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Abstract. The problem of tsunami wave generation by vari-

able meteo-conditions is discussed. The simplified linear and

nonlinear shallow water models are derived, and their ana-

lytical solutions for a basin of constant depth are discussed.

The shallow-water model describes well the properties of the

generated tsunami waves for all regimes, except the reso-

nance case. The nonlinear-dispersive model based on the

forced Korteweg-de Vries equation is developed to describe

the resonant mechanism of the tsunami wave generation by

the atmospheric disturbances moving with near-critical speed

(long wave speed). Some analytical solutions of the nonlin-

ear dispersive model are obtained. They illustrate the dif-

ferent regimes of soliton generation and the focusing of fre-

quency modulated wave packets.

1 Introduction

Tsunami waves may be generated by underwater earth-

quakes, submarine landslides, rockslides, volcano explosions

and rapid anomalous changes in the atmospheric pressure

over the sea (Murty, 1977; Pelinovsky, 1996). For a tsunami

to arise, it is necessary that the water surface deviate from

its equilibrium on a sufficiently large area. In these cases the

shallow water theory or long wave theory is the good theo-

retical and numerical model to describe the properties of the

tsunami waves. In many cases, the tsunami source moves

with variable speed and direction. Such a situation is typical

for meteorological tsunamis and this mechanism is investi-

gated by Efimov et al. (1985) and Rabinovich (1993). Mete-

orological tsunamis have occurred in the Mediterranean Sea

and in the Okhotsk Sea (Rabinovich and Monserrat, 1998).

In particular, near the Balearic Islands, the estimated atmo-

spheric wave speed of 29 m/s is very close to the phase speed

Correspondence to: E. Pelinovsky

(enpeli@hydro.appl.sci-nnov.ru)

of long waves of 31 m/s (Rabinovich and Monserrat, 1998),

so the resonance effects should be very important.

The given paper analyzes the resonance effects of tsunami

generation by moving atmospheric disturbances which lead

to the appearance of anomalous large waves. The paper is

organized as following. The nonlinear and corresponding

linear shallow-water theory of tsunami generation by the at-

mospheric disturbances is briefly discussed in Sect. 2. The

resonance character of tsunami generation is investigated in

Sect. 3. Detailed calculations are given for 1D case, where all

analytical expressions can be obtained in the explicit form.

The similarity of the considered problem to the problem of

tsunami generation by moving landslides is mentioned here

(Pelinovsky, 1996; Pelinovsky and Poplavsky, 1996; Tinti

and Bortolucci, 2000a, b; Tinti et al., 2001). A nonlinear-

dispersive model of the resonant generated tsunami waves is

briefly reproduced in Sect. 4. This model is based on the

famous forced Korteweg-de Vries equation derived first by

Akylas (1984). The solitary wave generation and interaction

with moving forcing is studied in Sect. 5 based on the re-

sults by Grimshaw et al. (1994). There is a lot of various

scenaria of wave dynamics depending on the speed and sign

of the atmospheric disturbance. It is shown that the maxi-

mal variation of wave amplitude in the process of interaction

can reach two to three times. The effect of wave focusing

of nonlinear dispersive wave packets is analyzed in Sect. 6.

Such an effect is well-known for wind-generated waves and

leads to the generation of freak or rogue waves (Osborne et

al., 2000; Kharif et al., 2001). The same process of wave

focusing with formation of the large-amplitude waves is pos-

sible for tsunami waves. Obtained results are summarized in

the conclusion. The main goal of this paper is to demonstrate

the use of possible analytical tests that characterize the role

of nonlinearity, dispersion and forcing in the processes of the

tsunami generation by atmospheric disturbances; such solu-

tions are important for interpretation of field data and results

of the numerical simulations.
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Fig. 1. Problem geometry.

2 Shallow water model of the tsunami generation by at-

mospheric disturbances

The basic hydrodynamic model of tsunami generation by the

atmospheric disturbances is based on the well-known Euler

equations for ideal fluid on the non-rotated Earth

∂u

∂t
+ (u∇)u + w

∂u

∂z
+

1

ρ
∇p = 0, (1)

∂w

∂t
+ (u∇)w + w

∂w

∂z
+

1

ρ

∂p

∂z
= −g, (2)

∇u +
∂w

∂z
= 0 (3)

with corresponding boundary conditions at the bottom and

ocean surface (geometry of the problem is shown in Fig. 1).

