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Abstract-In this paper, we describe an algorithm for finding
the exact, nonlinear, maximum likelihood (ML) estimators for the
parameters of an autoregressive time series. We demonstrate that
the ML normal equations can be written as an interdependent
set of cubic and quadratic equations in the AR polynomial
coefficients. We present an algorithm that algebraically solves
this set of nonlinear equations for low-order problems. For high
order problems, we describe iterative algorithms for obtaining a
ML solution.

I. INTRODUCTION

I
N this paper, we derive a new algorithm for computing

maximum likelihood (ML) estimators of the parameters

that characterize a stationary Gaussian autoregressive time

series. The derivation is based on the Gohberg-Semencul

formula for the inverse of a Toeplitz matrix. Our key result

is a set of equations we have labeled the normal equations

of maximum likelihood, to distinguish them from the nor

mal equations of linear prediction. The normal equations of

maximum likelihood are at most cubic in the autoregressive

parameters, whereas the normal equations of linear prediction

are, of course, linear. We present two approaches for solving

the nonlinear ML normal equations: an algebraically exact al

gorithm based on the properties of Sylvester resolvent matrices
and approximate solution by iterated map.

Any attempt to summarize the vast literature on autoregres

sive modeling, or identification of autoregressive time series,

would be futile. Nonetheless, by reviewing the main lines of

research over the past 70 years, we can establish the context

of the results in this paper.

With reference to Table I, we organize work on autoregres

sive (AR) modeling according to the criterion for identifica

tion, and the representation used to describe the AR model.

These are the columns and rows of Table I. Beginning in

column 1, we classify Burg's algorithm [4] for identifying

a sequence of reflection coefficients as a recursive linear pre

diction (RLP) technique that uses a Levinson recursion for the

sequence of approximating AR models. There have been, to

date, no other RLP algorithms based on other representations

of the AR time series. These classifications account for the

first column of the table.
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The literature cited in column 2 has the common objective

of minimizing prediction error variance and is classified as

linear prediction (LP). The work of Yule [21], Walker [20],

and Durbin [8] is classified as linear prediction (LP), using

a Toeplitz representation for the estimated correlation matrix.

Actually, the work of Durbin belongs to two classifications,

because it advocates the use of the Levinson recursions for

the efficient solution of the normal equations. The work of

Morf, et aZ. [15], LeRoux and Gueguen [13], Friedlander et

a!. [9], and Demeure and Scharf [6] is classified as LP, with a

Levinson representation for the inverse correlation matrix. This

work provides fast algorithms for solving the normal equations

of linear prediction when the estimated correlation matrix is

close to Toeplitz. These classifications account for the second

column of the table.

In column 3, the work of Kay [12] is difficult to clas

sify because it uses two representations for the AR time

series. That is, it uses a Gohberg-Semencul characterization

of R -1, but it uses a Levinson formula to represent the AR

model in the recursive maximization scheme. We classify

this work as recursive maximum likelihood (RML), with a

Gohberg-Semencul formula for the inverse correlation matrix.

The work of Vis and Scharf [19] is classified as RML with a
Levinson formula for the representation of R -1 and the order

increasing AR models. It clarifies the connection between

Kay's work on RML and Burg's work on RLP, and completes

the classification of the literature in the third column of the

table.

In column 4, the theory of exact maximum likelihood

(ML) estimation of AR parameters begins with the work of

Schweppe [18], although he provided no algorithms for the

maximization of likelihood. Akaike [1] and Ansley [2] did

provide such algorithms. This work is classified as ML, based

on a Markovian representation for the time series and its

correlation sequence.
The work of Morf et aZ. [16] provided a link between Mar

kovian representations and Levinson recursions, leading to the

formulas of Dugre et aZ. [7] for computing likelihood. Neither

[16] nor [7] contained formulas for maximizing likelihood.

The work of Kailath et aZ. [11], Box and Jenkins [3], and this

paper are classified as ML, based on the Gohberg-Semencul

formula for the inverse correlation matrix. No algorithms
were presented in [11] or [3] for maximizing likelihood. Our

contribution is to maximize likelihood by deriving a new set of

nonlinear normal equations, based on the Gohberg-Semencul

formula, and to present algorithms for solving them. The

work of Burg et a!. [5] is not exact ML because it used ML
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TABLE I
CLASSIFICATION OF ALGoRITHMS BY CRrrERrON AND REPRESENTATION OF R- I

Repr. for R, Criterion

R- I
, or A(z) RLP LP RML ML

Yule [21]

Toeplitz only NA Walker [20] NA Burg et al..[5]

Durbin [8]

Morf et at. [IS]

Levinson Burg [4]
LeRoux-Gueguen [13]

Vis-Scharf [19]
Morf et al. [16]

Friedlander et at. [9] Dugre et al. [7]

Demeure-Scharf [6]

Kailath et al. [11]

Gohberg-Semencul NA NA Kay [12] Box-Jenkins [3]

Mcwhorter-Scharf (22)

Schweppe [18]

Markovian NA NA NA Akiake [I]
Ansley [2]

to estimate a Toeplitz correlation matrix without assuming

a model for the time series. Approximate ML estimates of

the AR coefficients are then obtained by solving the normal

equations of linear prediction using the estimated correlation
matrix. .

