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Nonlinear Microwave Imaging for Breast-Cancer
Screening Using Gauss–Newton’s Method and

the CGLS Inversion Algorithm
Tonny Rubæk, Student Member, IEEE, Paul M. Meaney, Member, IEEE, Peter Meincke, Member, IEEE, and

Keith D. Paulsen, Member, IEEE

Abstract—Breast-cancer screening using microwave imaging
is emerging as a new promising technique as a supplement
to X-ray mammography. To create tomographic images from
microwave measurements, it is necessary to solve a nonlinear
inversion problem, for which an algorithm based on the itera-
tive Gauss–Newton method has been developed at Dartmouth
College. This algorithm determines the update values at each
iteration by solving the set of normal equations of the problem
using the Tikhonov algorithm. In this paper, a new algorithm
for determining the iteration update values in the Gauss–Newton
algorithm is presented which is based on the conjugate gradient
least squares (CGLS) algorithm. The iterative CGLS algorithm
is capable of solving the update problem by operating on just
the Jacobian and the regularizing effects of the algorithm can
easily be controlled by adjusting the number of iterations. The
new algorithm is compared to the Gauss–Newton algorithm with
Tikhonov regularization and is shown to reconstruct images of
similar quality using fewer iterations.

Index Terms—Biomedical electromagnetic imaging, cancer,
electromagnetic scattering inverse problems, image reconstruc-
tion, imaging, inverse problems, microwave imaging, nonlinear
equations.

I. INTRODUCTION

M
ICROWAVE imaging is emerging as a promising new

technique for use in breast-cancer screening [1]–[5]. The

use of microwave imaging as a supplement or alternative to

the widely used X-ray mammography is considered to be ap-

pealing because of the nonionizing nature of the microwaves

and because the physical parameters providing contrast in the

microwave images are different from those in the X-ray im-

ages. This implies that microwave imaging may be useful for

detecting tumors that are not visible in X-ray mammography.

The techniques currently applied for microwave imaging of

the breast can be divided into two categories. In the first, radar-

based approaches are used. This involves transmitting a broad-

band pulse into the breast and creating images by use of time-re-
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versal algorithms, thereby synthetically focusing the transmitted

pulse at different locations within the breast [1], [6], [7].

The other major category is based on tomographic imaging

using nonlinear inversion in which a forward model is created

using Maxwell’s equations [8], [9]. When using the tomo-

graphic techniques, the breast is irradiated by one antenna

and the response is measured by a number of receiving an-

tennas. By alternating which antenna is transmitting the signal,

illumination from all directions can be achieved. These mea-

surements are then inserted into a forward model based on the

frequency-domain form of Maxwell’s equations which, in turn,

can be inverted to obtain the constitutive-parameter distribution

of any target inside the imaging domain. The forward model

based on Maxwell’s equations leads to a nonlinear ill-posed

inversion problem and implies that advanced signal processing

techniques are necessary to obtain an image from the measure-

ment of the transmit-receive data.

At Dartmouth College, a Gauss–Newton iterative method

using a Tikhonov regularization for solving for the updates

(GN-T) is applied for solving the nonlinear imaging problem.

This method involves solving a forward problem at each iter-

ation and constructing a Jacobian matrix from the forward

problem to update the values of the constitutive parameters in

the imaging domain. The update values are found by solving

the normal equation to an under-determined linear problem

at each iteration of the GN-T algorithm. This procedure re-

quires the explicit calculation of the matrix . Because of

the ill-posedness of the underlying problem, regularization is

needed for which a Tikhonov algorithm [10, Sec. 5.1] is applied.

The speed of the imaging algorithm is governed primarily by

two factors, one being the speed of the forward solver, and the

other being the ability of the algorithm to update the values of

the constitutive parameters as accurately as possible, allowing

for fewer calls to be made to the forward solver [11], [12].

The new algorithm for updating the values of the constitu-

tive parameters described in this paper addresses the latter of

these factors. The new algorithm uses the conjugate gradient

least squares (CGLS) algorithm [10, Sec. 6.3] for calculating

the updates at each iteration of the Gauss–Newton algorithm.

The CGLS algorithm is an iterative algorithm for solving linear

equations and determines the solution of the linear problem by

projecting it into a Krylov subspace. The algorithm does not

need the explicit calculation of the matrix but is capable

of working directly on the Jacobian matrix. Furthermore, the

regularizing effects of the CGLS algorithm are governed by the
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Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 11, 2009 at 06:56 from IEEE Xplore.  Restrictions apply. 



RUBÆK et al.: NONLINEAR MICROWAVE IMAGING FOR BREAST-CANCER SCREENING 2321

Fig. 1. Photo of imaging system. The monopoles are positioned in a circular
setup and during the measurements, the tank is filled with a coupling liquid.

number of iterations the algorithm is allowed to run, thereby al-

lowing for easier control over the regularizing effects than in the

current GN-T algorithm.

This paper contains a brief description of the current imaging

system in Section II, and an introduction to solving imaging

problems using the Gauss–Newton method in Section III. This

section also contains a description of the algorithm currently

applied. In Section IV, the new algorithm is introduced based on

the CGLS algorithm. Finally, in Section V, the new algorithm is

tested and its performance is compared to that of the currently

applied algorithm using a simulation, phantom measurements,

and patient data.

II. IMAGING SYSTEM

The imaging system at Dartmouth College consists of 16

monopole antennas positioned in a circular array, as shown in

Fig. 1, and is designed to operate over the frequency range from

500 to 2300 MHz. The patient lies prone on top of the measure-

ment tank with the breast to be examined suspended through an

aperture in the top of the tank as seen in the schematic in Fig. 2.

The tank is filled with a coupling liquid, closely mimicking the

average constitutive parameters of the breast [13], maximizing

the amount of microwave energy coupled into the breast. A

more thorough description of the imaging system is found in

[14].