At the solid bottom
(

z = −h(x, y)
)

,

w − (u∇)h = 0. (4)

At the free surface
(

z = η(x, y, t)
)

, the kinematic condition

is

w =
dη

dt
=

∂η

∂t
+ (u∇)η, (5)

and the dynamic condition,

p = patm(x, y, t). (6)

Here η(x, y, t) is the elevation of water surface, u and w

are horizontal
(

u = (u, v)
)

and vertical components of

the velocity field, x and y are coordinates in the horizontal

plane; z-axis is directed upwards vertically, ρ is water den-

sity, p is pressure and patm is the variable atmospheric pres-

sure, g is gravity acceleration, h(x, y) is the variable ocean

depth. Differential operator, ∇ acts in the horizontal plane
(

∇ = {∂/∂x, ∂/∂y}
)

.

Usually tsunami waves are long (as compared with the

ocean depth). Therefore, it is natural first to consider the

long-wave (or shallow-water) approximation of the model

of tsunami generation, and then to estimate conditions of

its applicability. The theory of long waves is based on the

main assumption that the vertical velocity and acceleration

are low as compared to the horizontal ones and can be calcu-

lated from the initial system using the asymptotic procedure.

As a small parameter it uses the ratio of the vertical velocity

to the horizontal one or the ocean depth to the characteristic

wavelength. Here a simpler algorithm is used, which consists

of neglecting vertical acceleration, dw/dt in Eq. (2). In this

case Eq. (2) is integrated and, with the dynamic boundary

condition (Eq. 6) taken into account, determines the hydro-

static pressure

p = patm + ρg(η − z). (7)

Substituting Eq. (7) into Eq. (1) and neglecting the vertical

velocity once again, we obtain the first equation of the long-

wave theory

∂η

∂t
+ (u∇)u + g∇η = −

∇patm

ρ
. (8)

The second equation is yielded by integration of Eq. (3)

over the depth from the bottom
(

z = h(x, y)
)

to the surface
(

z = η(x, y, t)
)

, taking into account boundary conditions

(Eq. 4 and 5), as well as the fact that horizontal velocity does

not depend on vertical coordinate, z

∂η

∂t
+ ∇

[

(h + η)u
]

= 0. (9)

Equations (8 and 9) are closed as related to functions η

and u. They are nonlinear (the so-called nonlinear shallow-

water theory), inhomogeneous (the right-hand part is non-

zero), and with variable coefficients due to h(x, y).

The linear version of the shallow-water theory is most gen-

erally used within the tsunami problem. In this case varia-

tions of water depth are assumed weak, as well as the velocity

of the fluid. As a result, we obtain a linear set of equations

∂u

∂t
+ g∇η = −

∇patm

ρ
, (10)

∂η

∂t
+ ∇[hu] = 0. (11)

It is convenient to exclude u and pass over to the wave equa-

tion for the surface elevation

∂2η

∂t2
− ∇

(

c2∇η
)

= ∇

(

h

ρ
∇patm

)

, (12)

where

c(x, y) =
√

gh(x, y) (13)

is the speed of long wave propagation. Equation (12) is the

basic one within the linear theory of tsunami generation and

must be supplemented by the initial conditions. It is natural

to believe that at the initial moment the ocean is quiet, i.e.

η = 0, u = 0, v = 0, or ∂η/∂t = 0, (14)

although due to linearity of Eq. (12), a more general case can

also be considered. From the point of view of mathematical

physics, the wave (Eq. 12) is too well studied to discuss the

details of its solution here. The governing and long-wave

systems presented here are the basic hydrodynamic models

of tsunami generation by the atmospheric disturbances.
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3 Long wave generation on a sea of constant depth

The simplest model here uses the linear wave Eq. (12) with

constant depth. In this case Eq. (12) reduces to the classical

wave equation

∂2η

∂t2
− c2∇2η =

h

ρ
∇2patm, (15)

with constant long-wave speed, c and zeroth initial condi-

tions. Having replaced variable

ζa =
hpatm

ρc2
, η = ζ − ζa, (16)