This paper is organized as follows. In Section II, we use a

Gohberg-Semencul formula to derive a novel set of normal

equations in the AR coefficients. These normal equations

illuminate both the similarities and the differences between

linear prediction and exact maximum likelihood. In Section

III, we describe an algebraically exact algorithm for solving

the nonlinear normal equations of ML. Sections ill-A and ill

B describe the algorithm for first- and second-order processes.

Section III-C extends the algebraically exact algorithm to

systems of arbitrary order. Section III-D is concerned with

the computational aspects of this algorithm. In Section IV

we briefly describe some iterative procedures for solving

the normal equations derived in Section II. These iterative

algorithms differ from those of Burg and Kay in that we are

iteratively solving the exact ML normal equations and not

iteratively maximizing an approximation to the true likelihood

function.

II. NORMAL EQUATIONS

Let Y = [Yo Y1 ... YN_1]T be a vector of data from an

autoregressive (AR) time series. That is, assume the time series

is synthesized according to the model of Fig. 1. The wide

sense stationary time series {Ut} is modeled as a zero-mean

white Gaussian noise process of variance (J'2. The pth-order
polynomial A(z) = 1 + alz-1+ ... + ap.z-P is assumed to be

monic and minimum phase with real-valued coefficients. These

assumptions imply that the snapshot y is distributed N[O,R]

where R E R N x N is the symmetric Toeplitz correlation

matrix

1

A(z)

Fig. I. Synthesis model for an AR time series.

equations for the ML estimators of the input noise variance

(J'2 and the AR coefficients {adf.
Assume that we are given M statistically independent

snapshotsY = [Y1 Y2 ... YM] of a time series synthesized

as in Fig. 1. We assume that each snapshot has N elements.

The log-likelihood function for the data can be written as

MN (M 1 ~ T -1
L = --2- ln 21f) - 2 1n( IR I) -r- 2' L..Yi R s,

i=l

= _ MN In(21f) _ M In(IRI) _ M tr{R-1S}
2 2 2

where

is the sample correlation matrix. The correlation matrix, R,

is completely described by the AR coefficients and the input

noise variance. The Gohberg-Semencul inversion formulas,

described in [10], provide one way to represent the correlation

matrix in terms of the AR coefficients and noise variance; The

key Gohberg-Semencul formula in our derivation is

11"
R-1 = _Q-1 = -(FFT _ GGT ) (1)

(J'2 (J'2

where F and G are the N x N lower triangular Toeplitz

matrices

We denote any (p + 1) x (p + 1) block on the diagonal of R

by R p • In the remainder of this section we derive the normal

R=

T1

r~-'lTO

T1

T1 TO

1 0

a1 1

p

F = LaiZi = ao =1,

i=O
ap

0 ap a1 1
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o o YN-l YN-2 YN-p

p

G = LaiZN-i =
i=l

Y2 = YN-2

YN-l

o

For multiple snapshots, Rp(Y) can be defined by (3). Equiv

alently, Rp(Y) can be built by using the M snapshots to

construct M matrices with the structure defined in (5) and

then forming their average.

Equation (4) has been derived by Kay [12] and is funda

mental in the development of the RML algorithm described

in his paper. The matrix Rp(Y) is also important in both

the computation and intuitive understanding of our algorithm.

Accordingly, we now discuss two important properties of

~(Y).
Let B(z) = 1 + b1z-

1 + ... + bpz-P be any pth-order

minimum phase monic polynomial and b = [1 b1 ..• bpjT the

corresponding vector of polynomial coefficients. The deriva

tion of (4) implies that

bT~(Y)b ~ 0

for all Y = [Yl ... YM] and all minimum phase polynomials

of order less than p + 1. To demonstrate this, create a non

negative definite Toeplitz correlation matrix, R B , by passing

white noise through the AR system 1/B (z). The derivation of

(4) can be duplicated, substituting B(z) for A(z), to arrive at

M

'""" T -1 T AL.. Yi R B s. = b Rp(Y)b ~ O.
i=1

This property is important because R p(Y) is not necessarily

nonnegative definite [12]. As we will soon show, the maximum

likelihood estimate of (J2 is the quadratic term aTRp(Y)a.

The above property indicates that if the estimated polynomial

A(z) is minimum phase, then the estimated noise variance

will be positive.

