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This paper discusses the nonlinear propagation of spacecraft trajectory uncertainties via solutions of the Fokker–

Planck equation. We first discuss the solutions of the Fokker–Planck equation for a deterministic system with a

Gaussian boundary condition. Next, we derive an analytic expression of a nonlinear trajectory solution using a

higher-order Taylor series approach, discuss the region of convergence for the solutions, and apply the result to

spacecraft applications. Such applications consist of nonlinear propagation of the mean and covariance matrix,

design of statistically correct trajectories, and nonlinear statistical targeting. The two-body and Hill three-body

problems are chosen as examples and realistic initial uncertainty models are considered. The results show that the

nonlinear map of the trajectory uncertainties can be approximated in an analytic form, and there exists an optimal

place to perform a correction maneuver, which is not found using the linear method.

Nomenclature

Bo, B = initial and current state phase volumes
D = diffusion characteristic matrix
E��� = expectation operator
f = system dynamics vector
H = Hamiltonian function
I = identity matrix
J = symplectic identity matrix
mo,m = initial and current state mean vectors
mr,mv = position and velocity mean vectors
Po, P = initial and current state covariance matrices
p = probability density function
Q = diffusion matrix
q, p = generalized coordinate and momenta vectors
r, v = spacecraft position and velocity vectors
to, t = initial and current times
x, y = horizontal and vertical position components
_x, _y = horizontal and vertical velocity components
xo, x = initial and current state vectors
� = s-dimensional Brownian motion or Wiener process

vector
� = local nonlinearity index
� = true anomaly, deg
�E, �� = Europa (3,201) and Earth (398,600) gravitational

constants, km3=s2

� = nonlinearity index
� = state transition tensors (if no subindexes, state

transition matrix)
� = solution flow
�r, �v = position and velocity solution flows
 = inverse solution flow
!E = rotational rate of the Jupiter–Europa Hill 3-body

problem, 2:048 � 10�5 rad=s

Introduction

P RESENT-DAY orbit uncertainty propagation usually chooses
between linearized propagation models [1–3] or full nonlinear

Monte Carlo simulations [4]. The linear assumption simplifies the
problem a great deal; however, the solution fails to characterize
trajectory statistics when the system is in a highly unstable
environment or when mapped over a long time period. On the other
hand, Monte Carlo simulations provide true trajectory statistics, but
are computationally intensive and statistics are computed only for a
specific epoch and its associated uncertainties. A different approach
to orbit uncertainty propagation has also been discussed by Junkins
et al. [5,6], in which the effect of the coordinate system on the
propagated statistics is thoroughly analyzed; however, the
propagation method was based on the linear assumption and the
system nonlinearity was not incorporated in the mapping.

In this paper we explore an alternate way to analyze trajectory
statistics by incorporating higher-order Taylor series terms that
describe localized nonlinear motion, and by solving for the higher-
order state solutions as functions of initial conditions, which we call
the state transition tensors (STT). Park and Scheeres [7] have shown
that the statistics (mean and covariance matrix) computed using the
STT approach provide good agreement with Monte Carlo
simulations, and we provide more examples using the two-body
and Hill three-body problems. As applications of the STT-
propagated statistics, we discuss the concept of a statistically correct
trajectory, where we analyze the mean trajectory, and its application
to nonlinear statistical targeting, where we minimize the expectation
of the deviated trajectory. Ifwe solve for a correctionmaneuver using
the STT approach the number of statistical controlmaneuversmay be
reduced because the method captures the system’s nonlinearity and
provides the most realistic trajectory for the given state uncertainties
at the time of themaneuver.We derive necessary conditions required
for this problem and present examples to better explain the difference
between the linear and nonlinear methods.

Nonlinear Mapping of the System Dynamics

Consider the spacecraft dynamics governed by the equations of
motion as a function of the initial conditions, written in tensor
notation:

_x i�t� 	 f i�t; x�t�� (1)

where x	 fxiji	 1; . . . ; ng and initial conditions xi�to� 	 xoi . For a
given initial condition, we denote the solution flow as

x �t� 	 ��t; xo; to� (2)
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which is themapping of the state at epoch to the state at a future time.
The solution flow satisfies

d�

dt
	 f �t;��t; xo; to�� (3)

� �to; xo; to� 	 x�to� (4)

This is somewhat an obvious statement; however, this notation is
convenient when we consider the flow of a region in phase space.

Supposewe are given an initial phase volumeBo. The evolution of
this phase volume can be stated as

B �t� 	 fx�t�jx�t� 	 ��t; xo; to�; 8 xo 2 Bog (5)

Applying a similar approach the inverse solution flow can be stated
as

x o 	 ��to; x; t� (6)

which leads to the identity

x o 	 ��to;��t; xo; to�; t� (7)

To distinguish between the direct and inverse solution flows, we use
the following notation for the inverse solution flow:

x o 	 �t; x; to� (8)

where t and x are free variables. We note that the initial conditions of
a trajectory can also be considered to be integrals of motion of the
system, and hence, dxo=dt	 0 [8]. These notations will be used later
to solve the Fokker–Planck equations and to derive the nonlinear
representations of the mean and covariance matrix.