Eq. (15) reduces to

∂2ζ

∂t2
− c2∇2ζ =

∂2ζa

∂t2
. (17)

In these variables the problem of tsunami wave generation by

atmospheric perturbations is fully reduced to the analogous

problem in the case of tsunami excitation by bottom displace-

ments. Therefore, all the results of the linear shallow-water

theory for “earthquake” tsunamis remain valid in this prob-

lem too. Note some differences, though. First, in the case

of a static atmospheric perturbation, the solution of Eq. (17)

becomes trivial, and the water level is equal to

η = −ζa = −
hpatm

ρc2
. (18)

This relation is called “the law of the inverse barometer”.

Certainly, Eq. (18) can be supplemented with the constant

which characterizes the average sea level under the average

atmospheric pressure. Static “tracing” of atmospheric per-

turbations is typical for “atmospheric” problems and permits

one to judge the values of atmospheric perturbations based

on the data about changes in the sea level obtained, for ex-

ample, from space.

Second, the piston model that is most characteristic for

tsunami waves of seismic origin is not the main one here; it

corresponds to the edge of the atmospheric disturbance, for

example, to the difference in pressures on one side of the ty-

phoon. And if we consider the atmospheric perturbation to

be time-localized, then it corresponds to the bottom displace-

ment that comes back to the initial state; by this, naturally, the

amplitude of the excited waves will be smaller than that at the

piston displacement. Thus, keeping other conditions equal,

the meteorological tsunami is the strongest when a region

of lower (higher) pressure (cyclone or anticyclone region) is

formed quickly. If this region is stationary, or moving slowly,

we have the complete analogy with the corresponding results

for the piston model and there is no possibility to consider

separately the generalization of the linear long-wave model.

The Green function for waves generated by the atmospheric

disturbances in the framework of linear potential theory is

given by Kajiura (1963). However, if a cyclone is moving,

a resonance between the cyclone velocity and the speed of

tsunami waves is possible.

Let us consider the simplest one-dimensional model of cy-

clone when the atmospheric pressure is varied along the axis

x only, and a cyclone moves with constant speed V . The so-

lution of Eq. (15), which satisfies the zeroth initial condition,

is easily found explicitly (see for comparison, Pelinovsky,

1996; Tinti et al., 2001)

η(x, t) =
c2

V 2 − c2
ζa(x − V t) −

c

2(V + c)
ζa(x − ct)

+
c

2(V + c)
ζa(x + ct). (19)

This solution is a superposition of three waves: one of

them is bounded, and the two others are free. After some

time they become separated in space: the first wave propa-

gates together with the cyclone, and the other two leave it.

Let us discuss first the field in the source for sufficiently

long times, when the waves become separated in space; it

is described by the first term in Eq. (19). We see that in the

case of large speed (V → ∞) the surface elevation is very

weak (η ≈ c2ζa/V 2), and when the cyclone motion is slow

(V → 0) the surface level is the almost static disturbance

Eq. (18). Of special interest is the case of synchronism be-

tween the cyclone motion and the excited wave, when even a

small atmospheric disturbance causes strong water elevation

(formally, infinite within this model). The free wave moving

in the same direction with the cyclone is similarly amplified

(but it is a trough, not a crest). The wave propagated in the

opposite direction from the cyclone is limited with respect to

the amplitude at any speed (that is caused by a great differ-

ence in velocities) and this wave is not resonant.

Similar calculations can also be made for the two-

dimensional atmospheric disturbances. Detailed calculations

in the framework of Eq. (17) (formally, they were done for

moving bottom displacements) were performed by Novikova

and Ostrovsky (1978), and later confirmed within numerical

modelling (Marchuk et al., 1983; Nosov and Shelkovnikov,

1995). It should be emphasized that the resonance is retained

in the plane problems, wherein all the disturbances with ve-

locities higher than c are of a resonance character, and max-

imum radiation occurs along directions θ = arccos (c/V ),

determined through the so-called Mach (Cherenkov) angle.

