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Abstract The use of integrally blisk is becoming popular be-

cause of the advantages in aerodynamic efficiency and mass

reduction. However, in an integrally blisk, the lack of the

contact interface leads to a low structural damping com-

pared to an assembled bladed-disk. One emerging damp-

ing technique for the integrally blisk is based on the use of

friction ring damper which exploits the contact interfaces

at the underneath of the disk. In this paper, three different

geometries of the ring dampers are investigated for damp-

ing enhancement of a blisk. A full-scale compressor blisk

is considered as a case study where a node to node contact

model is used to compute the contact forces. The dynamic

behaviour of the blisk with the ring damper is investigated

by using nonlinear modal analysis which allows a direct es-

timation of the damping generated by the friction interface.

The damping performance for the different ring dampers are

evaluated and compared. It appears that the damping effi-

ciency as well as the shift in the resonant frequency for the

different geometries are highly related to the nodal diame-

ter and contact pressure/gap distributed within contact inter-

face. The geometry of the ring damper has significant impact

on the damping performance.

1 Introduction

Gas turbine engine in aerospace industry becomes

lighter and more efficient. Especially, the bladed disks within

the gas turbine engine are almost driven to their structural

limit due to the higher efficiency required. These bladed

disks usually work under high vibrational stress, thermal

stress and centrifugal stress. The high cycle fatigue caused

by large vibrational stress is regarded as a major reason for

most of the aero-engine failures [1]. However, the mate-

rial damping and aerodynamic damping for bladed disk is
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relatively low and external damping is required to reduce

the level of the vibration through the resonance. Frictional

damping is a common external damping source within the

turbomachinery bladed disk. Various frictional dampers have

been investigated and designed in both numerical analysis

and experimental works [2–5]. The kinematic description of

the contact model for computation of friction has been well-

established in literature [6].

The use of integrally blisk is very popular instead of the

traditional bladed disks. The disk and blades are, in inte-

grally blisk, manufactured in a single piece component lead-

ing to reduction of mass and a better aerodynamic perfor-

mance. But the absence of contact interfaces gives a low

internal damping. Therefore, an alternative damping source

is introduced for the integrally blisk to add external friction

interfaces for extra damping. It often consists in the addition

of a frictional ring damper. The latter is located in the groove

of the integrally blisk and is held against the disk by centrifu-

gal forces. Similar frictional ring dampers are known as ef-

ficient dampers in other rotating structures such as labyrinth

seals [7] and gears [8, 9].

The dynamic analysis of the frictional ring damper for

integrally blisk has been exploited by many researchers. A

lumped parameter model was studied and the qualitative re-

sults were obtained in forced response analysis [10] and us-

ing nonlinear modes [11]. The interested readers can find

some numerical analysis for the ring dampers using a Finite

Element (FE) model in [12–15]. In addition, the compari-

son between the numerical simulation and experimental re-

sults were completed by Laxalde et al. [16]. The geometries

of the frictional ring damper are seldom studied. In a re-

cent published paper, a geometric optimisation of a V-shaped

ring damper was investigated for forced responses in [17].

However, no studies are considering other geometries for

the ring dampers. In this work, different geometries of the
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(a) Full Annulus (b) A Sector

Fig. 1: FE model of the system: (a) Integrally blisk model

with ring damper (red); (b) A sector of blisk and ring damper

(red) with cyclic symmetric boundaries (blue)

frictional ring damper are studied through Nonlinear Modal

Analysis (NMA) and damping performances are quantified

and evaluated. The present study can be considered as the

pioneering work to explore the different geometries (shape

of cross section) of the ring damper in dynamics regime with

the consideration of contact friction.