During the acquisition of data, the antenna array scans

through seven vertical positions at 1 cm increments. At each

plane, the antennas sequentially act as transmitters while the

response is measured at the remaining 15 antennas. This results

in 240 coherent measurements of the scattered field for each

plane. Currently, the system operates by creating two-dimen-

sional (2-D) slice images of each of the seven planes and the

image reconstruction is based on the assumption that the scat-

tering problem can be reasonably represented as a 2-D problem

[11]. The validity of this assumption has been investigated in

[15], wherein it was found that although the simplification of

the imaging problem to 2-D does introduce some inaccuracies

Fig. 2. Measurement setup. The antennas are moved downwards and measure-
ments are taken at 7 planes through the breast, with plane 1 being closest to the
chest and plane seven being closest to the nipple.

in the reconstructed images, the relatively small radius of the

imaging system ensures that the inaccuracies are not critical.

III. GAUSS–NEWTON’S METHOD

When reconstructing the microwave tomographic images, the

distribution of the constitutive parameters in the imaging do-

main is represented by the complex wave number squared

(1)

where the time notation is assumed. In this expression,

is the permittivity, is the conductivity, is the free-space

permeability, and and are the angular frequency and com-

plex unit, respectively. The vector is a position vector in the

imaging domain. The distribution of the squared wave numbers

is determined by solving the minimization problem

(2)

where is a vector of field values calculated using the

forward model for a given distribution of constitutive parame-

ters stored in the vector , and is a vector of the corre-

sponding measurements. The two-norm of a -element

vector is the square root of the sum of the squares of the ele-

ments in the vector given by

(3)

where indicates the complex modulus of the elements.

For this implementation, the image reconstruction is per-

formed in terms of the relative change in phase and amplitude,

the so-called log-phase representation [16], as opposed

to changes in the absolute complex field values. The measured

data is represented using the difference in the logarithm of the

amplitude and the unwrapped phase between a measurement
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with an empty system and a measurement with a target, i.e., a

breast, present. The measurement data is stored in a vector

(4)

that is twice the length of the original complex measurement

vector, . The calculated data is reconfigured in a similar

way, yielding the vector

(5)

In this expression, denotes the known distribution of consti-

tutive parameters when there is no target present in the system,

i.e., the constitutive parameters of the coupling liquid which can

easily be measured using a commercially available probe kit.

At Dartmouth College, an Agilent Network Analyzer (E5071C)

with an Agilent Dielectric Probe Kit (85070E) is used.

The minimization problem to be solved for reconstructing the

images can now be rewritten using the new vectors as

(6)

The use of the logarithm of the magnitude and unwrapped phase

has been shown to emphasize the large relative changes ob-

served at the antennas on the opposite side of the breast, i.e.,

within the main projection of the target, effectively containing

more pertinent information about the scattering problem. At the

same time, the signals with higher absolute magnitude measured

by the antennas close to the transmitter, in which the object-in-

duced changes are relatively small, are given less weight [16].

The calculation of the forward solution is based on the

2-D form of Maxwell’s equations, yielding a nonlinear opti-

mization problem for which the Gauss–Newton method is ap-

plied [17, Ch. 4–6], [18]. Hence, it is assumed that the non-

linear expression for the field as a function of the distribution

of squared wave numbers can be approximated locally by a

first-order Taylor expansion as

(7)

where is the Jacobian matrix and

(8)

with being the current iteration number. In this form, the min-

imization problem can be reformulated as a number of local

linear minimization problems given by

(9)

The iterative Gauss–Newton method currently applied at Dart-

mouth College consists of five steps in each iteration.

1) The forward model is used to calculate the electric fields

from the distribution of constitutive parameters and to

check for termination of the algorithm.

2) Calculate the Jacobian for the current property distribu-

tion, .

3) Obtain the Newton direction [18, Sec. 1.6] by solving

the linear problem

(10)

using the normal equation and the Tikhonov regularization

algorithm.

4) Determine the Newton step [18, Sec. 1.6] satisfying

(11)

5) Update the values of the constitutive parameters using

(12)

The operations listed above can be divided into two categories.

Steps 1 and 2 concern the forward calculations while steps 3

through 5 concern the computation of the new values. The most

time consuming part of the iterations of the GN-T algorithm is

the forward calculations in steps 1 and 2 which take approxi-

mately 1 min per iteration. The computation of the update, on

the other hand, takes approximately 1 s. The new CGLS-based

algorithm, to be described in Section IV, focuses mainly on im-

proving steps 3 through 5, and aims to reduce the overall time

consumption by reducing the number of iterations, and thereby

calls to the forward solver, needed for the algorithm to converge.

A review of the current implementation of the Gauss–Newton

algorithm is presented in the following section.

A. Forward Solver and Jacobian

The forward solver used in the algorithm is a hybrid-ele-

ment algorithm which uses the finite-element method for repre-

senting the electromagnetic scattering problem within the het-

erogeneous imaging domain and a boundary-element method

for representing the homogeneous area outside of the imaging

domain [19]. The values of the constitutive parameters are re-

constructed on a coarse mesh, in this case with 559 nodes as

shown in Fig. 3(a), which are subsequently interpolated onto a

finer finite-element mesh, in this case with 3903 nodes as shown

in Fig. 3(b), for computation by the forward solver [20].

The influence of the antennas not acting as transmitter or

receiver being present in the imaging system is accounted for

by representing them as electromagnetic sinks within the sur-

rounding boundary-element zone as described in [21], [22]. The

hybrid-element approach is useful as the forward solver here

in that it is quite accurate because it does not require approxi-

mate boundary conditions. Its efficiency arises from the use of

bounded matrix techniques facilitated by the finite-element ap-

proach and by the fact that only the target zone requires finite-el-

ement discretization [19]. In addition, incorporation of the ad-

joint technique [14] effectively reduces the calculation of the
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Fig. 3. Nodes of the coarse and fine meshes. The parameters are reconstructed
on the coarse mesh and interpolated onto the finer mesh for computation by the
forward solver. (a) Coarse mesh; (b) fine mesh.

