∞.

We note that under the assumptions, K0 →∞. The first term on the r.h.s. of (25) is due

to estimation error and the second term is due to truncation error. In the special case when

there are only finitely many nonzero λk in (5), it can be shown that the rate in (25) simply

becomes Op(rn). Next we discuss the convergence of the estimates that appear in (22).

Proposition 4. Under (B1)-(B2) in the Appendix,

||µ̂− µ|| = Op(vn +
1√
n

), (26)
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where µ and µ̂ are defined in (3) and (21), and vn = supi=1,...,n ||ψ̂(Xi)−ψ(Xi)||. If the jth

eigenvalue of Cov
(
ψ(X)

)
is of multiplicity one, then

||êj − ej || = Op(vn +
1√
n

), (27)

|λ̂Mj − λMj | = Op(vn +
1√
n

), (28)

where λMj , ej, êj and λ̂Mj are defined in (8) and (22), respectively.

Theorem 1. Under (A1)-(A5), (B1)-(B2) and (C1)-(C3) in the Appendix, assume that

the density function f of ψ(X) ∈ Rd satisfies f(θ) > 0 for a specific θ = ψ(x) and that

h > 0 is selected such that h → 0, n−1h−2(d+1) → 0 and h−(d+1)Evn → 0. Then ψ̂−1(θ)

defined in (19), using X̂i = X̂K
i , is a consistent estimate of ψ−1(θ). Specifically, defining

TKφ = {
∑

k>K ξ
2
k}

1
2 where ξk =

∫
(X − EX)φk and the orthonormal basis {φk : k ≥ 1} is

given in (5), and defining RK(θ) = TKφ (ψ−1(θ)), where RK(θ) → 0 as K = Kn → ∞, it

holds that

||ψ̂−1(θ)− ψ−1(θ)||L2 = Op(h
2 +

1√
nhd

+
vn
h

+RK(θ) +Kα2+ 1
2 rn), (29)

where rn, α2 and vn are as in assumptions (A3), (A4) and (B1).

Note that RK(θ) corresponds to the truncation error for ψ−1(θ) ∈ M. The last term

Kα2+ 1
2 rn is due to the estimation error as in Lemma 1. The middle term vn

h reflects the

estimation error of the weights, which is influenced by the scale of the bandwidth. The first

part h2 + 1√
nhd

is the optimal rate when the Xi and ψ are known, reflecting an intrinsically

d-dimensional smoothing problem. Related findings are discussed in Bickel and Li (2007).

For the manifold modes, we obtain the following Corollary.

Corollary 1. Under the conditions of Theorem 1, for a given α ∈ R and 1 ≤ j ≤ d, assume

that f(µ+α(λMj )
1
2 ej) > 0 and that h is chosen as in Theorem 1. Then the estimated manifold

modes X̂Mj,α as in (23), substituting X̂i = X̂K
i , are consistent. Specifically,

||X̂Mj,α −XMj,α||L2 = Op(h
2 +

1√
nhd

+
vn
h

+
1√
nh

+RK +Kα2+ 1
2 rn), (30)

where RK = TKφ (XMj,α).
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An immediate consequence of these results is that the manifold representation given in

(10) provides a consistent representation of all random functions in the functional manifold.

5. EXAMPLES AND SIMULATION STUDY

5.1 Functional manifolds and isometry

To illustrate our methods and to discuss the impact of the critical isometry assumption, we

consider the following three example functional manifolds:

(i) A one-dimensional (d = 1) functional manifold

M1 =

{
X ∈ L2

(
[−4, 4]

)
: X(t) = µ

(
hα(t)

)
, hα(t) =

8
∫ t/8+0.5

0 sα(1− s)ds∫ 1
0 s

α(1− s)ds
−4, α > −1

}
,

where µ(t) = 2√
π

exp{−1
2(t+ 2)2}+ 1√

2π
exp{−2(t− 2)2}. This corresponds to random

warping of a common shape function µ, which has two peaks. The time warping

function hα is generated from the cumulative Beta distribution family and α is a random

parameter, α = max(−1, Z), where Z ∼ N(0, 0.09).

(ii) A two-dimensional (d = 2) functional manifold

M2 =

{
X ∈ L2([−4, 4]) : X(t) =

1√
2πα2

exp[− 1

2α2

(
t− β

)2
], α > 0, β ∈ R

}
.

This manifold is a collection of Gaussian densities, corresponding to a shift-scale family,

where α = max(0, Z), Z ∼ N(1, 0.04) and β ∼ N(0, 1).

(iii) Another two-dimensional (d = 2) functional manifold

M3 =

{
X ∈ L2([−4, 4]) : X(t) =

1√
2π

exp{−1

2
(t− 0.8− α)2}

+
1√
π

exp{−(t+ 0.8− β)2}, α, β ∈ R
}
,

a mixture of two peaks with randomly varying centers, where α ∼ N(0, 1) and β ∼

N(0, 1). Note that the two peaks will merge to a larger peak when their locations are

close, so this set of functions has a randomly varying number of peaks.
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Functional manifolds M1 − M3 are illustrated in Figure 1. We note that M1 is an

isometric manifold and M2 is approximately isometric, while M3 is not isometric. This

can be seen as follows. For functions X ∈ L2 on a differentiable isometric manifold with

representation X = ψ−1(θ1, . . . , θd), using the definition of isometry given after (1), the

condition
∫ θ1k
θ0k
|| ∂X∂θk (t)||

L2dθk ≡ θ1
k − θ0

k for k = 1, . . . , d and any θ0
k, θ

1
k ∈ R is equivalent to

isometry. Therefore, the existence of a parametrization of the map ψ for which the L2 norms

of the partial derivatives of X with respect to the parameter components are constant is

sufficient and necessary for ψ to be isometric. For one-dimensional manifolds such as M1,

one can always find such a parametrization, as long as X is differentiable in the parameter

and the derivative is L2 integrable in t.

ForM2, such a parametrization does not exist, but since ||∂X∂α (t)||L2 = 1
αc1 and ||∂X∂β (t)||L2 =

1
αc2 for constants c1, c2 and as α is chosen to remain very close to 1, the natural parametriza-

tion approximately satisfies the condition for isometry. In contrast to M1 and M2, the

functional manifold M3 is non-isometric and we include it as an example how the proposed

methodology is faring when the key assumption of isometry is violated. As our considerations

take place in a manifold learning framework, where the underlying manifold is unknown, an

interesting aspect is to devise a data-based check to gauge the degree to which the isometry

assumption can be expected to be satisfied. A natural metric for such a check is the fraction

of distances explained (FDE), defined in (24). This criterion quantifies the percentage of

geodesic distance that is preserved when fitting a d-dimensional isometric manifold to the

data. For cases where the underlying manifold is actually non-isomorphic, the fitted manifold

is an isometric approximation to the true underlying manifold, obtained by minimizing the

stress function in the MDS algorithm.

An informal goodness-of-fit criterion for isometry is to require FDE to be larger than

95%, and choosing the manifold with the smallest dimension that satisfies this criterion. In

Table 1, values for FDE obtained for the simulated data for manifolds M1 −M3 under two

signal-to-noise ratios R (defined in the following subsection) are reported, with dimension d
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ranging from 1 to 5. The well-known fact that the stress function declines when the dimension

of the projection space is increased underlies the traditional MDS-Scree Plot (Cox and Cox,

2001) and is reflected by the observed increase in the values for FDE as dimension increases.