The dynamic behaviour of systems with contact fric-

tion exhibits strong nonlinearity. NMA is known as an effi-

cient methodology to study systems with nonlinearities, such

as contact friction. Nonlinear modes have been defined by

several researchers using different concepts [18, 19]. The

nonlinear modes in nonlinear damped system are named as

damped Nonlinear Normal Mode (dNNM) [20], which are

considered as the free vibration solutions for a dissipative

autonomous system. Laxalde et al. [21] developed a numer-

ical method using the concept of complex nonlinear mode

for computation of dNNM. An energy dependency is intro-

duced into the definition of the dNNM [21]. The dNNMs

and other modal properties vary with the level of the energy

of the mode. Further, a numerical method to compute a pe-

riodic based dNNMs, namely Extension of Periodic Motion

Concept (EPMC), is developed by Krack [22]. The EPMC

is used in the numerical computation for NMA. The dNNMs

and other modal properties (resonant frequency and modal

damping ratio) can be directly computed through NMA for a

nonlinear system.

It is a complicated task to compute steady state solu-

tion for a nonlinear system. Therefore, various numeri-

cal methods were developed in literature in frequency do-

main [23]. The Harmonic Balance Method (HBM) with

Alternating Frequency/Time (AFT) method is a classic fre-

quency method for dynamic analysis of the nonlinear system

[24]. It has been well implemented in nonlinear vibration

problem for cyclic reduced blisk sector with contact fric-

(a) Ring A (b) Ring B (c) Ring C

Fig. 2: View of the geometries of three ring dampers studied

tion [2, 25]. In addition, the continuation method is widely

used to track the evolution of the system for a specific chas-

ing parameter [26]. Hence, HBM integrated with continua-

tion method is the numerical methodology used in this work

to compute the steady state solution for nonlinear dynamic

system.

The present work aims to study the influence of the ge-

ometry of a frictional ring damper on the dynamic behaviour

of an integrally blisk. The study is performed on a 3D FE

model to represent the blisk and the ring damper, and three

different geometries of the ring damper are considered. The

resonance cases are identified through linear modal analy-

sis and rotor dynamic analysis. The dNNMs, resonant fre-

quency and modal damping ratio are computed through the

NMA in a nonlinear vibration solver and used for the eval-

uation of the damping performance. This paper is organised

as follows: the FE model is described in Section 2; then, the

methodology for pre-processing is introduced in Section 3;

after that, the numerical formulations for nonlinear vibration

solver are briefly explained. Finally, the modal properties

are investigated and the damping abilities are assessed and

compared among different ring dampers.

2 Finite Element Model

The model used in this work is a three dimensional FE

model. This blisk model is designed as a test case for the dy-

namic analysis of the frictional ring damper. This FE model

of the blisk and ring damper is built using the commercial

FE code ABAQUS and is represented in Fig.1, where the

blisk is in grey and the ring damper is in red. The blisk and

the ring damper are entirely made of titanium considered as

a homogenous and isotropic material. A sector of the blisk

and ring are shown in Fig.1(b) and there are 24 sectors in

total. This model contains 1956 elements, where 1848 for

blisk sector and 108 for the sector of ring damper. Each node

has three translational Degree of Freedoms (DoFs). Three

different geometries of ring dampers are considered and rep-

resented in Fig.2. One of them (Ring B) has a flat contact

surface, and the others two are curved (see Fig.2(a, c)). To

perform a dynamic analysis, the following assumptions are

done:

1. Cyclic Symmetry: The blisk is assumed as a perfectly

tuned structure which exhibits cyclic symmetry for the

full annulus. A split ring damper is usually considered
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Fig. 3: X-Z plane of contact interface and node number

for the actual design and leads to a mistuning effect1.

The ring damper has been proved to be efficient for the

mistuned case [10], therefore, this mituning effect is ig-

nored and the ring damper is assumed to be continuous

and cyclic symmetric. The cross section of the ring is

uniform along the full annulus.

2. Kinematic Nonlinearity: The integrally blisks are rigid

enough to avoid kinematic nonlinearity at large vibration

amplitude. Hence, kinematic nonlinearity is ignored in

the nonlinear vibration analysis.