Jacobian matrix to a set of simple inner product operations, re-

ducing the overall computation time of this task to a fraction of

that of the forward solution.

B. Newton Direction

The Newton direction is currently found by solving the

normal equation of the under-determined matrix equation (10).

The normal equation is given in terms of the matrix as

(13)

where the argument of the Jacobian matrix has been omitted for

improved readability. Since this problem is ill-conditioned, the

Tikhonov algorithm [10, Sec. 5.1] is applied, yielding the linear

equation

(14)

where the regularization parameter is found using the method

described in [23, Eq. (16)], wherein the trace of the matrix

is used as the basis of the calculation.

C. Newton Step

Although advanced algorithms exist for calculation of the

Newton step size [17, Ch. 8], the fact that these algorithms all re-

quires multiple calculations of the forward model to determine

the optimum value of means that they are not well suited for

use in this algorithm where calculation of the forward model is

the most time consuming operation. Instead, a simple yet effec-

tive method has been implemented in which the Newton step

is set to a value determined by the iteration number. Using this

method, the value of is set to 0.1 during the first three it-

erations and then increased gradually in each of the following

iterations until it reaches a value of 0.5 after 12 iterations. The

small iteration step size has the primary benefit of ensuring rel-

atively slow changes in the phase distribution of the computed

fields between iterations thus acting to reduce the possibility of

inducing complex nulls in the imaging domain. The avoidance

of these nulls is crucial to the stability of this approach [24].

D. Update of Values

The values of the constitutive parameters are updated using

the standard formulation

(15)

Depending on the noise level and degree of model mismatch,

the updated values may contain high-frequency spatial varia-

tion. This is minimized by the application of a spatial-filtering

algorithm that smooths the values of by averaging them

with a weighted sum of the values of the neighboring nodes [25,

Appendix A].

E. Termination of Algorithm

In general, the algorithm converges within 13 to 15 itera-

tions. In practice, especially while mass processing data from

numerous patient exams, the algorithm is allowed to run 20 it-

erations to ensure convergence is reached.

IV. GAUSS–NEWTON CGLS ALGORITHM

The new algorithm is focused on steps 3 to 5 in the

Gauss–Newton algorithm, that is, determining the update at

each iteration. To obtain a more efficient algorithm, the three

steps have been merged into a single step based on the use

of the CGLS algorithm [10, Sec. 6.3]. The new algorithm is

denoted as the Gauss–Newton CGLS (GN-C) algorithm.

A. CGLS Algorithm

The CGLS algorithm is an iterative algorithm of the conjugate

gradient type, and is applied for determining the update values

at iteration in the GN-C algorithm by solving the linear

problem

(16)

and thus does not work on the normal equation. The solution to

this linear equation after CGLS iterations ( CGLS iterations

per each Gauss–Newton iteration ) is given by

(17a)

subject to

(17b)

where is the -dimensional Krylov subspace defined by

the Jacobian matrix and the vector of the difference between

the measured and calculated fields, and the arguments of the

Jacobian and the calculated solution have been omitted for im-

proved readability. The solution after iterations is thus the

least-squares solution to the original problem projected into the

-dimensional Krylov subspace .
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Each iteration of the CGLS algorithm is comprised of five

simple steps [10, Eq. (6.14)], allowing for an efficient imple-

mentation of the algorithm. The algorithm is initialized with all

elements of the update vector set to zero

(18a)

In addition to the update vector, the algorithm requires the

residual vector which is initialized as

(18b)

and an auxiliary vector initialized by

(18c)

At each iteration of the CGLS algorithm, the value

of the update vector is computed using

(19a)

and

(19b)

Thus, the solution is found as a linear combination of the vec-

tors where the weight of the individual vectors are found as

the ratio between the squared two-norms of the matrix products

of the Jacobians and the residual and auxiliary vectors, respec-

tively. The residual and auxiliary vectors are updated at each

iteration using

(19c)

(19d)

and

(19e)

It can be shown that the vectors obtained by the matrix prod-

ucts of the transposed Jacobian and the individual residual vec-

tors , are orthogonal to each other [10,

Sec. 6.3]. This implies that the auxiliary vector is updated

by adding an orthogonal vector scaled by the ratio between the

squared norms of the current and previous residuals to the

previously used vector, which corresponds to adding a new di-

mension to the solution. This illustrates how each iteration of

the CGLS algorithm adds a dimension to the Krylov subspace

onto which the solution is projected as stated in (17b). It should

be noted that in finite precision, the orthogonality of the residual

vectors is progressively diminished as the number of iterations

with the CGLS algorithm increases due to rounding errors. This

implies that there is an effective upper limit on the number of

dimensions which can be obtained for the Krylov subspace.

As described in [10, Sec. 6.3.2 and 6.4], the exact details of

the regularizing effects of the CGLS algorithm are still not com-

pletely understood. It is, however, known that the solutions pro-

vided by the CGLS algorithm closely follow the L-curve [10,

Sec. 4.6] of the more widely-used Tikhonov algorithm [10, Sec.

5.1], the L-curve being the norm of the solution as a

function of the norm of the residual . The first iterations in

the CGLS algorithm correspond to a high value of the regular-

ization parameter in the Tikhonov algorithm, whereas the results

obtained as the number of iterations increases correspond to de-

creasing the value of the regularization parameter. In this way,

the regularizing effects of the CGLS algorithm is governed by

the number of iterations rather than by an explicit regulariza-

tion parameter.

B. Determining the Update Values

Usually, when solving a linear problem, the desired solution

is that for which the L-curve has the maximum curvature, also

known as the corner of the L-curve [10, Sec. 7.5]. However,

it has been found in this work that this is not necessarily the

case when solving for updates in the nonlinear GN-C algorithm.