Despite the notation, R p(Y) is not, in general, a good

estimator of the (p + 1) x (p + 1) correlation matrix R p •

One deficiency of Rp(Y) is that it is not guaranteed to be

nonnegative definite. Moreover, we now show that Rp(Y) is

a biased estimator of Rp. From (3), it follows that

E{Tij(Y)} = ~tr{ZfE{S}Zj}- ~tr{Z~_iE{S}ZN-j}

1 T 1 { T }= Ntr{Zi RZ j } - Ntr ZN_iRZN-j. (6)

After some algebra, we obtain

E{Rp(Y)} = R p - B

(2)

(5)

(4)

o

YN-l

Zo = I;

o 1

= [8(k,i - j)]i,j;

Yo Yl
Yl Y2

Y 1 = YN-p-l YN-p

YN-2 YN-l
YN-l

tr{R- 1S} = ~tr{Q-1S} = ~tr{[FFT - GGT]S}
(J (J
1 1

= 2"tr{F
TSF}

- 2"tr{G
TSG}

(J (J

= :2 tr[t aizr] S[t ajZ j]
>=0 J=O

- :2tr[t aiZ~_i] S [tajZN-j]
>=0 J=O

1 p p

= (J2 LLaiaj[tr{ZfSZj}
i=O j=O

- tr{Z~_iSZN-j}].

The N x N shift matrices Zk are defined by

That is, Zk is zero except for ones on its kth sub-diagonal.

Observe that the data dependent term of the log-likelihood

function can be written as

Define the vector of AR coefficients a = [1 al '" ap]T and

the (p+ 1) x (p+ 1) matrix Rp(Y) = [Tij(Y)] where

Tij(Y) = ~[tr{ZfSZj}-tr{Z~_iSZN-j}]' (3)

For a single snapshot (M = 1), the matrix Rp(Y) has the

form

Then, (2), in conjunction with (3), implies

-1 N T A

tr{R S} = 2"a Rp(Y)a.(J

where the Hankel matrix Y 1 and the Toeplitz matrix Y 2 are

YP
Yp+!
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MN MN T'
---2 +--4a Rp(Y)a=O.

2er 2er

Solving this equation for er2 produces the maximum likelihood

estimate for er2

with respect to the unknown parameters. Here 8 = [1 0
... Of is the first column of the (p + 1) x (p + 1) identity

matrix. Differentiating (9) with respect to cr2 yields the normal

equation

(14)

(13)C~[n

From (12) and (6) through (8), it can be shown that the

(p + 1) x (p + 1) matrix C is equivalent to '

C:= N(Rp - B)

where Rp and B are defined in (7) and (8). The ML normal

equations can now be written as

o 2 T
-In(IQI) = --c· a
Ba, er2 '

o 2
-In(IQI) = --Ca.
8a er2

We are now in a position to derive the normal equations for

the ML estimators of the AR coefficients. The gradient of the

Lagrangian in (9) with respect to the vector a generates the

normal equations

M MN,
-Ca - -R (Y)a = A8
er2 er2 p

[
1 ' ] Acr

2

N C - Rp(Y) a =MN8.

and

The result of (11) and the definitions of (12) and (13) can be

used to write

and

(9)

2pro

prp

(p + l)rp - l

(p + 2)rp - 2 . (8)

prp (p + l)rp _ l

o rl

rl 2ro

B = ~ 2r2 3rl
N

These equations indicate that Rp (Y) is a biased estimator of

R p , with bias B. This property is important for gaining an
intuitive understanding of our maximum likelihood algorithm.

We address this topic in the later stages of this section.

At this point, we have established that the log-likelihood

function; ignoring irrelevant constants, is

L = _MN In(er2) _ M In(IQI) _ MNaT~(Y)a.
2 2 2er2

The normal equations of maximum likelihood can be derived

by differentiating the Lagrangian

;: = _MN In(er2 ) _ M In(IQI)
2 2

_ MN aTR (Y)a---; A(aT8 -1)
2er2 p

Define D = diag{O, 1, 2,'" ,p}. Again, the relation Rpa =
er28 can be invoked to establish

1
Ba = N(DRp + RpD)a

1· 2 1
= N D 8er + N RpD a

1
= N R pad

Recall that for an AR time series, Rpa = er28. Therefore,
(15) can be reduced to

[~(Y) + B]a = er
2 (1-, ~N) 8. (16)

The important nonlinear te~ in these normal equations is

1 r~ ;:0 ::: (p:;frp-1J
Ba= - . a.N' .

p~p (p + i)rp_l 2pro

To simplify this expression, note that the bias matrix has the

equivalent representation

(15)(10)

Define the row vector c[ = [CiD Cil '" Cip] and the matrix
C where

OQ"-l = ~(FFT _ GGT)
Ba, Ba;

= ZiFT + FZ[ - ZN_iGT - GZ%_i'

These results imply

nO In(IQI) = -2tr{Q[ZiFT - ZN_iGT
]}

oo;