3. Different Ring Geometries: The groove of the blisk is

different due to the different shapes of the rings as shown

in Fig.2. For different ring dampers, the rotational radius

and mass of the ring damper are kept as constant values

for all geometries.

3 Methodology for Pre-processing

The FE model has been described in the previous

section. In this section, the methodology used for pre-

processing is explained in details. The flow chart of the

pre-processing is shown in Fig.4. The objective of the pre-

processing is to identify the resonance cases for nonlinear vi-

bration analysis. A commercial FE solver ABAQUS is used

for the following work. At the first place, a linear modal

analysis is used for the FE blisk model (see Fig.1) to obtain

the Nodal Diameter2 (ND) diagram. Further more, a clas-

sic Campbell diagram is obtained through a rotor dynamics

analysis to take the centrifugal stiffening effect into consid-

eration. Then, several resonance cases are identified through

the Campbell diagram. After that, the blisk with different

ring dampers are analysed with contact model under the reso-

nance case and contact pressure/gap distribution within con-

tact interface are obtained in nonlinear static analysis.

3.1 Nodal diameter diagram

A classic ND diagram is shown in Fig.5, which indicates

the six natural frequencies ωn against ND for the FE blisk

model. The free vibrations of the blisk are indicated in the

figure, which includes 1st bending mode (1B), 2nd bending

mode (2B), 1st torsion mode (1T) and first three families of

1Mistuning refers the break of symmetry for a cyclic symmetric system

due to the small variation in their properties.
2Nodal diameter is defined as the number of diameters in a cyclic sym-

metric structure that have zero displacements.

Blisk
FE Model

Linear
Modal
Analysis

Rotor
Dynamics
Analysis

Nodal Diameter
Diagram

Campbell
Diagram

Resonance
Cases

Blisk
FE Model

Ring Damper
FE Model

Nonlinear Static Analysis 
 with Contact Friction

Contact Pressure N0
Contact Gap Δ

Fig. 4: Flow chart for pre-processing

mode dominated by disk part (1D, 2D, 3D). The modes shape

of these four modes (ND 2 for 1B, 1D, 2B, 1T) are shown

in Fig.6. In ND diagram, the natural frequencies ωn of the

mode family dominated by blade motion do not significantly

vary with the ND, e.g. 1B, 2B and 1T. Whereas if the natural

frequencies ωn of the mode family changes dramatically with

ND, then the mode family is dominated by disk motion (e.g.

1D). The frictional damper is designed to be placed under-

neath the disk. Since the large displacements at the contact

interface are expected, therefore the 1D modes (coloured in

red) are of the most interest for the analysis of frictional ring

damper.
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Fig. 5: Natural frequency against nodal diameter of the blisk

3.2 Campbell diagram

The Campbell diagram (see Fig.7) shows the change of

natural frequencies ωn against engine rotational speed Ω and
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(a) 1st In-plane Bending Mode (1B) (b) 1st Disk Mode (1D)

(c) 2nd In-plane Bending Mode (2B) (d) 1st Torsion Mode (1T)

(e) 1B (f) 1D (g) 2B (h) 1T

Fig. 6: Mode shapes for nodal diameter 2: (a-d) The full

blisk; (e-h) A sector

Engine Order (EO) excitation 3 frequencies. The red lines in

Fig.7 represent the change of natural frequencies of the 1D

family of modes (all possible NDs). The black lines repre-

sent EO excitation which can lead a resonance (marked by

blue dot). From the figure, all possible resonance cases for

1D modes are identified. Three resonance cases (marked by

blue star, listed in Tab.1) are selected and considered for the

subsequent studies.