Instead, the result obtained after only a few iterations of the

CGLS algorithm, corresponding to an over-regularized solution,

has been found to yield the best results. Further discussion on

this topic is found in Section V-A.

A two-step procedure for determining the number of itera-

tions of the CGLS algorithm, similar to that previously sug-

gested in [25], has been developed based on the normalized

two-norm given by

(20)

Early in the reconstruction process, only two iterations of the

CGLS algorithm are needed to determine the update values.

When the relative change in , defined as

(21)

between two iterations is greater than 10%, the number of iter-

ations in the CGLS algorithm is increased to 16. This is based on

the assumption that as the solution gets closer to the actual dis-

tribution of the constitutive parameters, the local linearization

obtained by the first-order Taylor expansion is a better approxi-

mation to the actual problem than when the solution is far from

the actual distribution. It should be noted that the value of

is negative as long as the value of decreases, i.e., as long as

the calculated data approach the measured data.

The termination of the Gauss–Newton algorithm is also based

on the normalized two-norm . The algorithm is terminated

when obtains a value greater than 3% or when the value

of drops below . These thresholds have been de-

termined by trial and error and are dependent on the noise level

in the system. In systems with more noise these values should
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be increased while a lower noise level would allow for these

thresholds to be decreased.

Since the GN-C algorithm has been designed to terminate at

the maximally resolved image by adjusting the number of CGLS

iterations in the latter part of the GN-C algorithm, it is impor-

tant to terminate the algorithm based on the norm . If a fixed

number of iterations is used the optimal number of iterations

might be exceeded, and a point reached where the algorithm at-

tempts to fit the solution to the unwanted noise-component in

the measured data. When the GN-C algorithm reaches the point

where it starts to fit the solution to the noise component of the

measured data this will usually result in the value of starts to

oscillate around some fixed value. This oscillation, in turn, will

cause the value of to become positive (larger than 3%)

and the algorithm should therefore be terminated.

C. Safeguard

To avoid the GN-C algorithm from getting trapped in a local

minimum or an oscillating mode, a safeguard based on the two-

norm of the update vector has been implemented. The two-norm

of the update values are not allowed to exceed one quarter of the

two-norm of the vector holding the values. To prevent this,

the update vector is multiplied by a scaling factor

determined by

for

for

(22)

and the value of the vector is updated using

(23)

The choice of a factor of 4 between the two-norm of the update

vector and the two-norm of the vector holding the values has

been chosen from an observation of when the algorithm fails and

a considerable margin has been added. In our experience, for

most cases the two-norm of the update vector is well below the

limit and in the vast majority of cases where it exceeds the limit

the algorithm still performs well without the scaling. In some

instances, however, the update values can behave quite errati-

cally and the scaling is necessary. When the scaling is applied,

there has been no example of the algorithm failing, even though

a large number of images of both simulations, phantom mea-

surements, and patient measurements have been reconstructed.

If anything, the scaling might be too restrictive, and a more ad-

vanced analysis of the update procedure may provide the means

for determining it in a more sophisticated manner, thus allowing

even faster convergence of the algorithm.

D. Summary of Gauss–Newton CGLS Algorithm

Combining these steps, the GN-C algorithm has the following

steps in each iteration.

1) The forward model is used to calculate the electric fields

from the distribution of constitutive parameters and to

calculate the value of . The value of is used to check

for termination and to check for the number of iterations to

be used in the CGLS algorithm;

2) Calculation of the Jacobian for the distribution ;

3) Use the CGLS algorithm to calculate the update value

with or depending on the

value of and update the values of the constitutive

parameters using

(24)

As with the GN-T algorithm, the most time consuming part of

the iterations is the calculation of the forward solution, taking

approximately 1 min while the update step takes less than 1 s.

No measurable difference has been found in the overall time

consumption per Newton iteration for the GN-T and the GN-C

algorithms.

V. TEST OF ALGORITHM

In this section, the performance of the GN-C algorithm is

compared to the performance of the previously used GN-T al-

gorithm using simulation, phantom measurement, and patient

data.

A. Simulated Data

A simple 2-D target has been simulated and the images re-

constructed using the GN-C algorithm compared with those ob-

tained using the GN-T algorithm. The target was a circular scat-

terer with a radius of 2 cm and constitutive parameters

and in a background medium with constitutive

parameters and . The target was

centered at and a schematic of the setup is

shown in Fig. 4. The 16 point-source antennas were positioned

equidistantly about a 15.2 cm diameter circle concentrically sur-

rounding the 14.0 cm diameter imaging zone and the frequency

was 1000 MHz. The simulated measurement data had Gaussian

noise added with an amplitude mimicking a noise floor of 100

dBm.

The images obtained using the two different algorithms are

shown in Fig. 5. The images are seen to be close to identical

with the GN-C algorithm reaching a slightly higher maximum

value than the GN-T algorithm. Both techniques recover the

target quite well in both permittivity and conductivity. The back-

ground variation in both conductivity images is quite similar

and a direct consequence of the simulated noise which is much

higher than that encountered in practice. The value of the nor-

malized two-norm of the two algorithms is shown in Fig. 6

along with for the GN-C algorithms. The GN-C algorithm

was terminated after 11 iterations because the value of de-

creases to a value less than 0.03. The sharp decrease in for

the GN-C algorithm at iteration 11 indicates that the algorithm

has transitioned from performing two to sixteen iterations in the

CGLS algorithm. The value of decreases more quickly in

the first few iterations, and subsequently levels out. The value

of for the GN-T algorithm reaches a stable level after 13 it-

erations, and the image does not change significantly during the

last seven iterations. The final errors for each are negligibly dif-

ferent which is not surprising given the similarity of the final

images.
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Fig. 4. Schematic of the setup of the simulation. The background has the con-
stitutive parameters � = 30 and � = 1:163 S=m. The circular target is
centered at (x; y) = (0;2 cm) and has the radius r = 2 cm. The constitutive
parameters of the target are � = 50 and � = 1:6 S=m.