Using our definition of the solution flow, the deviation of the
current state from a nominal trajectory can be represented as

�x�t� 	 ��t; xo 
 �xo; to� � ��t; xo; to� (9)

which satisfies the equations of motion

� _x�t� 	 f �t;��t; xo 
 �xo; to�� � f �t;��t; xo; to�� (10)

Now perform a Taylor series expansion of the solutions in terms of
the initial deviation �xo. We carry the expansions to themth order to
find

�xi�t� 	
Xm
p	1

1

p!
�i;k1 ���kp�x

o
k1
� � � �xokp (11)

� _xi�t� 	
Xm
p	1

1

p!
f�
i;k1 ���kp�xk1 � � � �xkp (12)

where we use the summation convention, kj 2 f1; . . . ; ng, subscripts
kj denote the kjth component of the state vector,

� i;k1 ���kp 	
@pxi

@xok1 � � � @xokp
(13)

f �
i;k1 ���kp 	

@pf i

@xk1 � � � @xkp

����
x	x�

(14)

and the superscript “�” represent the values computed along a
reference (nominal) solution. As an example, the summation
convention applied to a second order expansion can be written as

1

2
�i;k1;k2

�xok1�x
o
k2
	

Xn
k1	1

Xn
k2	1

1

2
�i;k1 ;k2

�xok1�x
o
k2

(15)

Fromnowon,wewill call the higher-order partials of the state xi (i.e.,

�i;k1 ���kp ) the state transition tensors (STTs). These relate deviations

in the initial conditions to deviations in the state at some future time.
The time derivative of the deviation � _xi can also be obtained by
differentiating Eq. (11),

� _xi�t� 	
Xm
p	1

1

p!
_�i;k1 ���kp�x

o
k1
� � � �xokp (16)

because only the STTs depend on time. In conventional practice
researchers usually work with the case m	 1 (i.e., first-order or
linear analysis) where Eqs. (13) and (14) are simply the usual “state
transition matrix” and the “linear dynamics matrix,” respectively.
We later show that when the nonlinearity is strong, including higher-
order effects provides superior results as compared with conven-
tional linear analysis.

Now, in order to analyze the deviation of �x as an analytic function
of the initial deviations, we must solve for the STTs. To obtain
differential equations for the STTs, we first substitute Eq. (11) into
Eq. (12), which gives the equation of � _xi as a function of the STTs
and initial conditions. By equating this with Eq. (16) and balancing
terms of the same order in �xo, we obtain the differential equations

for the STTs ( _�i;k1 ���kn ), where the ODE’s up to fourth order deviation
are given in Eqs. (17–20).

_� i;a 	 f�
i;���;a (17)

_� i;ab 	 f�
i;���;ab 
 f�

i;����;a��;b (18)

_�i;abc 	 f�
i;���;abc 
 f�

i;�����;a��;bc 
��;ab��;c 
��;ac��;b�

 f�

i;�����;a��;b��;c (19)

_� i;abcd 	 f�
i;���;abcd 
 f�

i;�����;abc��;d 
��;abd��;c


��;acd��;b 
��;ab��;cd 
��;ac��;bd 
��;ad��;bc


��;a��;bcd� 
 f�
i;������;ab��;c��;d 
��;ac��;b��;d


��;ad��;b��;c 
��;a��;bc��;d 
��;a��;bd��;c


��;a��;b��;cd� 
 f�
i;������;a��;b��;c��;d (20)

The initial conditions for these STTs are simple,�o
i;a 	 1 if i	 a and

all other initial STTs are initially zero. After solving for the STTs, the
higher-order solutions can be computed by adding the deviations to
the reference solution, or xi�t� 	 x�i �t� 
 �xi�t�. Since the reference
solutions x�i �t� are solved while computing the STTs, xi�t� can now
be computed as an analytic function of the initial conditions in the
neighborhood of the reference solution.

Convergence of the Higher-Order Solutions

Given the Taylor series expansion of a solution, Eq. (11), it is not
trivial to say what order of solution suffices to represent the local
nonlinear motion for a given set of initial deviations. In this section,
we discuss a systematic way to find the necessary order of Taylor
series that captures the local nonlinear behavior.

The level of nonlinearity (or linearity) of a system’s coordinate
system can be checked by computing its nonlinearity index [5,6]

��t; to�≜ sup
k	1;...;N

k�k�t; to� ����t; to�kf
k���t; to�kf

(21)

where the superscript k represents that the solutions are computed
along neighboring trajectories, N is the number of initial sample
points, and k � kf represents the Frobenius norm. For a given initial
error ellipsoid the neighboring trajectories are chosen from theworst-
case initial conditions (e.g., boundary points of the 3-	 ellipsoid).
The nonlinearity index computes the level of maximum linear
deviation from the reference trajectory. However, our focus is more
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on deciding the sufficient order of the higher-order solution. For this
reason, we apply a slightly different approach where we instead
propagate the deviated trajectory.

For a fixed future time, the idea is to compute the level of
nonlinearity that can be approximated by using the STT approach.
Let the local nonlinearity index be defined as follows:

�m�t; to�≜ sup
i	1;...;n
k	1;...;N

j�xmi �t; �xok ; to� � �x�i �t; �xok ; to�j
j�x�i �t; �xok ; to�j

(22)

where �xmi represents a component of the mth-order STT-solution
vector [i.e., Eq. (11)], �x�i represents a component of the nonlinearly
integrated solution vector, and �xok represents the kth sample state
vector chosen from the boundary of the initial confidence region
(e.g., initial N-	 ellipsoid). Note that the subscripts i 2 f1; . . . ; ng
and k 2 f1; . . . ; Ng, where n is the system dimension and N is the
number of initial sample points. In other words, we find the state that
deviates the most from its reference value over all initial samples and
each component of the state vector. The computed value of �m then
tells how well the mth-order solution can approximate the true
nonlinear motion. As we consider higher-order Taylor series, and if
the series are convergent, �m will converge to zero, and by increasing
the order of solution we can compute the percent difference between
the true and STT solutions. Using this notation, �m ! 0 asm ! 1.
As a result, a higher-order solution needs to be considered if �m > 
,
where 
 depends on howaccurately the userwants to approximate the
true nonlinear motion.