Such relations are well-known in the theory of wave radia-

tion. Wave amplitude stays finite at c 6= V , and it is propor-

tional to the factor (1 − c2/V 2)−1/2 for the Mach direction.

To estimate the accuracy of the linear model, let us con-

sider the problem of tsunami generation by a moving cyclone

within the nonlinear formulation. We will limit ourselves

to the unidimensional variant of the nonlinear shallow-water

theory (Eq. 8 and 9),

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= −

1

ρ

∂patm

∂x
, (20)

∂η

∂t
+

∂

∂x

[

(h + η)u
]

= 0. (21)

Assuming that the elevation is only a function of the run-

ning coordinate ζ = x − V t , we will try to find solutions for
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Fig. 2. Resonance curve for nonlinear generation of tsunami waves

by atmospheric disturbance.

this system in the same form, i.e. depending on the same co-

ordinate ζ . Then the system (Eq. 20 and 21) yields nonlinear

algebraic equations,

(h + η)u = V η, gη = V u −
u2

2
−

patm

ρ
, (22)

where it is assumed that there are no perturbations of the sea

level and velocity outside the cyclone region. If bottom dis-

placement is small and V 6= c, this algebraic system yields a

linear relation (the same as the first term in Eq. 19). How-

ever, there is no unlimited growth of the amplitude under

resonance V = c, and the corresponding resonance curve,

“water elevation – Froude number”, can be obtained from

Eq. (22)

p =
2(F r − 1)ζ + (F r − 4)ζ 2 − 2ζ 3

2(1 + ζ )2
, (23)

where the Froude number Fr = V 2/gh, and the water el-

evation is normalized on the basin depth, ζ = η/h, and

P = patm/ρc2. This solution for different values of the at-

mospheric pressure P , is presented in Fig. 2. The curves are

non-symmetric about the value Fr = 1, which is normal for

nonlinear problems.

4 Nonlinear dispersion model of resonant generated

waves

The formulae presented above yield out of the resonance

V = c that the wave field is well described within the lin-

ear shallow-water theory. In the case of the resonance the

effects of nonlinearity and dispersion are very important. Let

us consider here a simplified model for resonance nonlin-

ear generation of tsunami waves by the atmospheric distur-

bances including dispersion (Akylas, 1984; Pelinovsky and

Choi, 1993). The equations of the nonlinear theory of long

waves have been derived in Sect. 2. The dispersion effects are

characterized by the vertical acceleration, dw/dt in Eq. (2)

which is ignored usually in long-wave theories. In the case of

weak nonlinearity and dispersion, it can be calculated asymp-

totically (see for details, Pelinovsky and Choi, 1993). As a

result, the following system can be derived for waves in the

basin of constant depth

∂u

∂t
+ (u∇)u + g∇η =

h2

3

∂

∂t
∇2

u −
∇patm

ρ
, (24)

∂η

∂t
+ ∇ [(h + η)u] = 0. (25)

These simplified equations (they are of the Boussinesq

type) differ from the shallow-water Eqs. (8 and 9) in the pres-

ence of the high derivative of the horizontal velocity field in

Eq. (24). This system provides the possibility of observing

the process of tsunami generation by moving cyclone forma-

tions. Bearing in mind that the greatest efficiency of excita-

tion is achieved in the resonant case, when the cyclone moves

with the velocity, V close to the linear long wave speed, c,

we can further simplify the problem by considering it as a

unidimensional one. This results in the following system,

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
=

h3

3

∂3u

∂t∂x2
−

1

ρ

∂patm

∂x
, (26)

∂η

∂t
+

∂

∂x

[

(h + η)u
]

= 0. (27)

Taking into account the resonant character of tsunami

generation, this system can be simplified. Let us re-write

Eqs. (26 and 27) in the form of a nonlinear wave equation for

the surface elevation η,

∂2η

∂t2
− c2 ∂2η

∂x2
=
∏

{η, u} +
h

ρ

∂2patm

∂x2
, (28)

∏

= −
∂

∂x

(

η
∂u

∂t

)

+
h

2

∂2u2

∂x2
−

h3

3

∂4u

∂t∂x3
. (29)