2 T T
= -2tr{R[ZiF - ZN-i G ]}

o
p

= --; I:>jtr{R[ZiZJ - ZN-iZ%_j]}'
er j=O

(11)

Therefore, if our estimate of A(z) is minimum phase, the

maximum likelihood estimate of er2 will be nonnegative.
To find the ML estimator of the AR coefficients, first

observe that

O:i In(IQI) = tr{ Q-l ~ ~ } = -tr{ Q O~~l }

Cij = tr{R[ZiZJ - ZN-iZ%_j]}

= tr{Z;,RZd - tr{Z%_jRZN-d (12)

and
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where ad = Da = [0 al 2a2 '" papjT. The normal equations

can now be reduced to

If we define the (p + 1) x (p + 1) analogs of F and G we

arrive at

(17) (22)

or

(23)

(24)

3 2((N-2)rOI )
p(X)lx=al = x + x (N _ l)r11

_x(Nr11+roo)_ NrOl I =0.
(N - l)r11 (N - l)r11 x=al

The normal equations of (22) are then

[
T TTl TJ' ( _FpFp - GpG p - aa + Nada R p Y)a - 0

[
0 0 ] ,
N (l-ai( NNI ) ) Rp(Y)a=O.

The first element of this vector equation is satisfied for all a

and Rp(Y). That is, the first row of Q;I - aa" + I/NadaT

is zero for all pth-order polynomials A(z). We are left with p

equations that must be solved for the p AR coefficients {adf.
We will show in the next section that the normal equations

can be written as an interdependent set of cubic and quadratic

equations in the AR coefficients. We also present algorithms

to solve this set of equations.

We are left with the relevant equation

Kay [12] derived a method to approximately maximize like

lihood .by estimating a series of reflection coefficients. For
AR processes of order two or higher, the method is an

approximation to exact maximum likelihood. However for a

first-order process, Kay's method should produce the exact ML

estimate of al. The result of (24) corresponds to the first-order

normal equation introduced by Kay. The polynomial of (24)

has either one real and two complex conjugate solutions or

III. EXACT ALGORITHMS

In this section, we present an algorithm for solving the

normal equations of (22). This algorithm is said to be exact

because we characterize the solutions for the AR coefficients as

roots of polynomials. In practice there will be errors associated

with any root finding algorithm so the results will be exact

only in an algebraic sense. We introduce the algorithm for

first- and second-order problems and then describe how it can

be generalized for higher-order systems.

A. First-Order Example

Assume that the polynomial A(z) = 1+aIz- 1 is restricted

to be first-order. For the first-order case ad = [0 al]T and

If we let rij denote the ijth element of Rp(Y), we have the

equivalent polynomial expression

(18)

(19)

or

aTRp(Y)a + ~aTRpad = (7"2 (1 - ~N)
2 (7"2 T 2 ( >.)

(7" + N 8 ad = (7" 1 - MN

(7"2 = (7"2 ( 1 - M~ ) =} >. = O.

The ML norrnal equations are therefore

[Rp(Y) + B]a = (7"2{)

The value of the Lagrange multiplier is easily determined from

(17)

These forms of the ML normal equations provide an intuitive

understanding of exact maximum likelihood estimation. Note

that E{Rp(Y) +B} = R p. Thus, in solving the maximum

likelihood problem, we are trying to estimate a set of AR

coefficients that generate a bias matrix B to ameliorate the

deficiencies of Rp(Y) and satisfy the normal equations as

well.

Equation (18) also provides an intuitive connection between

the theory of exact maximum likelihood and the least squares

theory of linear prediction. In the least squares theory, the

normal equations are RLpa = (7"28 where R LP is an estimate

of the correlation matrix R p • Thus, linear prediction and exact

maximum likelihood share a common structure in their respec

tive normal equations. Linear prediction builds a "reasonable"

quadratic estimate of the correlation matrix solely from the

data and then finds the optimal whitening polynomial. Whereas

exact maximum likelihood builds a quadratic, but deficient,

estimate of the correlation matrix and simultaneously tries to

offset the deficiencies and whiten the "corrected" estimate of

the correlation matrix.

In the remainder of this section we manipulate the ML

normal equations into a form that makes them amenable to

either exact or iterative solution. From (19) we write

Rp(Y)a + ~(7"2Qpad = (7"28

Q;IRp(Y)a + ~ad(7"2 = (7"2Q;1{) = aO"2. (20)

The matrix Qp is the (p + 1) x (p + 1) northwest block of

the matrix Q defined in the Gohberg-Semencul formula of

(1). It is simply the normalized representation for the Toeplitz

matrix Rr . Recall that our maximum likelihood estimate of

(7"2 is aTRp(Y)a. Therefore (20) is equivalent to

[Q;I _ aaT + ~adaT JRp(Y)a = O. (21)
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three real solutions. Kay has demonstrated that in either case

there will be at least one real solution satisfying lall < 1. This

root is the ML estimate of al.