Applying the above check for isometry, we find that indeed the dimensions of the isometric

manifold M1 and the near-isometric manifold M2 are correctly selected, while the first two

dimensions of the isometric manifold approximation to the non-isometric manifoldM3 are not

sufficient. Thus, the non-isometric nature ofM3 means that the dimension of the underlying

functional manifold cannot be correctly identified and instead the proposed algorithm will find

a higher-dimensional isometric manifold to represent M3. The price to pay for a suitable

isometric approximation is increased dimensionality, which in this example ends up larger

than 2 for the approximating isometric manifold. We note that an approximating isometric

manifold can always be found, since the linear and therefore intrinsically isometric manifold

of infinite dimensionality that is spanned by the eigenfunction basis contains the random

functions of the sample, according to the Karhunen-Loève theorem, and is always applicable.

While we can always find a near-isometric manifold of large enough dimensionality with

the proposed algorithm, when the data lie on a lower-dimensional non-isometric manifold,

these approximating isometric manifolds may not be efficient, since they do not provide the

lowest-dimensional possible description of the data. Nevertheless, an approximating isometric

nonlinear manifold obtained by the proposed approach often will present a much improved

and lower-dimensional description when compared to the alternative of classical linear basis

representation. This is exemplified by the functional non-isometric manifold M3, which in

the following subsection is shown to be much better represented by an isometric manifold

than by a linear basis. So the price that the isometry assumption exacts in non-isometric

situations is that the proposed approach leads to a more or less suboptimal representation,

which however will often be substantially lower-dimensional than an equally adequate linear

representation. We conclude that even in non-isometric situations the proposed approach

can often be expected to lead to improved representations of functional data.
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5.2 Simulation results

We simulate functional data from manifolds M1 - M3 as introduced in the previous sub-

section, aiming to study two questions. First, when the functional data lie on a manifold,

whether it is isometric or not, does the proposed functional manifold approach lead to better

(more parsimonious, better interpretable) representations of the data, compared to functional

principal component analysis? Second, for noisy functional data that do not exactly lie on

a manifold, how much improvement may one gain by adding the data-adaptive penalties

implemented by P-ISOMAP, as described in section 3.1?

For these simulations, the actual error-contaminated observations of the functional tra-

jectories are generated as Yij = Xi(tij) + εij , εij ∼ N(0, σ2) i.i.d., i = 1, . . . , n, j = 1, . . . , ni,

where n = 200, tij equally spaced in [−4, 4] with 30 observations per trajectory, and the noise

variance σ2 is such that the signal-to-noise ratio R is 0.1 or 0.5. We estimated manifold means

µM (3), manifold modes of functional variation XMj,α (9) and obtained predictions X̂Mi (20),

which were compared with predictions obtained by functional principal component analysis.

Results for a simulation run are shown in Figures 2–4 for manifoldsM1−M3, respectively.

The estimated manifold means are seen to be close to the corresponding intrinsic means, i.e.,

the common shape function for manifold M1, the standard Gaussian density for manifold

M2 and the curve with no time shifts (α = β = 0) for manifold M3. On the other hand,

the cross-sectional means are seen to be far away from these intrinsic means and therefore

clearly are not useful as measures of location for these sets of functions.

The scatter plots of second versus first FPC indicate “horseshoe” shapes for manifoldsM1

andM2. This diagnostic indicates that a functional manifold approach may be called for. We

find that the location of the cross-sectional mean (at the origin, due to the zero expectation

property of FPCs) typically lies in a relatively sparse region of the data in these scatter plots,

while the manifold mean falls into a much denser area, which is another diagnostic feature

pointing to an underlying manifold. Complex two-dimensional surface curvature is observed

for manifold M3. Comparing with Figure 1, we find that the manifold modes represent
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the inherent components of functional variation present in the data quite well, while the

established principal component based modes are not informative in describing the functional

variation. It is also obvious that the proposed predictions for individual trajectories Xi are

more accurate in capturing amplitudes and locations of peaks.

Leave-one-out predictions of the Xi are calculated using both functional principal com-

ponents (12), resulting in X̂L
i , as well as the proposed new estimates X̂Mi (20). For X̂L

i , we

estimate the FPCs (6) of Xi using all data and then leave Xi out to obtain µ̂ and φ̂k; for

X̂Mi , we estimate ψ̂(Xi) using all data and then leave Xi out in the local averaging step.

Starting with one, we increase L and d successively, obtaining the mean squared prediction

errors MSPE = 1
200

∑200
i=1 ||Xi − X̂i||2L2 , where X̂i = X̂L

i or X̂Mi , for L and d up to 5.

The simulation results for manifoldsM1−M3 are shown in Table 2. Generally, the MSPE

is reduced by 20% over the established linear method when using the manifold approach; this

improvement exceeds 50% when L and d are small. Another metric of interest is the relative

squared prediction error of the model over the squared error when using the mean as predictor,

RSPE =
∑200
i=1 ||Xi−X̂i||2L2∑200
i=1 ||Xi−X̄||2L2

, where X̄ = 1
200

∑200
i=1Xi, which can be interpreted as fraction of

variance that is left unexplained. In all three simulated manifolds, RSPE is found to be

much larger for the functional principal component representations, when the same number

of components is used. This is because in the inefficient linear representation higher order

functional principal components carry substantial variation.

To quantify the efficiency of the data-adaptive penalties in the proposed P-ISOMAP

procedure, we also calculated the MSPE using the unmodified ISOMAP. Parameters for

ISOMAP were selected analogously to the description in section 3.3 by cross-validation.

Since the most important comparison is for the case where d equals the intrinsic dimension,

i.e., 1 for M1 and 2 for M2 and M3, we calculated the ratio of the MSPE of P-ISOMAP

over the MSPE of ISOMAP for these situations (Table 3). As anticipated, P-ISOMAP indeed

exhibits increasing benefits for smaller signal-to-noise ratios.

The influence of the selection of the step size parameter ε in P-ISOMAP, defined in eq.
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(17), on mean squared prediction errors is demonstrated in Table 4. Here d is fixed as the

intrinsic dimension (1 for M1 and 2 for M2, M3), while δ and h are optimized by cross-

validation for each ε. We then select ε from the median distances of the 3rd, 5th, 8th,

12th and 16th nearest points calculated over all sample data. From the results in the table,

one finds that the results are not strongly sensitive to the selection of ε, as long as it is in

medium range. A good overall choice is median distance of 8th nearest neighbors. When ε is

chosen very small, some sample points that are not situated close to other sample points may

become separated from the other data, or disconnected subgroups in the data may emerge.

In practice, we therefore impose a lower bound on ε to ensure that the number of data that

are not connected to other points when connecting through ε-neighborhoods stays below 5%.

6. APPLICATIONS

6.1 Berkeley growth study

In growth studies one often observes phase variation in the trajectories. Some subjects reach

certain growth stages (such as puberty in human growth) earlier than others. This leads to

difficulties for the parsimonious modeling of growth patterns with linear methods, and more

generally for methods that are based on L2 distance between trajectories. Accordingly, cross-

sectional mean estimation tends to fail in representing important growth features adequately

(Kneip and Gasser, 1992; Gervini and Gasser, 2005). Since phase variation introduces non-

linear features in functional data, it is of interest to determine whether the analysis of growth

data may benefit from the manifold approach.

We apply the manifold approach to the Berkeley growth data for females (Tuddenham

and Snyder, 1954). The data contain height measurements for 54 girls, with 31 measurements

taken between the ages of 1 and 18 years. Interest usually focuses on growth velocity (Gasser

et al., 1984), which we obtain by smoothing the first-order difference quotients of the curves.

The resulting growth velocity curves are shown in the top left panel of Figure 5, together

with the cross-sectional mean and the estimated manifold mean µ̂M (21). The location of the
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cross-sectional mean, which falls at (0, 0), and the location of the estimated manifold mean

are indicated in the scatter plot of second versus first FPC (top right panel), which displays

the “horseshoe” pattern described above. This, and the fact that the cross-sectional mean is

away from the main data cloud, point to inherent nonlinearity in these data.