As an example, Fig. 1 shows the propagation of a string drawn
from the surface of a phase volume and projected onto the position
plane [7]. The model is based on the Hill three-body problem that is
discussed in the “Example“ section. It shows that the higher-order
solutions converge to the true nonlinearly integrated trajectory as we
consider higher-order solutions. Another important observation is
that the level of convergence rate varies along the trajectory, which
depends on the system nonlinearity.

Probability Overview

Review of the Gaussian Distribution

Consider the spacecraft state vector as a Gaussian random vector
(GRV), x�N �m;P�, where m is the mean vector and P is the
covariance matrix. The probability density function for x is defined
as

p�x� 	 1������������������������2��n detPp exp

�
�1
2
�x �m�TP�1�x �m�

�
(23)

An important property of the Gaussian distribution is that the
statistics of a GRV can be completely described by the first two
moments (i.e.,m andP) using the joint characteristic function (JCF).
For a nonzero mean GRV, the first four moments become

E�xi� 	mi (24)

E�xixj� 	mimj 
 Pij (25)

E�xixjxk� 	mimjmk 
 �miPjk 
mjPik 
mkPij� (26)

E�xixjxkxl� 	mimjmkml 
 �mimjPkl 
mimkPjl 
mjmkPil


mimlPjk 
mjmlPik 
mkmlPij� 
 PijPkl 
 PikPjl


 PilPjk (27)

With the use of symbolic manipulators, computing higher Gaussian
moments becomes a simple process.

The Gaussian distribution is used widely for astrodynamics
applications due to its simplicity and its invariance under linear
operations. When we consider mapping a GRV under nonlinear
orbital dynamics, we will see that the Gaussian distribution is no
longer preserved because x�t� is a nonlinear function of xo in general.
However,we can still approximate a non-Gaussian distribution using
the first few moments of the variable. This can be checked by
comparing the nonlinearly propagated mean and covariance matrix
with the Monte Carlo simulation.

Monte Carlo Computations

TheMonte Carlomean and covariancematrix are computed based
on the following equations [9]:

m i�t� 	
1

N

XN
k	1

�i�t; xok ; to� (28)

P ij�t� 	
1

N � 1

XN
k	1

h
�i

�
t; xok ; t

o
�
�mi�t�

ih
�j

�
t; xok ; t

o
�
�mj�t�

i

(29)

where the subscript k represents the kth sample point that are chosen
according to the initial distribution. For example, if we consider a
GRV, each sample point is found using theGaussian randomnumber
generator. Based on the law of large numbers and convergence of the
statistics, Eqs. (28) and (29) become the true mean and true
covariance matrix as we consider more sample trajectories (i.e.,
N ! 1). Precision orbit prediction often relies on Monte Carlo
simulations to predict the future state for nonlinear dynamical
situations. However, there are three critical disadvantages when
using this approach: a) the number of sample trajectories may grow
quite large to obtain convergence of the statistics, b) the simulation
needs to be repeated for different initial distributions, and c) it does
not provide an analytic framework. These problemsmake theMonte
Carlo simulation computationally quite intensive and statistics
specific. In the next section, we derive a way to avoid these problems
by incorporating STT solutions when solving for the mean and
covariance matrix at a future time.

Fokker–Planck Equation (Forward Kolmogorov Equation)

Most orbital dynamics problems involving uncertainty can be
written using the Itô stochastic differential equation,

dx�t� 	 f �x�t�; t� dt
 G�x�t�; t � d��t� (30)

−10 −5 0 5 10
−10

−5

0

5

10

km

km

t = 0 days

−200 0 200 400
−1000

−500

0

500

1000

km

km

t = 0.881 days

−200 0 200

−20

0

20

km

km

t = 4.42 days

−500 0 500 1000

−100

0

100

200
km

km

t = 5.74 days

Fig. 1 Phase volume projected onto the position plane, where solid line

represents true nonlinear, dotted line represents the 1st order, dash–
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order solutions.
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where G is an n-by-s matrix characterizing the diffusion, that is,

E�d��t� d�T�t�� 	Q�t� dt (31)

Ef���t2� � ��t1�����t2� � ��t1��Tg 	
Z

t2

t1

Q�t� dt (32)

As an example, the diffusion vector � can be modeled as stochastic
acceleration or process noise in case of the spacecraft orbit
determination process. The solution to this stochastic differential
equation is

x �t� 	 xo 

Z

t

to
f �x���; �� d� 


Z
t

to
G�x���; �� d���� (33)

Systems with deterministic inputs can be simply rewritten by
including them in the state vector.