Here, the right-hand part of Eq. (28) can be treated as pro-

portional to a small parameter, characterizing the weak non-

linearity, dispersion and forcing. Using the linear relation,

u = ηg/c in Eq. (29), Eq. (28) can be reduced to (Akylas,

1984)

∂η

∂t
+ c

∂η

∂x
+ αη

∂η

∂x
+ β

∂3η

∂x3
=

∂f

∂x
, (30)

where

α = 3c/2h, β = ch2/6, f = −hpatm/2cρ. (31)
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Equation (30) is the forced version of the famous

Korteweg-de Vries equation and currently it is considered

as one of the basic equations of the nonlinear mathemati-

cal physics. Its solution contains the set of solitary waves

(solitons) and dispersive tails (variable wave packets).

5 Soliton generation and interaction with a moving

forcing

The numerical solutions of the forced Korteweg-de Vries

equation described the wave generation by the moving atmo-

spheric disturbance are given in the paper by Akylas (1984)

and the following papers cited by Grimshaw et al. (1994).

To demonstrate the roles of solitons in the forced dynamics

of the water waves analytically, let us assume that the soli-

ton has already been formed and consider the process of its

amplification under the effect of a moving force. We suppose

that the forcing is sufficiently weak, so that the soliton retains

its form in the process of interaction (the condition for adi-

abatic interaction is slowness of variation of soliton parame-

ters on distances of the order of the nonlinearity length). The

solution for the forced Korteweg-de Vries equation is in the

form of the asymptotic series

η(x, t) = a(t)sech2 (Ŵ(t)[x − V t − 9(t)]) + ...,

Ŵ = (αa/12β)1/2, 9(t) =
∫

(p0 + ...)dt. (32)

The procedure for obtaining the equations for the soliton

amplitude and velocity in the framework of the asymptotic

method is well-known (see, for instance, Grimshaw et al.,

1994). As a result, in the first approximation we obtain the

energy balance equation for the amplitude,

d

dt

∞
∫

−∞

η2

2
dx =

∞
∫

−∞

η
∂f

∂x
dx, (33)

and for the position (phase) of the soliton we have the fol-

lowing unperturbed relation,

d9

dt
= c − V +

αa

3
. (34)

These equations describe the simplified model of the pro-

cess of adiabatic interaction of the soliton with the moving

force. Given a cyclone of short duration, l acts as the delta

function, f (x) = bζ(x/l) in Eq. (33), where b is its inten-

sity. For this function it is possible to calculate the integral in

Eq. (33). As a result, the Eq. (33) has the differential form,

da

dt
= −

αabl

12β
sech2Ŵ9tanhŴ9. (35)

After transformation, a → Ŵ, 9 → θ = Ŵ9, the system

(Eqs. 34 and 35) reduces to

dŴ

dt
= −

αblŴ

12β
sech2θ tanhθ, (36)

Fig. 3. Phase plane of system (Eqs. 36 and 37) for the “slow” moved

atmospheric disturbance.

dθ

dt
= Ŵ(c − V + 4βŴ2). (37)

All integral trajectories of this system can be found in the

explicit form,

αbl

24β
sech2θ = (c − V )Ŵ +

4β

3
Ŵ3 + const. (38)

After substitutions,

αa0 = 3 | c − V |= 12βŴ2
0, G = Ŵ/Ŵ0,

Q =
αbl

24βŴ0 | c − V |
, (39)

(as it can be clearly seen below, a0 is the amplitude of steady

state generated soliton) the expression (Eq. 38) can be written

in the dimensionless form,

Qsech2θ = −Gsign(V − c) +
G3

3
+ const. (40)

The phase pattern of system (Eqs. 36 and 37), all the tra-

jectories of which are determined by Eq. (40), depends on the

signs of (c − V ) and Q. The last parameter in the physical

variables is

Q = −
√

6cpatml

16ρch | c − V |3/2
. (41)

First, we consider the case of c > V . The phase pattern for

that case is shown in Fig. 3 for Q > 0 (negative atmospheric

disturbance). The main regime here is the regime of the

trajectory passage corresponding to fast motion of solitons

through the source region. The soliton amplitude grows at

the moment of interaction (and decreases at the opposite sign

of forcing) and recovers after interaction. At the phase plane

one can also see (in the region of low amplitudes) trajectories

that correspond to generation of virtual solitons. These soli-

tons are generated behind the source, then they grow, take
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Fig. 4. Phase plane of system (36) and (37) for the “fast” and posi-

tive source.

over the source and dissipate. The same regime exists for

Q < 0 (positive atmospheric disturbance); in that case the

solitons situated behind the source dissipate during interac-

tion, and a part of the solitons are generated in front of the

perturbation.