Mean squared prediction errors (MSPE) and relative squared prediction errors (RSPE)

for the leave-one-out predictions of Xi, as described in section 5, are listed in Table 5. The

fractions of distance explained (FDE), defined in (24), for different dimensions d are shown

in Table 5. The MSPE of X̂L
j is minimized at L = 5, with L = 2 already a quite good choice.

We find that X̂Mj consistently improves upon X̂L
j , the fit obtained from functional prin-

cipal components. Note that we used the preliminary estimator X̂K
i in (20) with K = 4,

applying criterion (15). The FDE criterion indicates that these data can be well described

by a one-dimensional manifold. The middle three panels of Figure 5 include three randomly

selected curves, along with the predictions X̂L
i and X̂Mi using L = d = 2. The two bot-

tom panels of Figure 5 illustrate the comparison of estimated manifold modes of functional

variation with the principal component based modes. The manifold modes are clearly more

useful and adequately reflect the time-warping feature of these data. The first manifold mode

specifically suggests that for girls, a puberty growth peak at a late age, especially after age

12, tends to have a smaller amplitude; this is in line with auxological knowledge. Overall,

the manifold mode is seen to provide a clearer and much more adequate description of the

longitudinal dynamics of these data.

6.2 Yeast cell cycle gene expression

Temporal expression curves for yeast cell cycle related genes were obtained by Spellman et al.

(1998). There are 6178 genes in total, where each gene expression time-course consists of 18

data points, measured every 7 minutes between 0 and 119 minutes. Groups of genes are

thought to be co-expressed coherently across different time periods, according to the role

played by the genes in the time progression of the cell cycle. The dynamics of the gene
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expression levels are complex. Temporal regularization of gene expression is a characteristic

of gene function, suggesting models that incorporate time-warping (Leng and Müller, 2006;

Tang and Müller, 2009).

The data we study consist of 90 genes that have been identified by biological methods

(Spellman et al., 1998). Of these genes, 44 are thought to be related to G1 phase regulation

of the yeast cell cycle and 46 to non-G1 phase regulation (S, S/G2, G2/M and M/G1 phases).

Time courses of gene expression (top panel of Figure 6) for these clusters reveal two peaks for

the G1 (red) and S (cyan) groups, and one peak for G2/M (green) and M/G1 (blue) groups,

while the trajectories for the S/G2 (black) group are highly variable with no obvious peak.

The proposed manifold analysis was applied to this set of 90 genes. The estimated mani-

fold mean µ̂M (21) (middle left panel of Figure 6) is seen to fall within the G1 group (red in

the top panel). In contrast, the cross-sectional mean is almost flat and does not reflect useful

information about these data. We also calculated the MSPE (Table 5) of X̂L
i (12) and X̂Mi

(20), using preliminary estimators X̂K
i with K = 4 in (20). The manifold-based predictions

are seen to be much better for d = 1 and 2, while they become more similar in performance

to X̂L
i when d increases.

In the two bottom panels of Figure 6, we display the estimated manifold mode (right)

and the principal component based mode of functional variation (left). The latter is found

to be deceptive, as it indicates amplitude variation around a few fixed “knots”, while the

first manifold mode clearly illustrates the actual temporal variation in the data, which is

mainly caused by phase shifts. Each of the five groups, except the S/G2 group (black), is

well represented by the variation across this manifold mode.

6.3 Human mortality across countries

The death rates derived from current lifetable cohorts for 44 countries in the year 2000,

recorded for each age ranging from 0 to 110, have been collected and are as described in

http://www.lifetable.de/. Death rates are widely used for descriptive and analytical purposes
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in public health, and cross-country comparisons are of particular interest here.

We view log-transformed annual death rates as noisy measurements of underlying smooth

trajectories. Five sample trajectories are shown in the top left panel of Figure 7. The

mortality trajectories are densely sampled, but the annual rates are quite noisy. We pre-

smoothed these data, following (16). The resulting MSPEs for X̂Mi (20) and X̂L
i (12) are in

Table 5. Manifold-based prediction is seen to perform better than linear principal component

based prediction, regardless of the choice of dimension.

This is also illustrated by the panels in the third row of Figure 7, where predicted tra-

jectories are obtained for L = d = 3. For these data, the estimated manifold mean µ̂M (21)

does not differ dramatically from the cross-sectional mean (top right panel and second row

left panel). However, the first manifold mode of variation (bottom right panel) indicates

that countries with overall lower death rates, or more specifically, with death rates below

the mean curve (red), exhibit less variation than those with death rates above the mean,

especially for ages from 0 to 40. This finding is in line with the skewness that is apparent

in the scatter plots, but is not seen in the principal component based mode (bottom left

panel). The observed gains in prediction error for the manifold approach provide evidence

that substantial nonlinearity is present in these data.

6. DISCUSSION

While the proposed functional manifold implementations were running relatively fast on a

linux server, observing that the computational complexity of classical MDS is of the order

O(n3), computational difficulties may arise for truly large sample sizes n. In such situa-

tions, one might consider to base the proposed methods on landmark MDS (De Silva and

Tenenbaum, 2003), where one employs landmarks to significantly reduce the computational

complexity.

The proposed method relies on two major assumptions: The isometry of the underlying

functional manifold and that the target manifold is close or identical to the manifold identi-
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fied by ISOMAP at the sample points. As for the isometry assumption, even if it is violated,

the proposed method proves to be beneficial, as it often will provide for a much sparser repre-

sentation of functional data in comparison with linear methods in cases where the underlying

manifold is non-linear, even if this manifold is not isometric. This is discussed in detail in

Section 5.1 and borne out by simulations. As for the closeness of the ISOMAP solution to the

true manifold at the sample points, this assumption and its underlying justification pertains

to ISOMAP for vector data as proposed in Tenenbaum et al. (2000).

Starting from the simplifying assumption that the ISOMAP identified manifold and the

target manifold are essentially identical at the sample points, we proceed to extend the esti-

mation of the manifold function to the entire space of interest. We note that such simplifying

assumptions are often beneficial when deploying complex statistical methodology, as even

when the assumptions are not completely satisfied, the resulting methodology may turn out

to be more efficient than existing methods.

Overall, we find that the proposed manifold mean and manifold modes of functional varia-

tion provide useful representations that are competitive with and often superior over classical

linear representations for functional data. The proposed functional manifold representations

thus complement the established linear representations, notably the Karhunen-Loève repre-

sentation, and in many instances provide more efficient models with better interpretations.

APPENDIX

A.1 Assumptions

(A1) The bandwidths hµ, hv, hG for estimating µ(t), σ2, G(t, s) in section 3.1 satisfy: hµ → 0,

nh4
µ → ∞ and nh6

µ < ∞; hG → 0, nh6
G → ∞ and nh8

G < ∞; hV → 0, nh4
V → ∞ and

nh6
V <∞.

(A2) The smoothing kernels κµ for the mean function µ and κG for the covariance function G

in section 3.1 are absolutely integrable, i.e.,
∫
|κµ(t)|dt <∞ and

∫ ∫
|κG(t, s)|dtds <∞.
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(A3) For τij = tij − ti,j−1 and τ∗ = maxi,j τij , it holds that τ∗ = Op(r
2
n), where rn =

max{ 1√
nh2G

, 1√
nhµ

, 1√
nhV
}.

(A4) The eigenvalues of the covariance function G(t, s) satisfy λk < C1k
−α1 for some con-

stants C1 < ∞, α1 > 1, and if λk > 0, then λk − λk+1 > C2k
−α2 for some constants

C2 > 0 and α2 > 0.