3.3 Nonlinear static analysis

Through the Campbell diagram, the resonances caused

by EO excitation are identified and three of the resonance

cases are retained for this study. Then, the blisk and ring

damper with contact friction under resonance cases are in-

vestigated by a static analysis. A surface-to-surface contact

model is used and the contact conditions within the contact

interface are computed for nonlinear static equilibrium sta-

tus. A contact pressure distribution and a contact gap dis-

3Engine order excitation is a common source of excitation in turboma-

chinery. It is generally caused by the nonuniformity of the flow, due to the

nonuniformity of the intake, presence of vanes and rotating bladed disks.

The gas steam exerts a non-uniform pressure and flow intensity around the

full annulus of the blisk.
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Fig. 7: Campbell diagram of the blisk and a zoom-in for the

resonances studied (family of 1st disk mode)

Table 1: Resonance Cases Studied

Resonance Case 1 Case 2 Case 3

Engine Order 22 21 20

Rotational Speed 1,127 2,471 4,643

Nodal Diameter 2 3 4

Normalised ωn 1.46 3.06 5.48

tribution are used to represent the contact conditions. This

static contact conditions are considered as the preloading for

the nonlinear vibration analysis.

4 Nonlinear Vibration Solver

The FE model of the blisk and ring damper as well as

the methodology for pre-processing have been presented in

previous sections. The nonlinear vibration solver is intro-

duced in this section. The flow chart of the nonlinear vibra-

tion solver is shown in Fig.8. Firstly, reduced model meth-

ods applied are introduced. Then, the contact model used in

vibration analysis is described. After that, the numerical for-

mulations for the computation of dNNM are well explained.

4.1 Model reduction

For the 3D FE model, reduced order modelling is im-

portant to reduce the computation costs [27]. Generally, the

blisk are assumed to be perfectly tuned structures with cyclic

symmetry. The mass and stiffness matrices (Mb, Mr, Kb,

Kr) of the blisk sector and the sector of ring damper are cal-

culated at the first place. Then, Craig-Bampton method [28]

is used to reduce the size of system. The DoFs within con-

tact interface and cyclic boundaries are kept as master DoFs.

After that, the cyclic symmetric reduction [25] is applied to

reduce left cyclic boundary. The computational time is ex-

pected to be reduced to a reasonable level by using such

model reduction strategy. The reduced mass and stiffness

matrices (M̃CB, K̃CB) are calculated and used for the subse-
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Criag-Bampton Reduction
MCB, KCB

Cyclic Symmetry ReductioñMCB, ̃KCB
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Nonlinear Modal Properties ω0, ζ

Fig. 8: Flow chart for nonlinear vibration solver

quent studies.

4.2 Contact model

To model the contact between the ring damper and the

blisk, the combination of two Jenkins elements (in contact

plane) and a unilateral spring is used to compute the con-

tact forces between the contact surfaces. This Coulomb-type

contact model with varied normal reaction forces was pro-

posed by Yang et al. [6] and is represented in Fig.9. In the

normal direction, the unilateral-elastic behaviour with a stiff-

ness kn and a preload N0 (or initial gap ∆ for negative N0) is

considered. Whereas, in the tangential direction, elastic dry

Coulomb friction with coefficient µ and stiffness kt1 and kt2

is considered. All the contact parameters are selected based

on [4]. In this 3D contact model, a node-to-node contact

force is calculated. The preload for each contact node is

determined through the nonlinear static analysis. There are

28 nodes within the contact interface (between the under-

neath of the blisk and upper surface of the ring damper). The

overview of contact interface and node number is shown in

Fig.3. To understand the contact behaviour within the con-

tact interface, the energy dissipated by each contact node for

one vibration period is calculated by simply integrating the

tangential friction force with respect to tangential displace-

ment (the area enclosed by hysteresis loop) [29].