Now letp�x; t�be the probability density function of the stochastic
process x�t�. Given a system satisfying the Itô stochastic differential
equation, the time evolution of the probability density function (pdf)
must satisfy the forward Kolmogorov equation (also known as the
Fokker–Planck equation) [4,10]:

@p�x; t�
@t

	�
Xn
i	1

@

@xi
�p�x; t�f i�x; t��


 1

2

Xn
i	1

Xn
j	1

@2

@xi@xj
fp�x; t��G�x; t�Q�t�GT�x; t��ijg (34)

where the subscript i represents the ith components of a vector and
the index ij represents the �i; j� component of amatrix. In the current
analysis we will consider a system without diffusion terms, resulting
in a simplified form of the equations

@p�x; t�
@t

	�
Xn
i	1

@

@xi
�p�x; t�f i�x; t�� (35)

Integral Invariance of Probability

Consider a dynamical system f�x; t� and let I be an integral of a
vector fieldM�x; t� over some volume V

I 	
Z
V
M�x; t� dx (36)

The integral I is called an integral invariant if its total time derivative
is constant (i.e., dI=dt	 0). The sufficient condition for integral
invariance is [8]

@M�x; t�
@t

	�
Xn
i	1

@

@xi
�M�x; t�f i�x; t�� (37)

and we note that this is identical to the Fokker–Planck equations
without diffusion terms. The probability of the state in some phase
volume B can be computed by integrating the pdf

Pr�x 2 B� 	
Z
B
p�x; t� dx (38)

We have that p�x; t� satisfies the Fokker–Planck equation of a
system with no diffusion terms, Eq. (35), and that this equation is
equivalent to the sufficiency condition for the probability to be an
integral invariant. Hence, the probability of any dynamical system
with no diffusion term is an integral invariant [11]. This result has
been discussed by Scheeres et al. [12] and combined with Gromov’s
nonsqueezing theory to derive a new set of constraints that exist for
orbit uncertainty propagation.

On the Relation of the Phase Volume and Probability

Supposewe are given an initialN–	 ellipsoidBo of the initial state
xo, that is,

B o 	 fx�to�jxT�to�P�1�to�x�to� 
 N2g (39)

As the probability of a deterministic system is an integral invariant,
Pr�x�t� 2 B� should remain unchanged, which indicates that the
propagatedBo (i.e., B) is anN–	 surface (note that the name surface
is given because its shape is no longer ellipsoidal because the system
dynamics are nonlinear in general). This implies that the confidence
region of the current state can be defined by nonlinearly mapping the
initial phase volume (Bo). This approach is, however, a
computationally intensive process because hundreds or thousands
of points from the surface of Bo must be integrated using the true
nonlinear dynamics. For this reason,we usuallyworkwith the simple
linear model at a penalty of ignoring the higher-order effects.
However, oncewe have the time solution of the STTs, computing the
phase volume incorporating the higher-order effects becomes a
simple algebraic manipulation, which provides a more accurate
solution than the linear case. Considering a Hamiltonian (or
Lagrangian) system and the uniqueness of solutions, the outer
boundary points of an initial phase volume must map to the outer
boundary points of the phase volume computed at a later time. Hence
we only need to analyze the behavior of the surface of this 2n-
dimensional object. After the outer boundary points of Bo are
mapped forward in time using the STTs, they can be projected onto
the position and velocity spaces to compute themaximum deviations
in these spaces with respect to the reference trajectory.

Solution of the Fokker–Planck Equation for a Deterministic

Hamiltonian System

Consider a Hamiltonian, H�q;p; t�, which is a function of an
n-dimensional generalized coordinate q and n-dimensional
generalized momentum p, hence the system is 2n dimensional.
The dynamics equations can be written as

_x�t� 	 JHT
x (40)

where

x 	 qT pT
� �

T

Hx is the row-wise partial derivative ofH with respect to x, and J is
the symplectic matrix

J 	 0 I
�I 0

� �
(41)

Both the identity matrices I and the zero matrices 0 are n � n.
Assuming no diffusion in the dynamics (e.g., no stochastic

accelerations), the Fokker–Planck equation for the pdf, Eq. (34),
simplifies to

@p�x; t�
@t

	�
�
p�x; t�
@x

_x
 p�x; t�tr
�
JHT

xx

��
(42)

where tr��� represents the trace of a matrix. The second term in the
right-hand-side of the above equation vanishes because

tr
�
JHT

xx

�
	 tr

Hpq Hpp

�Hqq �Hqp

� �
	 0 (43)

and reduces the Fokker–Planck equation to

dp�x; t�
dt

	 0 (44)

This result is generally true for any system derived from a single
potential, and thus, most orbital motion represented in Lagrangian
form also satisfy this form of the equation (e.g., Hill 3-body problem,
restricted 3-body problem, etc.). This time invariance, in conjunction
with Liouville’s theorem, provides another proof that the probability
over some volume B [Eq. (38)] is indeed an integral invariant.

Consider x�t� 	 ��t; xo; to� to be the solution flow. From the
fundamental theorem of calculus and integral invariance we have
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Pr�x 2 B� 	
Z
B
p�x; t� dx (45)

	
Z
Bo

p���t; xo; to�; t�
���� @x@xo

���� dxo (46)

	
Z
Bo

p�xo; to� dxo (47)

which gives

p���t; xo; to�; t� 	 p�xo; to�
���� @x@xo

����
�1

(48)

where j � j represents the determinant and we assume it is positive.
Equation (48) is true for any dynamical systems, but for a
Hamiltonian system, it simplifies further. The mapping from xo to x
is a canonical transformation, and thus, j@x=@xoj 	 1 for all t
according to Liouville’s theorem. Hence, the pdf must satisfy

p���t; xo; to�; t� 	 p�xo; to� (49)

or

p�x; t� 	 p� �t; x; to�; to� (50)

In otherwords, the current state pdf can be characterized by the initial
pdf, and vice versa. This means that if the solution is known as a
function of initial conditions (i.e., is integrated) and the pdf is known
at any one time, it can be found for all time. This result is usually
assumed in present-day orbit determination process without
discussing it in details. This is, however, an important property
that arises from the structure of the Hamiltonian dynamics. We
address implications of this result in a later section of this paper.