(A5) For any X ∈ M, X is differentiable and ||X||∞ = Op(1), ||X ′||∞ = Op(1). The

covariance function G(t, s) is twice differentiable in both t and s, and supt,s∈T |G(t, s)| <

C3, supt,s∈T |
∂2G(t,s)
∂t∂s | < C4 for some constants C3, C4 <∞.

(B1) The estimates ψ̂ of ψ converge uniformly on the sample space, i.e., Evn → 0 for vn =

supi=1,...,n ||ψ̂(Xi)− ψ(Xi)||.

(B2) Each component of the d-vector ψ(X) has a finite fourth moment, and its covariance

matrix is positive definite.

(C1) The d-vector ψ(X) admits a density function f , which is twice differentiable with con-

tinuous partial derivatives and uniformly bounded Hessian matrix.

(C2) The d-dimensional nonnegative kernel κ satisfies
∫
κ(u)du = 1, det(

∫
κ(u)uuTdu) <∞∫

κ2(u)du < ∞, κ(u) = κ(−u), and is Lipschitz continuous with compact support,

{u ∈ Rd : ||u|| ≤ 1}.

(C3) The map ψ−1 : Rd → L2 is twice Fréchet differentiable, i.e. there exist bounded linear

operators A1
u : Rd → L2, A2

u : Rd × Rd → L2 such that

lim
u1→0

||ψ−1(u + u1)− ψ−1(u)−A1
u(u1)||L2

||u1||
= 0

lim
u2→0

||A1
u+u2

(u1)−A1
u+u2

(u1)−A2
u(u1,u2)||L2

||u2||
= 0

for all u,u1,u2 ∈ Rd. In addition,
||A2

u(u1,u2)||L2

||u1||·||u2|| is continuous and uniformly bounded

w.r.t. u.
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A.2 Proofs

Proof of Proposition 1. Note that ||ψ(x) − ψ(y)|| ≡ dg(x, y) for any x, y ∈ M if ψ

is isometric, because ||ψ(x) − ψ(y)|| is the shortest distance between ψ(x) and ψ(y) in Rd.

Then Ed2
g(x,X) ≡ E||ψ(x)−ψ(X)||2 for any x ∈M. Since E{ψ(X)} =arg min

θ∈Rd
E||θ−ψ(X)||2,

bijectivity of ψ implies arg min
x∈M

Ed2
g(x,X) = ψ−1

(
E{ψ(X)}

)
.

Proof of Proposition 2. Define π : Rd → Rd as π = ψ̃ ◦ ψ−1. It suffices to show that

if π is isometric, π must be a rigid transformation, i.e., π(θ) = θ0 + Aθ for any θ ∈ Rd, a

constant vector θ0 ∈ Rd and an orthogonal matrix A. This can be done in the following two

steps: Let e1, . . . , ed be an orthogonal basis of Rd, then ẽk = π(ek)−π(0), k = 1, . . . , d, must

also be an orthogonal basis of Rd since ||ẽk|| ≡ 1 and ||ẽk − ẽk′ || ≡
√

2 for any k 6= k; for any

vector θ =
∑d

k=1 αkek ∈ Rd, it can be shown that 〈π(θ) − π(0), ẽk〉 = αk for 1 ≤ k ≤ d by

solving the equations ||π(θ)− π(ek)|| = ||θ − ek||, 1 ≤ k ≤ d.

Proof of Proposition 3. Note that for X̂K
i defined in (12), it holds that

||X̂K
i −Xi||L2 ≤ ||X̂K

i −
∑
k≤K

ξikφk||L2 + ||
∑
k>K

ξikφk||L2 . (31)

Since the φk are orthonormal and the ξik have mean 0, for the second term on the r.h.s.,

E||
∑

k>K ξikφk||2L2
=
∑

k>K λk. Under condition (A4),
∑

k>K λk < C1K
−(α1−1). Using

Chebyshev’s inequality,

||
∑
k>K

ξikφk||L2 = Op(K
− 1

2
(α1−1)). (32)

For the first term on the r.h.s. of (31),

||X̂K
i −XK

i ||L2 ≤ ||µ̂− µ||L2 + ||
∑
k≤K

(ξ̂ik − ξik)φ̂k||L2 + ||
∑
k≤K

ξik(φ̂k − φk)||L2 . (33)

Next we prove that:

||µ̂− µ||L2 = Op(rn), (34)

||
∑
k≤K

(ξ̂ik − ξik)φ̂k||L2 = Op(K
α2+ 1

2 rn), (35)
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||
∑
k≤K

ξik(φ̂k − φk)||L2 = Op(K
α2+ 1

2 rn). (36)

Here (34) follows from

||µ̂− µ||∞ = Op(rn) (37)

in Yao et al. (2005). To show (35), we introduce the following abbreviations:

Q
(1)
i =

ni∑
j=2

{Xi(tij)− µ(tij)}2τij ; Q
(2)
ik =

ni∑
j=2

φ2
k(tij)τij ; Q

(3)
ik =

{ ni∑
j=2

εijφk(tij)τij
}2

;

Q
(4)
i =

ni∑
j=2

ε2ijτij ; Z
(1)
k = ||φ̂k − φk||2∞; Z(2) = ||µ̂− µ||2∞; Z

(3)
ik = ||{(Xi − µ)φk}′||2∞; (38)

and argue that

Q
(1)
i = Op(1);

∑
k≤K

Q
(2)
ik = Op(K);

∑
k≤K

Q
(3)
ik = Op(Kr

2
n); Q

(4)
i = Op(1);

∑
k≤K

Z
(1)
k = Op(K

2α2+1r2
n); Z(2) = Op(r

2
n);

∑
k≤K

Z
(3)
ik = Op(K

α2+1). (39)

Here we use the fact that if a function f is differentiable, then

|
∫ b

a
f(t)dt−

N∑
j=1

f(tj)(tj − tj−1)| ≤ 2||f ′||∞max
j
|tj − tj−1|(b− a), (40)

where tj , j = 1, . . . , N, is any partition of [a, b]. Without loss of generality, we assume that the

interval considered is [0, 1]. Let f = (Xi−µ)2, then ||f ′||∞ ≤ 2||Xi−µ||∞ ·||X ′i−µ′||∞ = Op(1)

under (A5). So

Q
(1)
i ≤ ||Xi − µ||2L2 + 4τ∗||Xi − µ||∞ · ||X ′i − µ′||∞ = Op(1), (41)

where τ∗ is defined in (A3). Again, if f = φ2
k, then ||f ′||∞ = ||2φkφ′k||∞ ≤

2
√
C3C4
λk

because

λkφ
2
k(t) ≤ C3 and λkφ

′2
k (t) ≤ C4 uniformly under condition (A5). Then

Q
(2)
ik ≤ 1 +

4
√
C3C4τ

∗

λk
. (42)

Since τ∗ = Op(r
2
n) and 1

λk
≤ 1

δk
≤ C2k

α2 , where δk = minj≤k(λj − λj+1) under (A3) and

(A4), we have
∑

k≤K
τ∗

λk
= Op

(
Kα2+1r2

n

)
, which can be omitted because K is selected such

that K2α2+1r2
n → 0 in Lemma 1. For Q

(3)
ik , since

EQ
(3)
ik = σ2

ni∑
j=2

φ2
k(tij)τ

2
ij ≤ σ2τ∗

ni∑
j=2

φ2
k(tij)τij ≤ σ2τ∗(1 +

4
√
C3C4τ

∗

λk
), (43)
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analogously to Q
(2)
ik , we infer

∑
k≤K Q

(3)
ik = Op(Kr

2
n). The order of Q

(4)
i is obvious by calcu-

lating EQ
(4)
i . To check

∑
k≤K Z

(1)
k , we use a uniform convergence result (Hall and Horowitz,

2007; Müller and Yao, 2008):

||φ̂k − φk||∞ = Op(
rn
δk

), k = 1, . . . ,K0,

where δk = minj≤k(λj − λj+1) and K0 is defined in Lemma 1. Under assumption (A4),

we have δk > C2k
−α2 and

∑
k≤K

1
δ2k

= O(K2α2+1). So provided that K ≤ K0, one finds∑
k≤K Z

(1)
k = Op(K

2α2+1r2
n). The order of Z(2) is a consequence of (37). For Z

(3)
ik , observe

Z
(3)
ik ≤ 2||Xi − µ||2∞ · ||φ′k||2∞ + 2||X ′i − µ′||2∞ · ||φk||2∞. (44)

Then
∑

k≤K Z
(3)
ik = Op(K

α2+1) analogously to Q
(2)
ik .