Fig. 5. Comparison of the reconstructed values of the conductivity and per-
mittivity of the simulation case for the GN-C and the GN-T algorithms. The
GN-C algorithm reached convergence after 11 iterations while the result of the
GN-T algorithm is that of the 20th iteration. (a) GN-C, perm. (b) GN-T, perm.
(c) GN-C, cond. (d) GN-T, cond.

To quantitatively compare the reconstructed values with the

actual values, transects of the images for the two pairs along the

axis are shown in Fig. 7. The results obtained with the two

different algorithms are quite similar. The permittivity recon-

structed using the GN-T algorithm seems to be a slightly better

fit to the true value with less overshoot of the central target value

while no clear difference is seen in the images of the conduc-

tivity.

In Fig. 8, the L-curve for the CGLS algorithm for the linear

update problem at the first iteration of the GN-C algorithm

is plotted against the L-curve that would be obtained using

Fig. 6. Normalized two-norm � for the two algorithms and�� for the GN-C
algorithm.

Fig. 7. Comparison of the reconstructed values along the y axis. (a) Permit-
tivity; (b) conductivity.

Tikhonov regularization for the same problem. The solutions

obtained using the CGLS algorithm are seen to follow those
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Fig. 8. Comparison of the L-curve obtained using the CGLS algorithm and
the L-curve obtained using the Tikhonov regularization algorithm. The solution
considered to be optimal for a linear problem is indicated by the + and is ob-
tained after 25 iteration of the CGLS algorithm. The solution used to update the
values in the GN-C algorithm is that obtained after two iterations of the CGLS
algorithm and is indicated by the circle.

Fig. 9. Comparison of the update vector [�k ] found using 2 iterations of
the CGLS algorithm and the update vector [�k ] found using 25 iterations.
(a) Perm., 2 iterations; (b) perm., 25 iterations; (c) cond., 2 iterations; (d) cond.,
25 iterations.

obtained with the Tikhonov algorithm closely, with the first

iteration yielding the point in the lower right part of the curve.

The solution after two iterations, which is used to update the

values of the constitutive parameters in the GN-C algorithm

is indicated by the circle in the plot. This is quite far from the

solution closest to the point where the L-curve has its max-

imum curvature, the solution which is considered to be optimal

when dealing with linear problems [10, Sec. 7.5]. This point is

achieved after 25 CGLS iterations and is marked with a “ ”

in Fig. 8. The update vectors and obtained

after 2 and 25 CGLS iterations, respectively, are shown in

Fig. 9. In this figure, the elements of the vectors have been

assigned to the corresponding coordinate positions, yielding

Fig. 10. Breast phantom configuration. The cylindrical breast phantom
had a relative permittivity of � = 12:6, a conductivity of
� = 0:62 S=m, and a radius of r = 5 cm. The 28 mm
tumor inclusion had its center r = 3 cm from the center of the breast
phantom with � = 53:4 and � = 1:15 S=m. The 21 mm
fibroglandular-tissue inclusion was positioned with its center r = 4 cm
and � = 32:7 and � = 1:28 S=m. The antennas were positioned
in a circular array with a radius of r = 7:5 cm and the coupling liquid
filling out the background had constitutive parameters � = 23:3 and
� = 1:13 S=m. The imaging zone was a 13.5 cm diameter circle.

images showing the spatial distribution of the updates. It is seen

that the updates found using two iterations recover the shape of

the circular target nicely and has virtually no spatial oscillations

in the updates. The updates found using 25 iterations, corre-

sponding to the point on the L-curve with maximum curvature,

still detects the target but with many more spatial oscillations

present in the update values. The center of the recovered object

also has a reduced property artifact. The solution is

therefore not suitable for updating the vector.

B. Fatty Breast Phantom

To illustrate the details in the new algorithm and the im-

pact on the image quality when the algorithms are applied to

reconstruct tomographic images from measured data, phantom

data was acquired at 1100 MHz. A schematic representation of

the phantom is shown in Fig. 10. The phantom consisted of a

10 cm diameter thin-walled plastic cylinder filled with a glyc-

erin-water mixture with constitutive parameters

and simulating a primarily fatty breast. In-

side the breast phantom, two smaller cylinders were positioned

with liquids simulating fibroglandular tissue and a tumor. The

28 mm diameter tumor inclusion had constitutive parameters

and while the 21 mm diam-

eter fibroglandular inclusion was approximated by a liquid with

and . The center of the tumor

was positioned approximately 3 cm from the center of the breast

with its center at while

the fibroglandular inclusion had its center at

, which is approximately 4 cm from the breast

center. The coupling liquid had a relative permittivity of

and a conductivity of .
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Fig. 11. Comparison of the reconstructed values of the conductivity and per-
mittivity for the GN-C and the GN-T algorithms. The GN-C algorithm reached
convergence after 11 iterations while the result of the GN-T is that reached after
20 iterations. (a) GN-C, perm. (b) GN-T, perm. (c) GN-C, cond. (d) GN-T, cond.

The results of the inversion with the GN-C and the GN-T

algorithms are shown in Fig. 11. The perimeter of the breast

phantom is readily visible in both cases, with a higher degree

of artifacts outside the phantom for the GN-C images. Both the

size and contrast of the two inclusions are reconstructed better

with the GN-C algorithm than with the GN-T algorithm. In con-

trast, the amplitude of the artifacts within the recovered breast

phantom are significantly elevated in the GN-C algorithm com-

pared to that of the GN-T algorithm. The fibroglandular inclu-

sion is localized well in the GN-C images while it appears to

blur with the surrounding background in the associated GN-T

images. This further illustrates that the increased spatial reso-

lution of the GN-C algorithm comes at the expense of a higher

level of the artifacts. By adjusting the number of iterations of

the CGLS algorithm in the latter part of the GN-C algorithm,

the balance between spatial resolution and artifacts can be ad-

justed with fewer iterations yielding lower spatial resolution and

more iterations yielding higher level of the artifacts.