Solution of the Fokker–Planck Equation for a Hamiltonian System

with a Gaussian Boundary Condition

Let us consider a special case of practical interest. Suppose our
system is modeled using the Hamiltonian dynamics (n.b., the result
can be generalized for the Lagrangian systems derived from a single
potential) and the initial state can be represented as aGRVwithmean
mo 	m�to� and covariancematrixPo 	 P�to�, which are constants,
so that

p�xo; to� 	 1���������������������������
�2��2n detPo

p exp

	
� 1

2
�xo �mo�T�o�xo �mo�




(51)

where �o 	 P�to��1. Recall that Hamiltonian systems have
dimension 2n. Using Eq. (50), the current state pdf can be stated as

p�x; t�	 1���������������������������
�2��2n detPo

p expf�1
2
� �t;x; to� �mo�T�o� �t;x; to�

�mo�g (52)

It is easy to show that Eq. (52) satisfies the basic conditions to be a
valid pdf, which are that its integral over all space equals unity and
that it solves the Fokker–Planck equation:Z

1
p�x; t� dx	

Z
1
p� �t; x; to�; to� dx (53)

	
Z
1
p�xo; to�

���� @x@xo
����dxo (54)

	 1 (55)

where we apply the integral invariance of the pdf and symplectic
property of the Hamiltonian system (i.e., j@x=@xoj 	 1). To prove

that this is a valid solution we only need to show that dp=dt	 0.
Note that

dp�x; t�
dt

	 dp� �t; x; to�; to�
dt

	 @p

@ 

d 

dt
(56)

However  �t; x; to� 	 xo are integrals of motion of our system [8],
and hence, their total time derivative is zero. This derivation is
particularly of interest because, as we will see later, it provides the
evolution of the current state statistics as functions of the initial state
and its statistics. An interesting observation that can be made from
Eq. (52) is that the peak of the pdf is always located at the
propagated initial mean according to the deterministic map [i.e.,
x	 ��t;mo; to�]; however, the solution flow is nonlinear in general,
and thus, the current statemean vector is no longer located at the peak
of the distribution. It is apparent fromEq. (52) that once the stateflow
��t� can be represented including the higher-order effects and an
analytic expression is obtained as a function of the initial state, the
statistical moments of the current state can be obtained that are, by
definition, more accurate predictions of the propagated statistics than
the linear theory. Obtaining an analytic framework of the statistics
propagation is discussed in the next section.

Nonlinear Mapping of the Gaussian Distribution

Consider computation of the mean. Applying the results from
Eqs. (49) and (50) we have the following four equivalent expressions
for the mean of the state:

E�x�t�� 	
Z
1
x�t�p�x; t� dx (57)

	
Z
1
��t; xo; to�p�xo; to� dxo (58)

	
Z
1
��t; xo; to�p���t; xo; to�; t� dxo (59)

	
Z
1
x�t�p� �t; x; to�; to� dx (60)

We observe that Eq. (58) is suitable for computation of the state
uncertainties using the STT formulation because the solution flow
can be expanded using the Taylor series and higher moments can be
computed using the JCF of the initial Gaussian distribution.

Consider the Gaussian boundary condition for the pdf [Eq. (51)].
Assuming a nonzeromean for the initial state, the pdf for the state �xo

can be obtained via a linear transformation, xo 	 �xo 
mo � �mo,
where mo is the initial mean and �mo is the initial mean of the
deviation. We note that these variables are constants. Applying the
change of variable to the pdf yields

p��xo; to� 	 1���������������������������2��n detPo
p expf�1

2
��xo � �mo�T�o��xo � �mo�g

(61)

Since the expectation of the nominal trajectory does not change, by
definition, it is easier to instead analyze the statistics of the deviated
state. Using the STT notation, the current state mean and covariance
matrix are

�mi�t� 	
Xm
p	1

1

p!
�i;k1 ���kpE

h
�xok1 � � � �xokp

i
(62)

Pij�t� 	
�Xm

p	1

Xm
q	1

1

p!q!
�i;k1 ���kp�j;l1 ���lqE��xok1 � � � �xokp�xol1 � � � �xolq �

�

� �mi�t��mj�t� (63)
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where fkj; ljg 2 f1; . . . ; 2ng. Note that m	 1 gives the ordinary
first-order covariance propagation [11], that is, �m�t� 	��mo and
P�t� 	�Po�T � �m�mT , where � is the usual state transition
matrix and linearly maps the deviation from to to t.

For the caseswherem> 1 it is apparent fromEq. (63) that we need
to compute 2mth-order Gaussian moments, which is, however, a one
time operation because we only need to compute the moments of the
initial GRV using the JCF. Themean and covariance matrix can thus
be obtained as functions of time once we have the time solution of
STTs and initial first twomoments. This results in the computation of
the mean and the covariance matrix to be an algebraic operation. If
we consider a zero initial mean, all the odd moments of the initial
conditions vanish, which is a property of the Gaussian distribution,
and the above equations simplify a great deal. Moreover, it is clear
from Eq. (62) that the mean will not be zero indicating that the mean
deviates from the reference trajectory, whereas the linear analysis
assumes that the mean is the reference trajectory. As an example, for
the case where m	 2 with zero initial mean, the mean and
covariance matrix become functions of the initial covariance matrix
Po, that is,

�mi�t� 	 1
2
�i;abP

o
ab (64)

Pij�t� 	�i;a�j;�P
o
a� � �mi�mj 
 1

4
�i;ab�j;��

h
Po

abP
o
��


 Po
a�P

o
b� 
 Po

a�P
o
b�

i
(65)

Considering this fact, updating future measurements with respect to
themean trajectory will providemore accurate information about the
true trajectory, and thus, faster convergence of the estimation process
may be obtained. This also provides more precise predictions of
where the true trajectory is.