For (35), due to the orthonormality of φ̂k,

||
∑
k≤K

(ξ̂ik − ξik)φ̂k||2L2 =
∑
k≤K

(ξ̂ik − ξik)2.

Letting

η̂ik =

ni∑
j=2

{Xi(tij)− µ̂(tij)}φ̂k(tij)(tij − ti,j−1); η̃ik =

ni∑
j=2

{Xi(tij)− µ(tij)}φk(tij)(tij − ti,j−1);

ε̂ik =

ni∑
j=2

{εijφ̂k(tij)(tij − ti,j−1)},

(ξ̂ik − ξik)2 ≤ 4(η̂ik − η̃ik)2 + 4(η̃ik − ξik)2 + 2(ε̂ik)
2. (45)

For the first term on the r.h.s.,

(η̂ik − η̃ik)2 ≤ 4Q
(1)
i Z

(1)
k + 4Z

(1)
k Z(2) + 2Q

(2)
ik Z

(2),

and for the second term on the r.h.s. of (45), by (40),
(
η̃ik − ξik

)2 ≤ 4Z
(3)
ik τ

∗2. The last term

can be bounded by

ε̂2
ik ≤ 2

{ ni∑
j=2

εijφk(tij)τij
}2

+ 2
{ ni∑
j=2

εij [φ̂k(tij)− φk(tij)]τij
}2 ≤ 2Q

(3)
ik + 2Z

(1)
k Q

(4)
i .
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Combining these bounds,

||
∑
k≤K

(ξ̂ik − ξik)φ̂k||2L2 ≤ 16Q
(1)
i

∑
k≤K

Z
(1)
k + 8

∑
k≤K

Q
(2)
ik Z

(2) + 16
∑
k≤K

Z
(1)
k Z(2)

+ 16
∑
k≤K

Z
(3)
ik τ

∗2 + 4
∑
k≤K

Q
(3)
ik + 4

∑
k≤K

Z
(1)
k Q

(4)
i , (46)

and (39) implies (35).

For (36), by the Cauchy-Schwarz inequality and (39),

||
∑
k≤K

ξik(φ̂k − φk)||L2 ≤
{ ∑
k≤K

ξ2
ik

} 1
2
{ ∑
k≤K
||(φ̂k − φk)||2L2

} 1
2

≤ ||Xi||L2

( ∑
k≤K

Z
(1)
k

) 1
2 = Op(K

α2+ 1
2 rn). (47)

Combining (31)-(36) implies (25).

Proof of Proposition 4. Let ϑ̂i = ψ̂(Xi) and ϑi = ψ(Xi). By (B1), (B2) and the Central

Limit Theorem,

||µ̂− µ|| ≤ || 1
n

n∑
i=1

(ϑ̂i − ϑi)||+ ||
1

n

n∑
i=1

(ϑi − Eϑ)|| = Op(vn +
1√
n

).

To show (27), define Σ̂n = 1
n−1

∑n
i=1 ϑ̂iϑ̂

T
i − n

n−1 ϑ̄ϑ̄
T

and Σn = 1
n−1

∑n
i=1 ϑiϑ

T
i − n

n−1 ϑ̃ϑ̃
T

,

where ϑ̄ = 1
n

∑n
i=1 ϑ̂i and ϑ̃ = 1

n

∑n
i=1 ϑi. For two d by d matrixes A and B, define the

Frobenius product 〈A,B〉F = tr(ABT ) and the Frobenius norm ||A||2F = 〈A,A〉F . Then

||Σ̂n − Σ||F ≤ ||Σ̂n − Σn||F + ||Σn − Σ||F ≤
1

n− 1
||

n∑
i=1

(ϑ̂i − ϑi)(ϑ̂i − ϑi)T ||F + (48)

2

n− 1
||

n∑
i=1

(ϑ̂i − ϑi)ϑTi ||F +
n

n− 1
||(ϑ̄− ϑ̃)(ϑ̄− ϑ̃)T ||F +

2n

n− 1
||(ϑ̄− ϑ̃)ϑ̃

T ||F + ||Σn − Σ||F .

The first term on the last r.h.s. is Op(v
2
n) because

∑n
i=1 ||(ϑ̂i−ϑi)(ϑ̂i−ϑi)T ||F =

∑n
i=1 ||ϑ̂i−

ϑi||2; for the second term, 1
n

∑n
i=1 ||(ϑ̂i−ϑi)ϑ

T
i ||F ≤ {

(
1
n

∑n
i=1 ||ϑ̂i−ϑi||2

)(
1
n

∑n
i=1 ||ϑi||2

)
}

1
2 =

Op(vn); similarly, the third term is Op(v
2
n) and the fourth is Op(vn); the last term is Op(

1√
n

)

(Mardia et al., 1979). Thus ||Σ̂n − Σ||F = Op(vn + 1√
n

).

Denote by λ1(A) ≥ λ2(A) ≥ . . . ≥ λd(A) the eigenvalues of a d by d symmetric ma-

trix A, and by e1(A), . . . , ed(A) the corresponding eigenvectors (supposing they are unique).
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Let ||A||2 = max{|λ1(A)|, . . . , |λp(A)|}, and define Pj(A) as the eigenprojection matrix, i.e.,

Pj(A) = ej(A)eTj (A). If λj(Σ) is of multiplicity one, dj = min{λj−1(Σ) − λj(Σ), λj(Σ) −

λj+1(Σ)} > 0. Then the Taylor expansion of Pk(Σ̂n) (Kato, 1966),

Pj(Σ̂n)− Pj(Σ) = Pj(Σ)(Σ̂n − Σ)(Σ− λjI)+ + (Σ− λjI)+(Σ̂n − Σ)Pj(Σ) + En, (49)

where A+ is the Moore-Penrose generalized inverse of A and ||En||2 ≤ (2||Σ̂n−Σ||2/dj)2(1−

2||Σ̂n − Σ||2/dj)−1, satisfies ||Pj(Σ̂n)− Pj(Σ)||F = Op(||Σ̂n − Σ||F ). Now (27) follows from

||Pj(Σ̂n)− Pj(Σ)||2F = 2{1−
(
eTj (Σ̂n)ej(Σ)

)2} ≥ 2||ej(Σ̂n)− ej(Σ)||2. (50)

Lastly, we conclude (28) from

|λ̂Mj − λMj | = |eTj (Σ̂n) Σ̂n ej(Σ̂n)− eTj (Σ) Σ ej(Σ)| = Op(||ej(Σ̂n)− ej(Σ)||+ ||Σ̂n − Σ||F ).