The normalized two-norm for the GN-C and GN-T algo-

rithms as function of the iteration number are shown in Fig. 12.

As was observed for the simulation case, it is readily seen that

the value of declines much faster for the GN-C than for the

GN-T algorithm.

C. Patient Measurements

Imaging the breast with the 2-D imaging system poses in-

herent challenges. For the planes closest to the chest wall, the

possibility of artifacts arises due to the proximity of higher water

content tissue associated with the pectoral muscles and the rib

cage. For the planes closest to the nipple, the breast is more con-

ical than cylindrical, posing different challenges for this system.

It is therefore of interest to examine the performance of the new

algorithm close to the chest wall, at the middle of the breast, and

close to the anterior part of the breast.

Fig. 12. Comparison of the normalized two-norm � for the GN-C and GN-T
algorithms.

Fig. 13. Results obtained using the GN-T algorithm for the left breast of the test
patient at three of the seven planes. All images are created using 20 iterations
of the GN-T algorithm. (a) Plane 1, perm. (b) plane 1, cond. (c) plane 4, perm.
(d) plane 4, cond. (e) plane 7, perm. (f) plane 7, cond.

Fig. 13 shows the results obtained at 1100 MHz with the

GN-T algorithm for planes 1, 4, and 7 (with plane 1 being closest

to the chest wall) for the left breast, while the images for the right

breast are shown in Fig. 15.

The corresponding images obtained using the GN-C algo-

rithm are shown in Figs. 14 and 16, respectively. The results
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Fig. 14. Results obtained using the GN-C algorithm for the left breast of the
test patient at three of the seven planes. The algorithm converge and terminates
after 10 iterations of the algorithm for all three planes. (a) Plane 1, perm. (b)
plane 1, cond. (c) plane 4, perm. (d) plane 4, cond. (e) plane 7, perm. (f) plane
7, cond.

shown for the GN-T algorithm were reconstructed in 20 itera-

tions while the GN-C algorithm reached convergence after 10

iterations for all three planes of the left breast and after 11 iter-

ations for plane 1, 9 iterations for plane 4, and 11 iterations for

plane 7 of the right breast.

The patient in this case was 36 years old, had scattered-den-

sity breasts and was imaged with an 80:20 glycerin:water cou-

pling fluid. The tumor was distributed over roughly a 4 cm di-

ameter zone located near the anterior of the right breast at a 7

clock-face orientation, viewing the patient en face. The images

for the two methods are quite similar providing a level of con-

fidence for the overall approach. In general, the breast proper-

ties are lower than those of the background medium, with the

complete perimeter of the breast in plane 1 not entirely vis-

ible—most likely due to the breast cross section being either

larger than the imaging zone or positioned too close to the an-

tenna array. The conductivity images for plane 1 are quite ho-

mogeneous within the breast perimeter. The permittivity im-

ages show scattered zones of slightly elevated properties, corre-

sponding to scattered fibroglandular zones. The differences be-

tween the GN-C and GN-T algorithm images are minimal for

this plane.

The full outline of the breast is more obviously discerned at

the fourth imaging plane. Both the permittivity and conductivity

Fig. 15. Results obtained using the GN-T algorithm for the right breast of the
test patient at three of the seven planes. All images are created using 20 iterations
of the algorithm. (a) Plane 1, perm. (b) plane 1, cond. (c) plane 4, perm. (d) plane
4, cond. (e) plane 7, perm. (f) plane 7, cond.

images display elevated zones throughout the breast cross sec-

tion associated with fibroglandular tissue. The elevated zones

for the right breast appear to be more concentrated in the lower

left quadrant, suggesting some influence from the tumor. This

feature seems to be accentuated more by the GN-C algorithm.

Likewise, a crescent-shaped feature to the right of the permit-

tivity image of the left breast is also more accentuated in the

GN-C images. While this is most likely due to the presence of

fibroglandular tissue, it may be an example of the GN-C algo-

rithm overshooting the recovered property values similar to the

simulation case above. Of less importance but still noticeable

is that the recovered background distribution (i.e., outside the

breast perimeter) is more uneven for the GN-C algorithm.

The images for plane 7 also provide useful information about

the patient. Obviously the overall breast cross section is smaller

than for the previous planes. In addition, similar to that of plane

4, the recovered background distribution is fairly uneven—more

so in the GN-C images than in the GN-T counterpart. For the

most part, both left breast conductivity images show minimal

variation within the breast. The corresponding permittivity im-

ages show an elevated zone to the right which may be asso-

ciated with the higher properties of the nipple and concentra-

tions of fibroglandular tissue. The elevated zone in the GN-C

image is more localized with a higher central value than that
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Fig. 16. Results obtained using the GN-C algorithm for the right breast of the
test patient at three of the seven planes. The algorithm converges and terminates
after 11 iterations for plane 1 and plane 7, and after 9 iterations for plane 4. (a)
Plane 1, perm. (b) plane 1, cond. (c) plane 4, perm. (d) plane 4, cond. (e) plane
7, perm. (f) plane 7, cond.

for the GN-T image which appears partially blurred into the

surrounding background distribution which is slightly elevated

compared with the overall breast properties. The plane 7 images

of the right breast all show localized property-enhanced zones in

the lower left quadrant associated with the tumor location. The

overall breast outline is vaguely visible within the background

because of the limited breast/coupling liquid contrast there. The

reconstructed tumor zones are more readily distinguished in the

GN-C images because the recovered properties are higher.