4.3 Nonlinear modal analysis

The various numerical techniques used for the compu-

tation of the dynamic responses of the system with con-

tact model are described in this section. At the first place,

the Equation of Motion (EoM) based on the numerical

method (EPMC) is described. Then, a well-established HBM

for the computation of the dNNMs is presented. After that,

the continuation method is described

The EoM for such an autonomous system with contact

kt1 kt2kn

Δ= −N0
kn

μ

n(t)
t2(t)

t1(t)

̂t2

̂t1 ̂n

Fig. 9: 3D contact model

friction can be expressed as Eqn.(1), where M̃CB and K̃CB,

are reduced mass and stiffness matrices respectively. Q(t)
is the reduced displacements (including modal coordinates)

vector after cyclic symmetric reduction and CB-CMS. Fnl

corresponds to the friction forces determined with the contact

model described above.

M̃CBQ̈(t)+ K̃CBQ(t)+Fnl(Q) = 0 (1)

The properties of the dNNM vary with the level of

the energy of the system. To quantify the energy level

of the dNNM, a modal amplitude α is introduced into the

system. Then, the displacement Q(t) can be presented as

Q(t) = α×Q0(t), where Q0(t) is a mass normalised solu-

tion. The system is non-conservative due to the energy lost

by contact friction, the free vibration solutions of the sys-

tem are not periodic. According to EPMC [22], an arti-

ficial mass proportional modal damping is introduced into

this autonomous system. The artificial damping matrix C̄ is:

C̄ = −2ω0ζM̃CB, where ω0 is resonant frequency and ζ is

modal damping ratio. The modal damping ratio ζ is used

to quantify the damping generated by contact friction. Both

the resonant frequency ω0 and the modal damping ratio ζ
vary with the energy level of the mode or modal amplitude

α. Therefore, for a given modal amplitude α, the resonant

frequency ω0 and the modal damping ratio ζ are regarded

as unknown modal properties and expected to be calculated

during the numerical simulation. Hence, the EoM for the

computation of dNNM can be written as the equation below.

Then, HBM integrated with continuation method is used to

solve Eqn.(2) for a range of modal amplitude α.

α(M̃CBQ̈0(t)+ C̄Q̇0(t)+ K̃CBQ0(t))+Fnl(α,Q0) = 0 (2)

4.3.1 Harmonic balance method

HBM with AFT is used to compute the dNNMs [2, 24].

Generally, HBM is also known as Fourier-Galerkin method,

through which all the properties in time domain are decom-

posed by Fourier series truncated to certain order of harmon-

ics Nh. Hence, the solution of Eqn.(2) can be discretised as

Eqn.(3), where Q̃p = Q̃c
p − iQ̃s

p is the cosine and sine terms

associated to the harmonic p.
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Q0(t) =
Nh

∑
p=0

real
{

Q̃p · [cos(pω0t)+ isin(pω0t)]
}

(3)

When all properties in time domain are decomposed

as Eqn.(3), the EoM in frequency domain is obtained as

Eqn.(4), where A(ω0,ζ) is the dynamic stiffness matrix,

Q̃ is the collection of Fourier coefficients of the solutions

Q̃ = [Q̃p=0, Q̃p=1, · · · , Q̃p=NH
]T. F̃nl(α, Q̃) is vector of the

nonlinear contact friction force given in Fourier basis. It is

determined with the AFT procedure [24].

αA(ω0,ζ) · Q̃+ F̃nl(α, Q̃) = 0 (4)

As mentioned above, the Q0(t) is mass normalised solu-

tions. Therefore, an extra constraint for mass normalisation

is given as: Q̃T
·M̃CB · Q̃−1 = 0. In addition, absolute phase

is arbitrary for an autonomous system. Hence, a constraint

for phase normalisation is also required as: imag(Q̃1
p) = 0,

through which the absolute phase of the first DoF is fixed to

zero.

4.3.2 Continuation method

For dNNMs, the resonant frequency ω0 and modal

damping ratio ζ are modal amplitude α dependent. There-

fore, the continuation method is used to track the evolution

of the system behaviour against a specific chasing parame-

ter. In NMA, the dNNMs and other modal properties are ex-

pected to be computed for a range of modal amplitude. Read-

ers can refer to [26] for a detailed description and numerical

formulation of continuation process. A secant predictor and

arc-length corrector are exploited in this work.