The Sylvester resolvent matrix is also called a resultant matrix

by Heinig and Rost [10], It can be shown that the determinant

of the Sylvester resolvent matrix is

m

or explicitly by

To reiterate, the normal equations indicate that the polynomials

PI(x) and P2(X) share a common root at x = aI, provided the

coefficients are evaluated at the maximum likelihood solution

for a2. Therefore, the Sylvester resolvent matrix'for these two

polynomials must be singular at the ML solution for a2. This

fact can be exploited to obtain the following polynomial 'in a2

p,(y)I,~", ~ det(M) ~ to 1iy'I,~", ~ O. (27)

The coefficients bi} of the polynomial P3(Y) are functions

only of the data. In Section III-D we discuss some methods

for computing these coefficients. Any potential ML solution

for a2 must be a root of the ninth-order polynomial in (27),

The algorithm for the second-order case is then:

Exact Algorithm for a Second-Order AR Process

1) Form the matrix Rp(Y) using the time series data. Note

that the normal equations for the AR coefficients are

invariant to scaling of this matrix.

2) Compute the coefficients {ai(Y)}~ and {(3i(Y)}6 of the

polynomials PI(x ) and P2 (x) using (22).

3) Compute the polynomial P3 (y) using (27) or the tech

niques outlined in Section III-D.

4) Find all real roots of P3(Y) with magnitude less than

one. These are. the potential ML solutions, {a~i)}, for
the AR coefficient a2.

5) Substitute all potential ML solutions for a2 into (25) or

(26). The real roots of these equations are potential ML

solutions for al. To summarize, at this point we have

the potential ML solution pairs (a~i), a~i)) where both

coefficients are real and la~i) I < 1.

6) Discard all potential solution pairs that do not produce a

minimum phase AR polynomial A(z) = 1 + aii)z~1 +

a~i) z-2 and/or that do not satisfy both normal (25) and

(26). Usually only one pair of solutions will remain and

this is the ML solution for the AR coefficients. In the

numerical trials we have conducted, we have always

det(M) = b';;-, IT a((3k).

k=1

Thus, det (M) = 0 if and only if the polynomials a(x) and

b(x) share at least one root. It is this property that we will

exploit in the algorithm that follows.

The initial step in the algorithm for finding the ML estimates

of al and a2 is to construct the Sylvester resolvent matrix for

the polynomials defined in (25) and (26)

l
ao(y) al(Y) a2(Y) a3(Y) 0]

o ao(Y) al(Y) a2(Y) a3(Y)
M = (3o(Y) (31(Y) (32(Y) 0 0

o (3o(Y) (31(Y) (32(Y) 0

o 0 (3o(Y) (31(Y) (32(Y) y=a2

m

al - ala2( N;/)] R (Y)a = O.
1- a ~ ( N N 2 ) p

m

aO an

ao an 0

0

M=
ao an

bo bm

bo bm 0

0

bo bm

and define the vector 7/Jk(X) = [1 X x2 ... xk-IjT. The

Sylvester resolvent matrix, M, can be implicitly defined [17]

by

We can also express these equations as

b(x) = L bix
i = bm IT (x - (3i) bm i- 0

i=O i=1

The relevant normal equations can be written as

PI (X)lx=al = x3a3(a2)+x2a2(a2)+Xal (a2)+ao(a2)!x=a,

= 0 (25)

P2(x)lx=a, = x
2(32(a2) + x(3l(a2) + (30(a2)lx=a, = 0 (26)

n n

a(x) = Laixi =anIT(X-ai) ani-O
i=O i=1

where the coefficients {ai} and {(3i} are functions of a2 and

the observed data Rp (Y). To find the maximum likelihood

solution we must solve this interdependent set of equations.

One can interpret (25) and (26) as two polynomials PI(x) and

P2 (x), which share a root at x = al. It is this interpretation that

indicates that the properties of the Sylvester resolvent matrix

might be applicable in the solution of the normal equations. We

first describe the construction and properties of the Sylvester

resolvent matrix before solving (25) and (26).

Let a(x) and b(x) be the polynomials

B. Second-Order Example

In this subsection we assume that the polynomial A(z) =

1+alz- l +a2z-2 is restricted to be second-order. Under this

assumption ad = [0 al 2a2jT and
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obtained at least one minimum phase solution to the ML

normal equations. On occasion, if the number of data

points is small (N = 4,5), we have obtained multiple,

minimum phase, solutions to the ML normal equations.

In these cases, the ML solutions differ by only a small

amount. It may be that, theoretically, these solutions

are identical, but due to numerical inaccuracy we obtain

multiple, approximately equal, solutions.

This concludes our discussion of the exact ML algorithm for

the second-order example. In the next section we generalize

this algorithm for systems with arbitrary order.