In terms of numerical complexity, it generally requires
P

m
k	0 n

k
1

number of differential equations to be integrated in order to compute
themth-order STTs,which indicates that the computation time grows
exponentially as m increases. We note that the position-dependent
partials usually vanish for m � 2 for both the state space and the
phase space, which reduces the number of differential equations
significantly. The Monte Carlo simulation, on the other hand,
requires one to integrate n � N equations until the solution
converges, where N is the number of samples, and it can be difficult
to approximate a sufficient number of samples for convergence.
Hence, the number of integrated equations for the STTs may exceed
that of the Monte Carlo simulation. However, the importance of the
STT-approach comes from the fact that the STTs need be integrated
only once while varying the epoch statistics, whereas the Monte
Carlo analysis need to be carried out for each set of epoch statistics.

Applications of the STT-Propagated Statistics

In this section we discuss several spacecraft applications where
our nonlinear uncertainty propagation method can be used. We first
introduce the concept of statistically correct trajectory targeting
where we discuss how to incorporate statistical information into the
trajectory design. We then extend this idea and present nonlinear
statistical targeting by computing the correction maneuver that gives
the statistically correct target position at a desired time.

Concept of the Statistically Correct Trajectory

Conventional mission design usually relies on the deterministic
solution of a boundary value problem andno statistical information is
taken into account in the design process. The idea of the statistically
correct trajectory is to compensate this deterministic trajectory by
incorporating statistical information. Figure 2 shows the concept of
the statistically correct trajectory. Suppose the trajectory x�t�
deterministically gives the desired target state at tf [i.e., x�tf�	
��tf; xo; to� 	 xf]. However, in practice xo is uncertain [e.g.,
xo �N �mo;Po�], and therefore, the mean trajectory, mf	
E���tf; xo; to��, deviates from the target state. In other words, the

most likely state at time tf is not xf, but rather E���tf; xo; to�� 	
mf ≠ xf according to probability theory and �mf 	mf � xf is not
zero. Given this fact, and assuming the spacecraft is initially located
on the nominal orbit at time to, there exist initial neighboring
trajectories xo 
 �mo such that their initial states are offset from the
reference state, but their statistical trajectories reach the desired final
state at some time tk. Mathematically speaking, we want to find �mo

such thatE���tk; xo 
 �mo; to�� 	 xf. In general we note that time is
a free parameter in this problem (i.e., tk does not have to be tf), and
hence, we solve to minimize the magnitude of �m�tk�with respect to
the final state. This is a rather counter intuitive method because we
deterministically aim for a different state than the target. We call this
trajectory the statistically correct trajectory and the goal is to find
�mo satisfying �m�tk� 	 E���tk; xo 
 �mo; to�� � xf 	 0.

For an initial Gaussian boundary condition, the mean trajectory
can be represented as a power series in the initial mean �mo and
covariance Po using Eq. (62). For example, the 3rd order STT-
propagated mean can be analytically stated as

�mi�tk� 	
X3
p	1

1

p!
�i;k1 ���kpE

h
�xok1 � � � �xokp

i
(66)

	�i;a�m
o
a 


1

2!
�i;ab

�
�mo

a�m
o
b 
Po

ab

�

 1

3!
�i;abc

�
�mo

a�m
o
b�m

o
c


 �mo
aP

o
bc 
 �mo

bP
o
ac 
 �mo

cP
o
ab

�
(67)

To solve for the necessary initial state, we must set �mi�tk� 	 0 and
solve the resulting equation for the initial mean �mo

i as a function of
time tk. The solution to this problem can be found via an iterative
process such as Newton’s method, that is,

�m�to�i
1 	 �m�to�i �
	
@��m�tk��
@��m�to��


�1����
�m	�mi

��m�tk; �m�to�i�

(68)

with an initial guess of

�m�to�i 	��1�m�tf� (69)

where we carry out the iteration until the correction is sufficiently
small. We note that if we fix the final time (i.e., tk 	 tf), a solution
exists for the cases with sufficiently small initial uncertainties. After
solving for �mo, the statistically correct initial condition is xo 
 �mo

for the given initial covariance matrix. As the orbit covariance
becomes small, the solution to the nonlinear problem converges to
the solution of the linear problem in Eq. (69). As the initial
covariance becomes large, we may require additional terms in the
series expansion.

Nonlinear Statistical Targeting

As an extension of the statistically correct trajectory, we can
design a nonlinear statistical correction maneuver using a similar
approach. In this paper, we focus on position targeting based on a
single impulsivemaneuver; however, the result can be generalized to

desired 
target

deviated 
trajectory if 
initial mean 
is zero

reference 
trajectory

statistically 
correct 
trajectory

o
  

x( t  )o
  

x( t  )f
  

Fig. 2 Illustration of the statistically correction trajectory.
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target the full state with two or more maneuvers. Figure 3 illustrates
the concept of the nonlinear statistical targeting method. In
particular, let rf 	 r�tf� be the fixed target position and vf 	 v�tf�
be the velocity vector, which can vary. We want to design a
maneuver �Vk such that E��r�tf; rk 
 �mk

r ; v
k 
 �mk

v

�Vk; t

k�� 	 rf, where �r represents the solution flow of the position
components. In other words, we solve for �Vk such that
�mr�tf� 	 0, which can be stated analytically similar to Eq. (62).We
note that i 2 f1; . . . ; n=2g because only the position mean is needed.