In addition to the patient data presented in this paper, a

number of other reconstructions of patient data have been

carried out, and in general the GN-C algorithm is better able to

extract internal features at the cost of overall enhanced image

artifacts. The increased artifact level is a result of the GN-C

algorithm, in the process of extracting all available information

from the measurement data, includes an increased amount

of the signal noise in the reconstructed image. The enhanced

artifacts affects the reconstructed images in two ways. First,

the calculated signal changes because of the artifacts. If the

reconstruction algorithm is not terminated, this may lead to the

algorithm attempting to fit the reconstructed image to a solution

in which the noise, and thereby the artifacts, are dominant,

yielding unpredictable results and useless images. Second, the

enhanced artifacts inside the breast may be interpreted as tu-

mors, thereby causing a false cancer-detection. It is therefore of

great importance to terminate the GN-C algorithm as described

in Section IV-B.

As mentioned earlier, a significant advantage of the GN-C

algorithm is the number of iterations required to reconstruct the

images. Given the fact that the time needed to complete one

iteration is the same for both algorithms, the use of the GN-C

algorithm reduced the overall time consumption by 45% to 55%.

VI. CONCLUSION

A new algorithm for determining the update values of the con-

stitutive parameters in an iterative Gauss–Newton algorithm for

microwave imaging of the breast has been derived. The algo-

rithm is based on the use of the CGLS algorithm for solving

the linear problem arising when solving for the image update

values. The algorithm has been implemented as a two-stage pro-

cedure in which the first iterations of the Gauss–Newton algo-

rithm are used to extract a coarse estimate of the distribution of

constitutive parameters in the imaging domain while the latter

set are used for extraction of finer details.

When compared to the previously used inversion algorithm,

it appears to detect small objects more reliably at the cost of

increased image artifacts. The artifacts can potentially be prob-

lematic in breast screening by increasing the number of false

cancer detections. Further research is currently being pursued

with the aim to reduce the level of the artifacts without sacri-

ficing the increased spatial resolution.

Finally, the GN-C has been shown to use fewer iterations to

converge, thus reducing the time-consumption by as much as

55%.

REFERENCES

[1] X. Li, E. Bond, B. Van Veen, and S. Hagness, “An overview of ultra-
wideband microwave imaging via space-time beamforming for early-
stage breast-cancer detection,” IEEE Antennas Propag. Mag. , vol. 47,
no. 1, pp. 19–34, 2005.

[2] E. C. Fear, P. Meaney, and M. Stuchly, “Microwaves for breast cancer
detection?,” IEEE Potentials, vol. 22, no. 1, pp. 12–18, 2003.

[3] T. Williams, E. C. Fear, and D. Westwick, “Tissue sensing adaptive
radar for breast cancer detection: Investigations of reflections from the
skin,” in IEEE Antennas and Propagation Society Symp. in conjunc-

tion with USNC/URSI National Radio Science Meeting and IEEE An-

tennas and Propagation Soc. AP-S Int. Symp. Digest , 2004, vol. 3, pp.
2436–2439.

[4] J. Sill and E. C. Fear, “Tissue sensing adaptive radar for breast cancer
detection: Preliminary experimental results,” in IEEE Int. Microwave

Symp. MTT-S Digest, 2005, p. 4.
[5] J. Sill and E. C. Fear, “Tissue sensing adaptive radar for breast cancer

detection: Study of immersion liquids,” Electron. Lett., vol. 41, no. 3,
pp. 113–115, 2005.

[6] J. M. Sill and E. C. Fear, “Tissue sensing adaptive radar for breast
cancer detection-experimental investigation of simple tumor models,”
IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3312–3319,
2005.

[7] R. Nilavalan, J. Leendertz, I. Craddock, A. Preece, and R. Benjamin,
“Numerical analysis of microwave detection of breast tumours using
synthetic focussing techniques,” in Proc. IEEE Antennas and Propa-

gation Society Symp., 2004, vol. 3, pp. 2440–2443.
[8] A. Bulyshev, A. Souvorov, S. Semenov, R. Svenson, A. Nazarov, Y.

Sizov, and G. Tatsis, “Three-dimensional microwave tomography.
Theory and computer experiments in scalar approximation,” Inverse

Problems, vol. 16, no. 3, pp. 863–875, 2000.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 11, 2009 at 06:56 from IEEE Xplore.  Restrictions apply. 



RUBÆK et al.: NONLINEAR MICROWAVE IMAGING FOR BREAST-CANCER SCREENING 2331

[9] S. Semenov, R. Svenson, A. Bulyshev, A. Souvorov, A. Nazarov, Y.
Sizov, V. Posukh, A. Pavlovsky, P. Repin, A. Starostin, B. Voinov,
M. Taran, G. Tatsis, and V. Baranov, “Three-dimensional microwave
tomography: Initial experimental imaging of animals,” IEEE Trans.

Biomed. Eng., vol. 49, no. 1, pp. 55–63, 2002.
[10] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Nu-

merical Aspects of Linear Inversion, ser. Monographs on Mathematical
Modeling and Computation. Philadelphia, PA: SIAM, 1998.

[11] Q. Fang, P. Meaney, S. Geimer, A. Streltsov, and K. Paulsen,
“Microwave image reconstruction from 3-D fields coupled to 2-D
parameter estimation,” IEEE Trans. Med. Imaging, vol. 23, no. 4, pp.
475–484, 2004.

[12] Q. Fang, “Computational methods for microwave medical imaging,”
Ph.D. dissertation, Thayer School of Engineering, Dartmouth College,
Hanover, NH, 2004.

[13] P. Meaney, S. Pendergrass, M. Fanning, D. Li, and K. Paulsen, “Impor-
tance of using a reduced contrast coupling medium in 2D microwave
breast imaging,” J. Electromagn. Waves Applicat., vol. 17, no. 2, pp.
333–355, 2003.

[14] D. Li, P. M. Meaney, T. Raynolds, S. A. Pendergrass, M. W. Fan-
ning, and K. D. Paulsen, “Parallel-detection microwave spectroscopy
system for breast imaging,” Rev. Scientific Instruments, vol. 75, no. 7,
pp. 2305–2313, 2004.