C. Exact Algorithm for Higher-Order AR Processes

The general procedure for solving the ML normal equations

is a simple extension of the techniques presented in the

previous section. Recall that the variables were separated by

relying on the fact that two polynomials shared a common

root. The same idea applies in the general procedure. In the

following we present the generalized algorithm for a third

order system. The algorithm for a general pth-order system is

merely an extension of the procedure we present below.

For a third-order system, use the normal equations of (22)

to generate the three polynomials

Pl(a2) = a~a3 + a~a2 + a2al + ao = 0

P2(a2) = a~132 + a2131 + 130 = 0

P3(a2) =ah2 +a2/1 + ')'0 =0

where the coefficients {ai}, {13i}, and hi} are functions of

the AR coefficients al and a3 and the data. The formulas for

these coefficients can be derived from (22). Now, form two

Sylvester resolvent matrices

[~
al a2 a3

i']
ao al a2

M 1 = 130 131 132 0

0 130 131 132
0 0 130 131 132

[a,
al a2 a3

~ , ]
M'~f:

ao al a2

')'1 ')'2 0 o . (28)

')'0 ')'1 ')'2 0

0 ')'0 ')'1 ')'2

The normal equations imply that the polynomials PI (x) and

P2 (x) share a common root at a2. The same assertion is true

for Pl(X) and P3(X). The properties of the Sylvester resolvent

matrix can then be used to obtain the two polynomials

P4(al) = det(Mr) = ai"q + + al"l + "0 = 0 (29)

P5(al) = det(M2 ) = a~~r + + a16 + ~o = O. (30)

The coefficients {"i} and {~i} are now only functions of a3

and the data. These two equations indicate that the polynomials

P4(X) and P5(X) share a root at al. Therefore the Sylvester

Fig. 2. Resultant polynomial orders for second-order system.

PI : [ai ' ~ • a~ J
P4 : [ai ' .~ J

'z

Pz: [·i . ~ .•~ ]
[.L,.~ J

'1 P6 : [41
]

Ps :

Fig. 3. Resultant polynomial orders for third-order system.

resolvent matrix

"0 "q
"0 K,q 0

0

M 3=
"0 K,q

~O ~r

~O ~r 0

0

~O ~r

must be singular. This property can be exploited to determine

our last equation

where now the coefficients of this polynomial, {Ail, depend

exclusively on the data. The AR coefficient a3 must be a root

of the polynomial P6(x). The procedure is then to find all roots

of P6(x) that are real and have magnitude less than one. All

roots that satisfy these conditions are potential solutions for a3.

Potential solutions for al are the real roots of either P4 (x) or

P5 (x) with the coefficients of these polynomials formed from

the data and the potential solutions for a3. The solutions for

a2 can be found in a similar fashion from the polynomials

Pl(X), P2(X), or P3(X). This procedure generates a finite

number of potential solution sets for the AR coefficients. The

final step of the procedure is to eliminate all sets of solutions

that do not generate minimum phase A(z) and/or do not satisfy

all three normal equations. It is straightforward to extend this

procedure for systems of arbitrary order. In the following

section we describe procedures for constructing the coefficients

of the polynomials generated by this algorithm.

D. Computational Aspects

The algorithm described in the preceding section requires

the computation of a resultant or equivalently the determinant

of a Sylvester resolvent matrix. This calculation represents

the majority of the computational burden associated with this

algorithm. In this section, we discuss some techniques for

performing this computation.
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PI : [ a~ , ~ , a~ , ~
[ai ' ~ , a~ ]a

Z
P5 :

PZ: [ a~ , a~ , a~ , ~ al

Pg : [~, a~I]

a
2

P6 : [ ai ' ~ , a~ ]
a

3

P3 : [ a~ , ~ , a~ , al P9 : [~, a~I]

[ a~ , ~ , a~ ]
a

1
a
2

P7 :

P4 : [ai,a~,a~,~

P : [a46561.]
10

Fig. 4. Resultant polynomial orders for fourth-order system.

y~] ..
y~

r = V-TpV- 1
x y'

where

Again, this computation can be done efficiently by choosing

the {Xi} and {Yi} to be roots of unity. This technique can

be extended to higher-order problems by careful repeated
application of the Kronecker product operator. To use this

method it is necessary to know the orders of each coefficient

in the resultant polynomial. In Figs. 2-4, we list the order of

resultant polynomials for systems of order two through fOUL In

these figures the superscript on the AR coefficients indicates

the largest degree of the coefficient. It may appear that this

algorithm is intractable for systems of order four because the

final polynomial (in a4) has such large degree; However, we

know that la41 < 1 and that a4 must be real. This additional
information can make it possible to use this technique for

systems of order four. That is, it is only necessary to search for

real roots of PIO with modulus less than one. One can also use

an initial estimate of a4 (say from LP) and a Newton-Raphson

v, = r:a :,]

xZ x~

Then, r satisfies

det{M,(x"Yj)Hl x, ... X ll{J
or equivalently

p,("" a3) ~ dct{M, (aj, a,)} ~ [1", .,. ai]I' [:; ]

where the matrix r depends only on the data Rp (y). Let al

and a3 be variable to obtain

This technique can be extended to higher-order problems.