When we consider the first-order STT (i.e., conventional linear
targeting) we are solving for the �Vk that satisfies,

�mr�tf� 	�rr�tf; tk��mr�tk� 
�rv�tf; tk���mv�tk� 
�Vk� 	 0

(70)

where �’s are the usual state transition matrices mapping the
deviation from tk to tf. Solving for �Vk yields the linear correction
maneuver

�Vk 	���1
rv �rr�mr�tk� � �mv�tk� (71)

With this linear correction, the deviated position is deterministically
solved to be zero [(i.e., �r�tf� 	 0]. However, we know that the true
trajectory will miss the desired target (depending on the associated
uncertainties at tk, transit period tf � tk, system nonlinearity, etc.)
and that this deviation may be significant.

As in the statistically correct trajectory case, the correction
maneuver �Vk can be computed via an iterative process as in the
statistically correct trajectory case. Assuming that the deviated mean
is computed using an mth-order STT solution, only one correction
maneuver is required to hit the desired target in a statistical sense. In
terms of �Vk cost, the linear targeting method predicts that it is
usually better to perform correctionmaneuvers early in the trajectory,
because the cost is smaller. This yields a tradeoff, however, between
the final deviation and the�Vk cost (i.e., if a maneuver is performed
earlier the statistical trajectory deviates more). Using the nonlinear
method, we will always achieve (in a statistical sense) zero for the
final deviated position mean, and later examples show that in most
cases there is an optimal location (minimum �Vk) to perform the
correction maneuver.

Discussion

Although, in theory, nonlinear statistical targeting provides a
maneuver that is more realistic and accurate than the linear theory,
there are practical, as well as fundamental, problems that must be
discussed before we present results. First we note that the nonlinear
statistical targeting depends on statistical knowledge about the epoch
state whereas the linear correction maneuver is independent of the
statistics, and hence, there is only one maneuver (assumed
impulsive) to solve for in the linear targeting problem. The statistical
results of the linear maneuver are then checked by making Monte
Carlo runs to ensure that the spacecraft resides within the necessary
error bound at the target, which is often carried out based on larger-
than-estimated initial uncertainties so that a more conservative
distribution can be treated at the target. However, we must keep in
mind that statistical navigation data are additional sources of
information we have about the trajectory, and that the linear
correction completely ignores this information in the design process.

If the navigation data are extremely accurate and if the system
behaves linearly, both correctionmaneuvers are essentially the same;

however, there are usually significant levels of uncertainties
associated at an epoch and the two results will then be different. A
practical importance of the nonlinear method is that the number of
maneuvers can be reduced when the nonlinear correction is used
because the spacecraft will more likely lie within the necessary
confidence region for a longer period. An obvious question one may
ask is, what if the navigation data are perceived to be too accurate, so
that the uncertainties were doubled (e.g., 1-	 to 2-	), or there are
other initial distributions given from different navigation sources.
When the uncertainties are increased or changed, the linearmaneuver
still needs to be checked using the Monte Carlo simulation. This
indicates that both methods are, in a way, using the navigation data,
but the nonlinear statistical targeting includes the navigation data in
the maneuver design process. If there are initial distributions from
different navigation sources, it will be the maneuver designer’s
decision to choose which navigation data are to be used.

Examples

In this section,we present several examples based on the two-body
and Hill three-body body problems. The two-body motion is based
on an Earth-to-Moon Hohmann transfer and the Hill three-body
model is on the Jupiter–Europa system.

Two-Body Problem

The governing equations of motion for the planar two-body
problem [13] are given as

�x	���
r3

x (72)

�y	���
r3

y (73)

Figure 4 shows a Hohmann transfer from near Earth (20,000 km) to
the moon (384,400 km). The orbit is propagated for the transfer
period (�5:24 days) and the initial statistics are assumed to be zero
meanwith position uncertainty of 100 km and velocity uncertainty of
0:1 m=s. When computing �, eight sample points corresponding to
the eigenvectors of the initial error ellipsoid are considered. Table 1
shows the local nonlinearity index. The result shows that the series is
convergent and the second order solution provides results superior to
the first-order case, as predicted by the local nonlinearity index.
Figure 5 shows the propagated mean and 1-	 ellipsoid plotted with
respect to the target state (i.e., apoapsis)where theMonteCarlo result
is based on the ensemble of 106 sample points. The result shows that
the second and higher-order solutions provide a far more accurate
estimate of the mean and the dispersion of the samples
(i.e., projection of the covariance matrix) than the linear (first-
order) solution.