(51)

Proof of Theorem 1 and Corollary 1. We only show (30). To simplify notations, define

ŵj,αi = 1
nhd

κ
(
H−1(ϑ̂i − µ̂−α(λ̂Mj )

1
2 êj)

)
and wj,αi = 1

nhd
κ
(
H−1(ϑi −µ−α(λMj )

1
2 ej)

)
, where

ϑ̂i = ψ̂(Xi) and ϑi = ψ(Xi). Then

∣∣∣∣X̂Mj,α −XMj,α∣∣∣∣L2 ≤
∣∣∣∣∣∣∣∣∑iw

j,α
i Xi∑

iw
j,α
i

−XMj,α
∣∣∣∣∣∣∣∣
L2

+

∣∣∣∣∣∣∣∣ n∑
i=1

(
ŵj,αi∑
l ŵ

j,α
l

−
wj,αi∑
l w

j,α
l

)
Xi

∣∣∣∣∣∣∣∣
L2

(52)

+

∣∣∣∣∣∣∣∣∑iw
j,α
i (X̂K

i −Xi)∑
i ŵ

j,α
i

∣∣∣∣∣∣∣∣
L2

+

∣∣∣∣∣∣∣∣∑i(ŵ
j,α
i − w

j,α
i )(X̂K

i −Xi)∑
i ŵ

j,α
i

∣∣∣∣∣∣∣∣
L2

.

For the first term on the r.h.s., let g1 =
∑

iw
j,α
i and g2 =

∑
iw

j,α
i Xi. By standard

arguments for kernel smoothing, under conditions (C1) and (C2), g1 = f
(
µ+ α(λMj )

1
2 ej
)

+

Op(h
2+ 1√

nhd
). For g2, we use Xi = ψ−1(ϑi) and require ψ−1 to be twice Fréchet differentiable

as defined in (C3), which implies that ψ−1
(
µ+ α(λMj )

1
2 ej +Hv

)
= ψ−1

(
µ+ α(λMj )

1
2 ej
)

+

hJT1 v + R1 where J1 is a d-vector consisting of L2 functions and R1 is a residual term. We

aim to show that ||g2 − f(µ + α(λMj )
1
2 ej)X

M
j,α||L2 = Op(h

2 + 1√
nhd

), which is guaranteed if

E||g2−f
(
µ+α(λMj )

1
2 ej
)
XMj,α||2L2 = O(h4 + 1

nhd
). To prove this, consider a complete L2 basis

{ϕk, k = 1, 2, . . .}. Suppose ωk = 〈g2 − f
(
µ + α(λMj )

1
2 ej
)
XMj,α, ϕk〉L2 where 〈·, ·〉L2 is the
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inner product in L2, then E||g2 − f(µ+ α(λMj )
1
2 ej)X

M
j,α||2L2 =

∑
k(Eωk)

2 +
∑

k Var(ωk). To

bound
∑

k(Eωk)
2, note that

E〈g2, ϕk〉L2 =
1

hd

∫
κ
(
H−1(u− µ− α(λMj )

1
2 ej)

)
〈ψ−1(u), ϕk〉L2f(u)du

=

∫
κ(v)〈ψ−1(µ+ α(λMj )

1
2 ej) + hJT1 v +R1, ϕk〉L2{f(µ+ α(λMj )

1
2 ej) + hJ2v +R2}dv

= 〈f(µ+ α(λMj )
1
2 ej)ψ

−1(µ+ α(λMj )
1
2 ej) +R3, ϕk〉L2 ,

where J2 is a d-vector consisting of partial derivatives of f , and R3 = f(µ+ α(λMj )
1
2 ej)∫

R1 κ(v)dv +ψ−1(µ+α(λMj )
1
2 ej)

∫
R2κ(v)dv. Under (C1) and (C2), ||R1||L2 ≤ C1h

2||v||2,

||R2||L2 ≤ C2h
2||v||2, and ||R3||L2 = O(h2), implying

∑
k(Eωk)

2 = O(h4) under (C2). For

the variance part, using (C2),

∑
k

Var〈g2, ϕk〉L2 = n
∑
k

Var〈 1

nhd
κ
(
H−1(u− µ− α(λMj )

1
2 ej)

)
ψ−1(u), ϕk〉L2

=
1

nh2d

∑
k

∫
κ2
(
H−1(u− µ− α(λMj )

1
2 ej)

)
〈ψ−1(u), ϕk〉2L2f(u)du− 1

n

∑
k

{
E〈g2, ϕk〉L2

}2

=
1

nhd

∫
κ2(v)

∑
k

{
〈ψ−1(µ+ α(λMj )

1
2 ej) + hJT1 v +R1, ϕk〉2L2

}
{f(µ+ α(λMj )

1
2 ej) + hJ2v +R2}dv +O(

1

n
) = O(

1

nhd
).

Thus the first term on the right side of (52) is Op(h
2 + 1√

nhd
).

For the second term, note that∣∣∣∣∣∣∣∣ n∑
i=1

(
ŵj,αi∑
l ŵ

j,α
l

−
wj,αi∑
l w

j,α
l

)
Xi

∣∣∣∣∣∣∣∣
L2

≤
∣∣∣∣∣∣∣∣∑i(ŵ

j,α
i − w

j,α
i )Xi∑

l ŵ
j,α
l

∣∣∣∣∣∣∣∣
L2

+

∣∣∣∣∣∣∣∣∑iw
j,α
i Xi

∑
i(ŵ

j,α
i − w

j,α
i )∑

l ŵ
j,α
l

∑
l w

j,α
l

∣∣∣∣∣∣∣∣
L2

.

To check the order of g3 =
∑

i(ŵ
j,α
i − w

j,α
i ) and g4 =

∑
i(ŵ

j,α
i − w

j,α
i )Xi, from (D2),

|g3| ≤
n∑
i=1

|ŵj,αi − w
j,α
i |
{
I(ŵj,αi > 0) + I(wj,αi > 0)

}
≤ C

nhd+1

(
sup
i
||ϑ̂i − ϑi||+ ||µ̂− µ||+ α||(λ̂Mj )

1
2 êj − (λMj )

1
2 ej ||

)
n∑
i=1

{
I(||ϑi − µ− α(λMj )

1
2 ej || ≤ h) + I(||ϑ̂i − µ̂− α(λ̂Mj )

1
2 êj || ≤ h)

}
.
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Observe 1
nhd

∑
i I(||ϑi − µ − α(λMj )

1
2 ej || ≤ h)

P−→ c1f(µ + α(λMj )
1
2 ej) for some constant

c1 <∞, and that

1

nhd

∑
i

I(||ϑ̂i − µ̂− α(λ̂Mj )
1
2 êj || ≤ h) ≤ 1

nhd

∑
i

{
I(||ϑi − µ− α(λMj )

1
2 ej || ≤ 4h)+

I(||ϑ̂i − ϑi|| ≥ h) + I(||µ̂− µ|| ≥ h) + I(α||(λ̂Mj )
1
2 êj − (λMj )

1
2 ej || ≥ h)

}
converges to c2f(µ+α(λMj )

1
2 ej) in probability for some constant c2 <∞. Here 1

nhd

∑
i I(||ϑ̂i−

ϑi|| ≥ h), 1
hd

I(||µ̂− µ|| ≥ h) and 1
hd

I(α||(λ̂Mj )
1
2 êj − (λMj )

1
2 ej || ≥ h) are all op(1) since

E{ 1

nhd

∑
i

I(||ϑ̂i − ϑi|| ≥ h)} ≤ 1

n

∑
i

E||ϑ̂i − ϑi||h−(d+1) → 0,

E{ 1

hd
I(||µ̂− µ|| ≥ h)} ≤ E||µ̂− µ||h−(d+1) ≤ { 1

n

∑
i

E||ϑ̂i − ϑi||+O(
1√
n

)}h−(d+1) → 0,

due to the assumptions in Theorem 1. From (48)–(51),

E{ 1

hd
I(α||(λ̂Mj )

1
2 êj − (λMj )

1
2 ej || ≥ h)} ≤ αE||(λ̂Mj )

1
2 êj − (λMj )

1
2 ej ||h−(d+1)

= O(E||Σ̂n − Σ||Fh−(d+1)) = O
(
(E{ 1

n

∑
i

||ϑ̂i − ϑi||2}1/2 +
1√
n

)h−(d+1)
)
→ 0.