Consider the polynomial of (29) that arose in the third-order

case. The coefficients {K;i}6 are functions ofthe data and a3.

In fact we can write this polynomial as

~~] [~~] [~:~~~~~~~?]
... ;E ~9 = det{~(Y9)} = c.

(32)

Here, M(Yi) denotes the matrix M with its elements formed

using Y = Yi· If the {Yd5 are chosen to be roots of unity, then

(32) can be solved efficiently using an FFT algorithm.

The highest degree of computational flexibility is main

tained if we obtain the coefficients of the resultant polynomials

assuming that the elements of Rp (Y) are variables. In this

case the resultant computation has to be performed only once

(offline). The data are then used to compute ~(Y) and

the elements of this matrix can be used to directly form the

coefficients of the polynomials. For example, in the second

order case, the coefficients of the ninth-order polynomial in

(27) depend exclusively on the data through ~(Y). The

resultant operation, which forms this polynomial, can be

computed once to obtain maps from Rp (Y) to the coefficients

hd8. The resultant computation in this case usually requires

access to a symbolic math software package. However, it

has been our experience that these packages are viable for

computing these resultants only if the dimensions of the two

polynomials are relatively small. Assuming ~(Y) variable,

the symbolic math package we used was easily able to

compute the resultants of (27) (for the second-order case) and

the resultants of (29) and (30) (third-order case). However,

symbolically computing the resultant of (31) was beyond the

capabilities of our computer and/or software package. We

therefore use this technique to compute the resultants for

polynomials of small degree and use the method described

below for computing the resultants of polynomials with larger

degree.

In this section, we assume that the data have been used

to compute numerical values for the elements of ~ (Y).
The technique described in this section is easily understood

by way of example. Consider the polynomial of (27). If this

polynomial was evaluated at 10 different values of y and we

knew the result, then the coefficients of the polynomials could

be easily found by solving a linear equation. But we know the

result of the polynomial evaluated at some number Y = Yi.

It is simply the determinant of the corresponding Sylvester
resolvent matrix M, where the elements of M are evaluated

at Y = Yi. Note that there is no symbolic computation involved

in this determinant. The coefficients hd8 can be obtained by

solving the following linear equation

[

I Yo Y5
I YI YI
· . .· . .· . .

1 Y9 y~
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procedure to obtain the ML value for a4. In this case it is not

necessary to root the polynomial PlO.

This algorithm relies on the computation of the determinant

of a Sylvester resolvent matrix (for example to form c or 4'). In

the following we summarize a recursive procedure derived in

[14] for computing these determinants. Let a(x) = L:aixi be

a polynomial of degree n. Let b(x) =L:bixi be a polynomial

of degree m, and assume that n ~ m. Let M denote the

Sylvester resolvent matrix for a(x) and b(x) and define the

resultant R[a(x), b(x)] = det{M}. Then it can be shown

that R[a(x), b(x)] = bmR[c(x), b(x)] where the polynomial
c(x) = a(x) - x(n-m)(an/bm)b(x) now has, at most, degree

n - 1. This procedure can be applied recursively to compute

the determinants.

IV. ITERATIVE ALGORITHMS

In the previous. section we introduced an algorithm for

"exactly" computing the maximum likelihood estimates of the

AR coefficients. The primary disadvantage of this algorithm is

that one must accurately find the roots of a polynomial whose

degree increases exponentially with respect to system order.

In this section, we summarize some iterative algorithms that,

theoretically, can be used to solve the ML normal equations

for AR systems of arbitrary size. These algorithms are used to

iteratively solve the exact ML normal equations. Thus, they

differ from the recursive algorithms of Burg and Kay, which

iteratively maximize an approximation of the true likelihood.

A. Iterative Algorithm for Coupled Systems

In this section, we describe an iterative algorithm that can be

extended inductively to systems of arbitrary order. The idea

behind the iterative procedure is to decompose a pth-order

estimation problem into a (p - l)th-order problem coupled

with a first-order problem. In the following we describe this

procedure for a second-order AR process and then briefly

discuss an inductive extension of the algorithm to higher-order

processes.

Recall from Section III-B that the normal equations for the

AR coefficients of a second-order process can be written as

the following polynomials in al

Pl(x)lx=a,

= x3a3(a2) + x2a2(a2) + xal(a2) + ao(a2)lx=a, =a
(33)

P2(x)lx=a,

= x2!h(a2) + x(3l(a2) + (3o(a2)lx=a, = o. (34)

These normal equations can also be written as polynomials

in a2:

ih(x)lx=ao

= x3c3(al) + x2c2(ad + xCl(ad + co(al)lx=a2 = a
(35)

P2(x)lx=a2

= x3d
3(ad + x

2d
2(ad + xdl(ad + do(adlx=a2 = o.