Let us consider now the opposite case, c < V . Dynamics

of solitary waves is much richer here. First, the equilibrium

state exists

αa0 = 3(V − c), θ = 0. (42)

It is equivalent to the existence of the steady-state soliton

propagating with the same velocity as the atmospheric distur-

bance (resonant generated soliton). Naturally, this is possible

only at the certain amplitudes of the solitary wave. The char-

acter of the equilibrium depends on the sign of Q, in partic-

ular, for Q > 0, it is the center. The phase plane for this case

is displayed in Fig. 4. Near the equilibrium point the soliton

amplitude and phase oscillate, and this regime corresponds to

the soliton capture by the moving source. Here there are also

regimes of the trajectory passage and virtual solitary waves,

and they are clearly visible on the phase plane.

For Q < 0 the equilibrium point is the saddle and the

corresponding phase plane is displayed in Fig. 5. The main

regime here is the reflection of the solitary wave from the

moved zone of the atmospheric disturbance. In process of

the interaction with the moving forcing, the wave amplitude

varies having the next asymptotic values at θ → ±∞,

Gm(1 − G2
m/3) = GM(1 − G2

M/3), (43)

where m and M characterize the minimal and maximal am-

plitudes. Maximally, wave amplitude (a ∼ G2) can change

three times in the process of interaction with the moving forc-

ing.

As numerical solutions of the forced Korteweg-de Vries

equation showed, the simplified model given here yields a

Fig. 5. Phase plane of system (36) and (37) for the “fast” and nega-

tive source.

correct physical representation of the interaction between the

soliton and the moving forcing (Grimshaw et al., 1994). The

generalization of this theory for a case of the forcing moving

with variable speed, and also, taking into account the wave

dissipation, can be found in papers by Grimshaw et al. (1996,

1997).

The simplified theory given above takes into account the

interaction between the solitary wave and the moving forc-

ing. In reality, the number of waves interacting with the

atmospheric disturbance can be high and they may inter-

sect and interact between them, sometimes forming large-

amplitude waves.

6 Focusing of nonlinear-dispersive tsunami waves

Due to nonlinearity and dispersion, the individual waves and

wave packets propagate with different velocities and may

form a very complicated wave pattern containing the large-

amplitude and short-lived impulses. Such impulses in the

wind wave field are called the freak or rogue waves, and

they are usually studied for deep water (Osborne et al., 2000;

Kharif et al., 2001). Some observed unconfirmed data of

joint observations of freak and tsunami waves and the link

between tsunami and freak waves are discussed by Peli-

novsky and Talipova (2001). The effects liked freak waves,

in our opinion, are possible for tsunami waves described by

the forced Korteweg-de Vries Eq. (30). Let us assume that

the moving (in general, with variable speed) zone of the at-

mospheric disturbances generates the tsunami waves with

different characteristics (amplitudes, wavelengths, wave-

forms). After leaving the generated area, the waves propa-

gate as free waves. In this case Eq. (30) can be reduced to

the Korteweg-de Vries equation

∂η

∂t
+ c

∂η

∂x
+ αη

∂η

∂x
+ β

∂3η

∂x3
= 0. (44)

The forcing forms the initial conditions for this equation.