Lemma 2 then implies |g3| = Op(
vn
h + 1√

nh
). For g4, we need to check that

1

nhd

∑
i

||Xi||L2I(||ϑi − µ− α(λMj )
1
2 ej || ≤ h)

P−→ c1||XMj,α||L2f(µ+ α(λMj )
1
2 ej),

1

nhd

∑
i

||Xi||L2I(||ϑ̂i − ϑi|| ≥ h) = op(1), { 1

hd
I(||µ̂− µ|| ≥ h)}{ 1

n

∑
i

||Xi||L2} = op(1),

{ 1

hd
I(α||(λ̂Mj )

1
2 êj − (λMj )

1
2 ej || ≥ h)}{ 1

n

∑
i

||Xi||L2} = op(1).

Using the continuity of ψ−1 and f , these terms are analogous to those in g3. Thus ||g4||L2 =

Op
(
vn
h + 1√

nh

)
. Then the second term on the r.h.s. of (52) is seen to be Op

(
vn
h + 1√

nh

)
.

As for the third term on the l.h.s. of (52), let g5 =
∑

iw
j,α
i (X̂K

i −Xi). Then ||g5||L2 ≤

||
∑

iw
j,α
i (X̂K

i −XK
i )||L2 + ||

∑
i

{
wj,αi

∑
k>K ξikφk

}
||L2 and

||
∑
i

{
wj,αi

∑
k>K

ξikφk
}
||L2 ≤ f(µ+ α(λMj )

1
2 ej)T

K(XMj,α)+

||
∑
i

{
wj,αi

∑
k≥1

ξikφk
}
− f(µ+ α(λMj )

1
2 ej)X

M
j,α||L2 .
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Analogously to g2,

||
∑
i

{
wj,αi

∑
k>K

ξikφk
}
||L2 = f(µ+ α(λMj )

1
2 ej)T

K(XMj,α) +Op
(
h2 +

1√
nhd

)
. (53)

For ||
∑

iw
j,α
i (X̂K

i −XK
i )||L2 , we use the upper bound for ||X̂K

i −XK
i ||L2 provided in (33).

From (37) and (47),
∑

iw
j,α
i ||µ̂ − µ||L2 = Op(rn) and ||

∑
i

{
wj,αi

∑
k≤K ξik(φ̂k − φk)

}
||L2 ≤∑

iw
j,α
i ||Xi||L2{

∑
k≤K Z

(1)
k }

1/2 = Op(K
α2+ 1

2 rn). From (46), an upper bound for the remain-

ing term in (33) is

||
∑
k≤K

(ξ̂ik − ξik)φ̂k||L2 ≤ 4{Q(1)
i

∑
k≤K

Z
(1)
k }

1
2 + 2

√
2{Z(2)

∑
k≤K

Q
(2)
ik }

1
2

+ 4{Z(2)
∑
k≤K

Z
(1)
k }

1
2 + 4τ∗{

∑
k≤K

Z
(3)
ik }

1
2 + 2{

∑
k≤K

Q
(3)
ik }

1
2 + 2{Q(4)

i

∑
k≤K

Z
(1)
k }

1
2 .

Here one only needs to pay attention to those terms involving i. Using (41)-(44),

n∑
i=1

wj,αi {Q
(1)
i }

1
2 = Op(1);

n∑
i=1

wj,αi {
∑
k≤K

Q
(2)
ik }

1
2 = Op(K

1
2 );

n∑
i=1

wj,αi {
∑
k≤K

Z
(3)
ik }

1
2 = Op(K

1
2
α2+1);

n∑
i=1

wj,αi {
∑
k≤K

Q
(3)
ik }

1
2 = Op(

√
Krn);

n∑
i=1

wj,αi {Q
(4)
i }

1
2 = Op(1).

For the fourth term, observe E{
∑

k≤K Q
(3)
ik }

1
2 ≤ {E

∑
k≤K Q

(3)
ik }

1
2 . These rates in conjunction

with (39) imply that the leading terms are 4{Q(1)
i

∑
k≤K Z

(1)
k }

1
2 and 2{Q(4)

i

∑
k≤K Z

(1)
k }

1
2 ,

resulting in ||
∑

k≤K(ξ̂ik − ξik)φ̂k||L2 = Op(K
α2+ 1

2 rn). Thus ||g5||L2 = Op(T
K(XMj,α) + h2 +

1√
nhd

+Kα2+ 1
2 rn), which is also the asymptotic rate of the third term on the r.h.s. of (52).

The last term in (52) is obviously of smaller order, and (30) follows.
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Table 1: Fraction of distances explained FDE = 1 − ||D̂
p−D||F
||D||F defined in (24) for isometric

manifold fits with different dimension d (other parameters are optimized), for two signal-to-

noise ratios R and manifolds M1 −M3.

Manifold R
d

1 2 3 4 5

M1

0.1 .998 .999 .999 .999 .999

0.5 .9778 .993 .995 .995 .996

M2

0.1 .914 .988 .994 .996 .996

0.5 .902 .971 .974 .978 .980

M3

0.1 .699 .932 .957 .977 .980

0.5 .639 .906 .948 .955 .958

Growth .947 .972 .980 .985 .988

Yeast .891 .949 .981 .983 .984

Mortality .878 .954 .973 .980 .982
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Table 2: Simulation results for manifoldsM1−M3. Each Monte Carlo is based on a sample of

200 curves, sampled at 30 equidistant time points on [−4, 4]. The values in the table are mean

squared prediction errors, MSPE = 1
200

∑200
i=1 ||Xi − X̂i||2L2 , where X̂i = X̂L

i , the prediction

using functional principal component analysis, or X̂Mi , using the proposed manifold method,

and relative squared prediction error, RSPE =
∑200
i=1 ||Xi−X̂i||2L2∑200
i=1 ||Xi−X̄||2L2

, where X̄ = 1
200

∑200
i=1Xi. The

dimension L is the number of included FPCs for X̂L
i , and d is the intrinsic dimension assumed

for X̂Mi . Comparisons are made at the same dimensions for signal-to-noise ratios R = 0.1

and R = 0.5. Results are mean values based on 100 Monte Carlo runs.

Manifold R Method
MSPE with different L or d RSPE with different L or d (% )

1 2 3 4 5 1 2 3 4 5

M1

0.1
X̂L
i .159 .034 .025 .021 .021 41.4 9.9 6.4 5.5 5.5

X̂Mi .027 .015 .015 .014 .015 7.0 3.9 3.9 3.7 3.8

0.5
X̂L
i .173 .061 .057 .058 .058 45.1 15.7 14.8 15.0 15.1

X̂Mi .090 .046 .046 .049 .053 23.3 12.0 11.8 12.7 13.8

M2

0.1
X̂L
i .054 .022 .013 .008 .007 44.1 17.6 10.3 6.7 5.7

X̂Mi .022 .009 .007 .006 .006 18.0 7.5 5.4 4.6 4.6

0.5
X̂L
i .055 .025 .019 .018 .018 44.9 20.4 15.9 14.4 14.4

X̂Mi .030 .017 .015 .014 .014 24.8 13.8 12.0 11.5 11.6

M3

0.1
X̂L
i .148 .059 .031 .023 .020 58.7 23.3 12.5 9.1 7.7

X̂Mi .088 .025 .020 .020 .019 34.9 10.0 8.1 7.7 7.6

0.5
X̂L
i .154 .071 .053 .048 .048 61.2 28.3 21.1 19.0 19.0

X̂Mi .124 .059 .047 .045 .044 49.0 23.6 18.6 17.7 17.6
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Table 3: Simulation results for manifolds M1 −M3, demonstrating mean ratios of mean

squared prediction error (MSPE) for P-ISOMAP over MSPE of ISOMAP when d equals the

intrinsic dimension, for two signal-to-noise ratios R.