[15] P. Meaney, K. Paulsen, S. Geimer, S. Haider, and M. Fanning, “Quan-
tification of 3-D field effects during 2-D microwave imaging,” IEEE

Trans. Biomed. Eng., vol. 49, no. 7, pp. 708–720, 2002.
[16] P. Meaney, K. Paulsen, B. Pogue, and M. Miga, “Microwave image re-

construction utilizing log-magnitude and unwrapped phase to improve
high-contrast object recovery,” IEEE Trans. Med. Imaging, vol. 20, no.
2, pp. 104–116, 2001.

[17] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations,
ser. Frontiers in Applied Mathematics. Philadelphia, PA: SIAM,
1995, vol. 16.

[18] C. T. Kelley, Solving Nonlinear Equations With Newton’s Method.
Philadelphia, PA: SIAM, 2003.

[19] P. Meaney, K. Paulsen, A. Hartov, and R. Crane, “Microwave imaging
for tissue assessment: Initial evaluation in multitarget tissue-equivalent
phantoms,” IEEE Trans. Biomed. Eng., vol. 43, no. 9, pp. 878–890,
1996.

[20] K. Paulsen, P. Meaney, M. Moskowitz, J. Sullivan, and J. M. , “A dual
mesh scheme for finite element based reconstruction algorithms,” IEEE

Trans. Biomed. Eng., vol. 14, no. 3, pp. 504–514, 1995.
[21] K. Paulsen and P. Meaney, “Nonactive antenna compensation for fixed-

array microwave imaging—Part I: Model development,” IEEE Trans.

Biomed. Eng., vol. 18, no. 6, pp. 496–507, 1999.
[22] P. Meaney, K. Paulsen, J. Chang, M. Fanning, and A. Hartov, “Nonac-

tive antenna compensation for fixed array microwave imaging—Part
II: Imaging results,” IEEE Trans. Biomed. Eng., vol. 18, no. 6, pp.
508–518, 1999.

[23] N. Joachimowicz, C. Pichot, and J. Hugonin, “Inverse scattering: An
iterative numerical method for electromagnetic imaging,” IEEE Trans.

Antennas Propag., vol. 39, no. 121, pp. 1742–1753, 1991.
[24] Q. Fang, P. Meaney, and K. Paulsen, “Multi-dimensional phase un-

wrapping: Definition and properties,” IEEE Trans. Image Processing,
accepted for publication.

[25] P. Meaney, E. Demidenko, N. Yagnamurthy, D. Li, M. Fanning, and K.
Paulsen, “A two-stage microwave image reconstruction procedure for
improved internal feature extraction,” Med. Phys., vol. 28, no. 11, pp.
2358–2369, 2001.

Tonny Rubæk (S’02) received the M.Sc.E.E. degree
from the Technical University of Denmark, Lyngby,
in 2004, where he is currently working toward the
Ph.D. degree.

His research areas include linear and nonlinear
microwave-imaging algorithms and associated
hardware.

Paul M. Meaney (M’92) received the A.B. degree
in both computer science and electrical engineering
from Brown University, Providence, RI, in 1982, the
M.S. degree in electrical engineering from the Uni-
versity of Massachusetts, Amherst, in 1985, and the
Ph.D. degree in biomedical engineering from Dart-
mouth College, Hanover, NH, in 1995.

He was an NSF-NATO Postdoctoral Fellow at
the Royal Marsden Hospital in Sutton, England,
from 1996 to 1997. He was a Research Assistant
Professor at Dartmouth College from 1997 to 2003

and a Research Associate Professor since 2003. He has three patents related to
microwave imaging and is coauthor on over 120 journal articles and conference
proceedings. His interests include developing microwave imaging for biomed-
ical applications—especially breast imaging and hyperthermia monitoring.

Peter Meincke (S’93–M’96) was born in Roskilde,
Denmark, on November 25, 1969. He received the
M.S.E.E. and Ph.D. degrees from the Technical
University of Denmark (DTU), Lyngby, Denmark,
in 1993 and 1996, respectively.

In spring and summer of 1995, he was a Visiting
Research Scientist at the Electromagnetics Direc-
torate of Rome Laboratory, Hanscom Air Force
Base, MA. In 1997, he was with a Danish cellular
phone company, working on theoretical aspects of
radio-wave propagation. In spring and summer of

1998, he was visiting the Center for Electromagnetics Research at Northeastern
University, Boston, MA, while holding a Postdoctoral position from DTU.
In 1999, he became a staff member in the Department of Electromagnetic
Systems, DTU. He is currently an Associate Professor with Ørsted-DTU,
ElectroScience Section, DTU. His current teaching and research interests
include electromagnetic theory and scattering, inverse problems, antenna
theory, microwave imaging, and wireless communications.

Dr. Meincke won the First Prize Award in the 1996 IEEE Antennas and Prop-
agation Society Student Paper Contest in Baltimore, MD, for his paper on uni-
form physical theory of diffraction equivalent edge currents. Also, he received
the 2000 R. W. P. King Paper Award for his paper entitled, “Time-domain ver-
sion of the physical theory of diffraction” published in the February 1999 issue
of the IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION.

Keith D. Paulsen (S’85–M’86) received the B.S.
degree in biomedical engineering from Duke Uni-
versity, Durham, NC, in 1981 and the M.S. and
Ph.D. degrees in biomedical engineering from
Dartmouth College, Hanover, NH, in 1984 and 1986,
respectively.

From 1986 to 1988, he was an Assistant Pro-
fessor in the Electromagnetics Group within the
Department of Electrical and Computer Engineering,
University of Arizona, Tucson. He is currently a
Professor at the Thayer School of Engineering,

Dartmouth College and the Director of the Radiobiology and Bioengineering
Research Program for the Norris Cotton Cancer Center within the Dart-
mouth-Hitchcock Medical Center, Lebanon, NH. His research interests include
computational methods with particular emphasis on biomedical problems in
cancer therapy and imaging, and model-guided surgery.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 11, 2009 at 06:56 from IEEE Xplore.  Restrictions apply. 