To demonstrate the wave focusing effect, let us consider the
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linear variant of Eq. (44),

∂η

∂t
+ c

∂η

∂x
+ β

∂3η

∂x3
= 0. (45)

The general solution of Eq. (45) can be expressed in the

Fourier form

η(x, t) =
∫

η(k)exp[i(ωt − kx)]dk, (46)

where

η(k) =
1

2π

∫

η(x, 0) exp ikxdx, (47)

and η(x, 0) is the initial waveform. In particular, when the

initial condition has the form of a delta-function,

η(x, 0) = Sδ(x) (48)

with positive (or negative) constant S, the integral Eq. (46) is

the Airy function (Abramowitz and Stegun, 1964)

η(x, t) = S

(

2

cth2

)1/3

Ai

[

(

2

cth2

)1/3

(x − ct)

]

, (49)

and the wave field represents the frequency modulated wave

train with the leading long wave, its amplitude is decreased,

and length is increased. This solution is very often used

to demonstrate the dispersion effect, resulting in the wave

spreading and attenuation occuring with time. But due to the

invariance of Eq. (45) under a transformation x → −x, t →
−t , the “inverted” wave packet (Eq. 49) for any fixed mo-

ment T will transform into the delta-function (for time, T )

and then it will become dispersive according to Eq. (49). So,

the dispersion can lead to the focusing of the wave energy

on the finite distances. Of course, the “unbounded” focus is

outside of the applicability of the linear long-wave theory.

More realistic results can be obtained for the Gaussian im-

pulse with amplitude A0 and width K−1,

η(x, 0) = A0exp(−K2x2). (50)

The integral (Eq. 46) is calculated exactly in the explicit

form, and the wave field for any time is

η(x, t) =
A0

K
3

√

cth2

2

exp

{

1

2cth2K2

(

x − ct +
6

77cth2K4

)

}

× Ai







x − ct + 9
77cth2K4

3

√

cth2

2







. (51)

It describes the spreading of the initial Gaussian impulse

into the frequency modulated wave packet. The inverted

wave packet transformation is described by

η(x, t) =
A0

K
3

√

c(T −t)h2

2

exp

{

1

2c(T − t)h2K2

(

− (x − ct) +
6

77c(T − t)h2K4

)}

×Ai







−(x − ct) + 9
77c(T −t)h2K4

3

√

c(T −t)h2

2







. (52)

Fig. 6. Focusing of frequency modulated wave packet.

As a result, the frequency modulated wave packet (Eq. 52)

transforms into the Gaussian isolated impulse (Eq. 50) for

t → T , and then transforms again into the frequency mod-

ulated wave packet (Eq. 51) by replacing t on t − T . This

process is illustrated in Fig. 6. The amplification in the focal

point can be significant. It is very important to note that the

appearance of the large-amplitude waves due to a focusing

mechanism is not related to the bathymetry features (caus-

tics), and may be on any distance from the shore. This mech-

anism requires the specific wave generation (weak-speed

waves should be generated before strong-speed waves) and

this is possible if the meteo-conditions above the sea are

enough complicated.

The wave focusing is also possible for the nonlinear-

dispersive waves. The results of the numerical simulation

of this process in the framework of the Korteweg-de Vries

equation are presented by Pelinovsky et al. (2000).

7 Conclusion

The main goal of this paper is to demonstrate possible ana-

lytical tests characterizing the role of nonlinearity, dispersion

and forcing in the processes of the tsunami generation by at-

mospheric disturbances; such solutions are important for the

interpretation of field data and the results of the numerical

simulations. The simplified linear and nonlinear shallow-

water models are presented, and their analytical solutions for

a basin of constant depth are discussed. The shallow-water

model describes well the properties of the generated tsunami

waves for all regimes except the resonance case, when the

wave amplitude tends to infinity. The nonlinear-dispersive

model based on the forced Korteweg-de Vries equation is de-

veloped to describe the resonant mechanism of the tsunami

wave generation by atmospheric disturbances moving with

near-critical speed (long wave speed). Some analytical so-

lutions of the nonlinear dispersive model describing the pro-

cess of the solitary wave interaction with the moving force

are obtained. They illustrate the steady-state and unsteady



250 E. Pelinovsky et al.: Nonlinear mechanism of tsunami wave generation

regimes of resonant soliton generation. The focusing of

waves in the process of their propagation is investigated. Ex-

act solution of the linear version of the Korteweg-de Vries

equation is obtained. Details of the focusing of the frequency

modulated wave packets are discussed.
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