R M1 M2 M3

0.1 .9676 .9679 .9402

0.5 .8121 .8879 .8302

Table 4: The mean squared prediction errors using different values for ε (for dimensions d = 1

for M1 and 2 for M2, M3, while the other parameters are optimized). Note that when ε

is small, some sample points will be treated as outliers as they are not connected to other

sample points, which renders the MSPE for small ε inaccurate.

Manifold R
ε

3 5 8 12 16

M1

0.1 .029 .027 .031 .029 .033

0.5 .116 .102 .090 .129 .135

M2

0.1 .008 .010 .009 .010 .010

0.5 .020 .018 .018 .017 .017

M3

0.1 .029 .040 .025 0.27 .033

0.5 .052 .059 .065 .059 .066
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Table 5: Mean squared prediction errors (MSPE) and relative squared prediction errors

(RSPE) (in percent) for the three application data sets in section 6.

Data Method
MSPE with different L or d RSPE with different L or d (% )

1 2 3 4 5 1 2 3 4 5

Growth
X̂L
i 17.1 12.9 13.8 13.7 12.6 61.9 46.7 49.9 49.6 45.9

X̂Mi 10.7 9.46 9.06 9.21 9.08 38.7 34.2 32.8 33.3 32.9

Yeast
X̂L
i .639 .382 .257 .205 .203 66.9 40.0 26.9 21.5 21.3

X̂Mi .468 .278 .231 .210 .206 49.0 29.1 24.2 22.0 21.6

Mortality
X̂L
i 7.38 6.34 5.44 5.48 5.21 54.4 47.3 40.0 40.3 38.3

X̂Mi 6.77 5.64 5.40 5.26 4.98 49.8 41.3 39.7 38.7 36.5
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Figure 1: Manifolds M1 − M3. Top left panel: Functions on M1 for α = 0.6, 0.8, 1.0, 1.2, 1.4.

Top right panel: Corresponding identity-subtracted warping functions hα(t) − t. Middle left panel:

Functions on M2 for α = 0.4, 0.7, 1.0, 1.3, 1.6 and β = 0. Middle right panel: Functions on M2 for

β = 0.4, 0.7, 1.0, 1.3, 1.6 and α = 0. Bottom left panel: Functions on M3 for α = −2,−1, 0, 1, 2 and

β = 0. Bottom right panel: Functions on M3 for β = −2,−1, 0, 1, 2 and α = 0.
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Figure 2: Simulated data for manifold M1. Top left panel: Five randomly selected curves. Top

right panel: Common shape function (yellow, corresponds to target mean), estimated manifold mean

µ̂M (21) (black) and the L2 mean (blue). Second row: Scatter plot of second versus first functional

principal component (left) and second versus first functional manifold component (right), where the

bold black dot represents the manifold mean and the bold blue dot represents the L2 mean. Third

row: Estimates of principal component based mode X1,α (7) (left) and of manifold mode XM
1,α (9)

(right) of functional variation for α = −2,−1, 0, 1, 2. Bottom row: Two randomly selected curves

(red), with the corresponding principal component based predictions X̂L
i (12) (blue), and manifold

based predictions X̂M
i (20) (black) for L = d = 2.
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Figure 3: Simulated data for manifoldM2. Top left panel: Five randomly selected curves. Top right

panel: Standard Gaussian density (yellow, corresponds to target mean), estimated manifold mean µ̂M

(21) (black) and the L2 mean (blue). Second row: Scatter plot of second versus first FPC (left) and

second versus first FMC (right), where the bold black dot represents the manifold mean and the bold

blue dot represents the L2 mean. Third row: Estimates of principal component based mode X1,α (7)

(left) and of manifold mode XM
1,α (9) (right) of functional variation for α = −2,−1, 0, 1, 2. Fourth

row: Estimates of X2,α (left) and of XM
2,α (right) for α = −2,−1, 0, 1, 2. Bottom row: Two randomly

selected curves (red), with the corresponding principal component based predictions X̂L
i (12) (blue),

and manifold based predictions X̂M
i (20) (black) for L = d = 3.
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Figure 4: Simulated data for manifold M3. Top left panel: Five randomly selected curves. Top

right panel: Curve with no time shifts (yellow, corresponds to target mean), estimated manifold mean

µ̂M (21) (black) and the L2 mean (blue). Second row: Contour scatter plot of second versus first

FPC (left) and second versus first FMC (right), with the colors scaled from the third FPC or FMC.

Third row: Estimates of principal component based mode X1,α (7) (left) and of manifold mode XM
1,α

(9) (right) of functional variation for α = −2,−1, 0, 1, 2. Fourth row: Estimates of X2,α (left) and

of XM
2,α (right) for α = −2,−1, 0, 1, 2. Bottom row: Two randomly selected curves (red), with the

corresponding principal component based predictions X̂L
i (12) (blue), and manifold based predictions

X̂M
i (20) (black) for L = d = 3.
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Figure 5: Berkeley growth data for girls. Top left panel: Derivatives with the cross-sectional mean

(blue) and estimated manifold mean µ̂M (21) (black). Top right panel: Scatter plot of second versus

first FPC, where the bold black dot represents the manifold mean and the bold blue dot represents

the cross-sectional mean. Second row left panel: Scatter plot of second versus first FMC, where the

bold black dot represents the manifold mean. Second row right panel and third row panels: Three

randomly selected curves (red), with the corresponding principal component based predictions X̂L
i

(12) (blue), and manifold based predictions X̂M
i (20) (black) for L = d = 2. Bottom panels: Estimates

of principal component based mode X1,α (7) (left) and of manifold mode XM
1,α (9) (right) of functional

variation for α = −2,−1, 0, 1, 2.
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Figure 6: Yeast cell cycle gene expression data. Top panel: All trajectories in different colors ac-

cording to cluster membership: G1 (red), S (cyan), G2/M (green), M/G1 (blue) and S/G2 (black).

Middle left panel: Estimated manifold mean µ̂M (21) (black) and cross-sectional mean (blue). Middle

right panel: Scatter plot of second versus first FPC, where the bold blue dot indicates cross-sectional

mean and the bold black dot indicates manifold mean. Bottom panels: Estimates of principal com-

ponent based mode X1,α (7) (left) and of manifold mode XM
1,α (9) (right) of functional variation for

α = −2,−1, 0, 1, 2.
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Figure 7: Human mortality data. Top left panel: Death rates for five randomly selected countries.

Top right panel: Estimates of cross-sectional mean (blue) and manifold mean µ̂M (13) (black). Second

row: Scatter plots of second versus first FPC (left) and second versus first FMC (right), where the

bold blue dot indicates the cross-sectional mean and the bold black dot indicates the manifold mean.

Third row: Two randomly selected curves (red), with the corresponding principal component based

predictions X̂L
i (12) (blue), and manifold based predictions X̂M

i (20) (black) for L = d = 3. Bottom

panels: Estimates of principal component based mode X1,α (7) (left) and of manifold mode XM
1,α (9)

(right) of functional variation for α = −2,−1, 0, 1, 2.
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