In this two-body case,we assume that the 3rd order STT solution is
considered to be the true Monte Carlo solution, and thus, the �Vk

computed using the STT method gives the zero deviated position
mean. We first solve for the STT solutions of the entire Hohmann
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Fig. 3 Illustration of the nonlinear statistical targeting.
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transfer (to to tf) and compute the deviatedmean at some time tk.We
then resolve for the STT solutions from the deviated mean at tk to tf

and find the correction�Vk using Newton’s method. There are ways
to avoid integrating the STT solutions for each tk, such as using the
inverse solution of the STTs; however, this is not considered in this
study. At every instance of the deviated mean trajectory, the position
and velocity uncertainties are assumed to be 100 km and 0:1 m=s,
respectively, which is the same as the initial uncertainties. The first
plot in Fig. 6 shows the �Vk corrections computed using the linear
and nonlinear methods as function of the true anomaly applied along
the deviated mean trajectory. Both solutions become essentially the
same after �� 90 deg; indicating small nonlinearity for the later part
of the transfer. As expected, the linear solution �Vk grows as the
correction maneuver is made at a later time due to a larger deviation
in the mean trajectory. We note that there is an optimal (minimum
j�Vkj) place to perform a correction maneuver that targets the
positionmean. The second and third plots in Fig. 6 show the deviated
position and velocity means at the target. The nonlinear deviated
position is not shown because it is zero by definition. When the
correction maneuver is made at an early stage of the trajectory using
the linear theory, the positionmeanmay deviate quite a bit at thefinal
target. For the deviation in the velocity mean, the difference between
the linear and nonlinear solutions is very small.

Hill Three-Body Problem

The governing equations of motion for the planar Hill three-body
problem in nondimensional form are given as [11]

�x	 2 _y � x

r3

 3x (74)

�y	�2_x � y

r3
(75)

The units can be dimensionalized by using the length scale of
��E=!

2�1=3 and time scale of (1=!). The reference trajectory in
nondimensional coordinates is shown in Fig. 7, where the final
position is located at a periapsis. The initial conditions used are

r �to� 	 0:69010031015662 �0:06716709529872� �
(76)

v �to� 	 �0:11045639526249 0:03184084790390
� �

(77)

which is slight below the L2 point with Jacobi integral value of
�2:15. Moreover, the initial state is assumed to have a zero mean
with position error of 10 km (5:1 � 10�4 in normalized unit) and
velocity error of 0:1 m=s (2:5 � 10�4 in normalized unit). The local
nonlinearity index given in Table 1 shows that the fourth order
solution provides accuracy better than 10% error. The level of
accuracy can be improved when a different final time is considered
because periapsis is the state with the strongest nonlinearity. In
Fig. 8, as in the two-body case, theMonte Carlo result is based on an
ensemble of 106 initial samples. It is clear that the higher-order
solution provides a superior result as compared with the linear case.
We can see this from the location of the deviated mean and the
dispersion of the Monte Carlo samples.

Similar to the two-body case, the 4th order STT-solution is
considered to be the true Monte Carlo solution and we assume the
mean trajectory has uncertainties that are the same as the initial state,
that is, 10 km for the position components and 0:1 m=s for the
velocity components. Thefirst plot in Fig. 9 shows the�Vk applied at
tk that are solved using both the linear and nonlinear methods. The
correctionmaneuvers are plotted as functions of time andwe observe
small nonlinearity from tk � 15 h onwards. In this case, however,
�Vk fluctuates around tk 	 4 h in both cases, unlike the two-body
case. This is due to a sudden change in the velocity direction, and
hence, the system nonlinearity is varied. There is also an optimal
j�Vkj, which occurs around tk 	 15 h. The second and third plots in
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Fig. 6 Computed �Vk using the linear and nonlinear methods (first

plot) and deviated position and velocity means at the target (second and

third plots).
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Table 1 Level of higher-order effect

�m Two-body Hill three-body

�1 1:06 3:57
�2 0:04 0:29
�3 0:007 0:28
�4 0:001 0:06
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Fig. 9 show the deviated position and velocity means. As in the
two-body case, when the correction maneuver is made at an early
stage of the trajectory using the linear theory, the position mean may
deviate noticeably. The overall difference between the linear and
nonlinearly computed velocitymean is very small. A highfluctuation
in the nonlinearly solved �mv�tf� is due to the higher correction
maneuvers in that time frame.

Discussion

Several important observations can be made from the previous
examples. The first observation is that the linear (first-order) solution
captures the semimajor axis of the true covariance plot and the
semiminor axis depends on the deviated mean. Second is that the
propagated linear mean (i.e., reference state) lies inside the true
covariance projection. As a result the nonlinear (or higher order)
uncertainty propagation provides amore conservative estimate of the
future statistics. This is important because a more realistic error
bound can be computed.

Conclusion

In this study, we have developed an analytic expression of a
nonlinear trajectory solution by solving for the higher-order state

transition tensors that describe the localized nonlinearmotion about a
nominal trajectory. We then discussed a fundamental property of the
uncertainty propagation by proving the integral invariance of the
probability density function via solutions of the Fokker–Planck
equations for diffusionless systems. Also presented is the relation
between the phase volume and the probability density function,
because they actually possess the same statistical information, but are
represented in different ways. Applying the nonlinear state
propagation and the integral invariance of the probability density
function, we have derived an analytic representation of the nonlinear
uncertainty propagation and have shown that a sufficient order of
state transition tensor approach can be used to replace Monte Carlo
simulations with a semianalytical method. This semianalytical
method also enables us to introduce the concept of the statistically
correct trajectory and its practical application, nonlinear statistical
targeting. Nonlinear statistical targeting allows one to use the
statistical property of the trajectory in the maneuver design process,
and thus, provides a statistically more accurate solution. When the
initial uncertainties are negligibly small, the nonlinear method
essentially becomes the linear solution; however, when there are
sufficiently large initial uncertainties the solution gives the most
probable maneuver according to the probability theory. The results
from the two-body and Hill three-body examples show that there
may exist an optimal place to perform a correctionmaneuver, a result
that is not possible using the linear method.
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Fig. 9 Computed �Vk using the linear and nonlinear methods (first
plot) and deviated position and velocity means at the target (second and
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