(36)

In the following, we describe an iterative procedure for solving

these ML normal equations. For a second-order AR process,

the "exact" algorithm described in Section III-B is easily im

plemented and this iterative algorithm is not really necessary.

However, this iterative algorithm can be used as an alternative

to the exact procedure. The main intent of this section is to

provide intuition about the general Iterative procedure we will

present in the later stages of this section.

The premise of the iterative algorithm is that, for fixed a2,

(33) can be easily solved for the AR coefficient al. Similarly,

for fixed al, (36) can be easily solved for the AR coefficient

a2. The algorithm alternately fixes al or a2 and then obtains a

new value for the "free" variable by solving only one normal

equation. In essence, this procedure decomposes a second

order AR problem into two coupled first-order problems.

Fig. 5 illustrates this procedure. For fixed a2, the first normal

(33) can be used to generate three potential solutions for the

AR coefficient al. We discard any potential solutions that

are not real-valued and/or that do not generate a minimum

phase AR polynomial A(z) = I + alz- l + a2z-2. Typically,

only one value will satisfy these criteria. If we vary a2, this

procedure can be used to generate a locus of points in R2

that are potential maximum likelihood solutions. Denote this

locus of points by pI. Similarly, we can vary al and use the

second normal (36) to generate a different locus of potential

ML solutions for a2. Denote this locus of potential solutions

by p2. In Fig. 5, we plot these loci for a typical time series data

set. The time series was constructed using the AR coefficients

al = -2(.95)cos(7f/4) ~ -1.34 and a2 = (.95)2 ~ 0.9.

The input noise variance was set to (72 = I and N = 5 data

points were used to form Rp(Y). The pI and p2 loci must

intersect at the maximum likelihood solution. Note that it is not

necessary to explicitly compute these loci. They are included

in the figure for illustrative purposes only. The curve labeled

"Itr. locus" is the trajectory of the AR coefficients generated by

iterating between the first and second normal equations. In this

example, the initial values of the AR coefficients were obtained

from the correlation method of linear prediction. Note that the

algorithm converges rapidly for this data set. This convergence

characteristic is typical for this algorithm even when the data

record is small. Also note that if the initialization values are

not "sufficiently" close to the ML solution, then the algorithm

may not converge or it may converge to a nonminimum phase

solution.

It is simple to inductively extend this algorithm to systems

of higher-order. Consider this procedure for a third-order

system. Let the normal equation polynomials Pl (al' a2; a3)

and P2(al, a2; a3) comprise system S2 coupled with poly

nomial P3(a3; e l , a2) as system S1. The iterative algorithm

works as follows. Obtain an initial estimate, ii3 , using for

example linear prediction. Use this estimate and system S2

(which is nOW effectively second-order) to obtain estimates iil
and ii2. Note that the algorithm for the system S2 must be

slightly modified from the algorithm for a true second-order

system. That is, we no longer require Iii21 < I, as this is no

longer a sufficient condition for stability. Instead we require

that iil and ii2 are such that the third-order AR polynomial

A(z) = I + iilz- l + ii2 z- 2 + ii3 z- 3 be stable. The ite~ation
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V. CONCLUSION

In this paper, we have presented a new algorithm for

obtaining the ML estimators of autoregressive time series

parameters. This was accomplished by deriving an original set

of nonlinear normal equations in the AR coefficients. These

normal equations .illustrate both the points of contact •and

divergence between the theory of least squares and the theory

of maximum likelihood for time series problems. We have

also described an algorithm that solves the nonlinear normal

equations for low-order systems. The algorithm consists of

finding the roots of a series of polynomials, and choosing the

appropriate AR coefficients from this finite set of roots. We

have also described some iterative procedures that can be used

to solve the ML normal equations.
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(37)

where the matrix H = [h, .,. hpj has columns

where all quantities are evaluated at a = ~. In practice, the

map of (37) is iterated with a scaled adjustment term qHi1Ei.

Each iteration begins with q = 1, or with a full correction. If

the new value ai+l generates an error vector Ei+l with larger

norm than the previous error Ei, then q is reduced by a factor

of two and the iteration is performed again.

Here, ek is the kth column of the (p + 1) X (p + 1) identity
matrix. It is also apparent that

where

The Newton-Raphson map is then given by

B. Newton-Raphson Maps

Let ai = [1 BfF be the value of the AR coefficients at the

ith iteration. Define .the error vector at the ith iteration to be

is continued by using 0,1 and 0,2 and system Sl to obtain a

new estimate for a3. This procedure is continued until the

estimates of the coefficients converge.
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