5 Results

In this section, the three resonance cases listed in Tab.1

are considered and results for the three different geometries

of the ring damper presented in Fig.2 through NMA are

shown and discussed in the following.

5.1 Static contact condition

The static contact conditions from nonlinear static anal-

ysis are shown at the first place. The contact pressure and gap

distribution at the contact interface are represented in Fig.10

for three ring dampers for the 1st resonance case. The con-

tact interface and contact node is given in Fig.3. The contact

pressure distributions are shown in top row and contact gap

distribution are shown in bottom row. Generally, the contact

pressure is higher in the middle and lower near the bound-

aries of the sector (along X axis). This is caused by the

higher centrifugal loading in the middle of the blisk due to

the existence of blade. By looking at the contact gap, the

nodes located on the boundaries of the sector show the larger

separation. The contact pressure/gap are used in the contact

model as the preloading conditions for NMA.

5.2 Nonlinear modal analysis

The numerical methodologies presented in the previous

section are applied and for a range of modal amplitude α.

To quantify the modal amplitude in a physical demonstra-

tion, the displacement of the tip of the blade are calculated.

The dNNMs and other modal properties, including resonant

frequency ω0 and modal damping ratio ζ, are computed for

all the three resonance cases and ring dampers. The three

resonances cases studied are given in Tab.1 and Fig.2. The

modal damping ratio ζ computed through the NMA is used

to quantify the damping generated by the ring damper. The

modal properties are shown with respect to the displacement

of the tip of the blade. The resonant frequencies ω0 are nor-

malised by the linear natural frequency of the baseline struc-

ture, when ring is attached to the blisk and in a static equilib-

rium status with contact friction. Based on the contact model

used, there are three general contact status, namely sticking,

sliding and separating. Whereas, the nodes which show both

separation and sliding during one vibration period are named

as partial-separating-partial-sliding in this work. The evolu-

tion of the resonant frequency ω0 and modal damping ratio

ζ for all three geometries are illustrated in Fig.11. The left

column shows the change of resonant frequency ω0 against

displacement, whereas the right column represents the evo-

lution of the modal damping ratio ζ. At low level of vibration

amplitude (small displacement), the contact nodes are either

sticking or separating, which depend on the preload applied

to each contact node within contact interface. The modal

properties in Fig.11 are plotted against the displacement un-

til the maximum modal ratio is achieved. It happens when

the whole ring is sliding and a rigid body rotation of the ring

occurs. The three rings show the rigid body rotation at differ-

ent level of displacement leading to the differences in ending

displacement.

The variation of the resonant frequency ω0 with respect

to the displacement in Fig.11(a, c, e) is typical to a structure

with contact friction. Generally, the increase in ω0 in the

Fig.11(e) is caused by that those nodes which are separated

at static equilibrium and becomes either sticking or sliding.

When the nodes start to slide, a softening effect can be ob-

served and the resonant frequency ω0 decreases.

By considering the evolution of the modal damping ratio

ζ for three ring dampers on Fig.11 (b, d, f), one can observe

that the damping ability of the three dampers increase when

the ND increases. Indeed, for the resonance case 1 (ND= 2),

the maximum modal damping ratio is 0.13%. For the reso-

nance case 3 (ND = 4), the maximum modal damping ratio

is around 0.21% . At low engine orders, the motion partici-

pated by the disk increases with the ND [10]. Therefore, the

mode family 1D with ND4 shows higher frictional damping

than the case with ND2. Compared among the three ring

dampers, the Ring C shows the maximum modal damping

ratio ζ for all three resonances (0.13%, 0.18% and 0.21%).

In Fig.11(e) for Ring B, the resonant frequency ω0 in-
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(a) Ring A (b)  Ring B (c)  Ring C

(d) Ring A (e)  Ring B (f)  Ring C

Fig. 10: Static contact conditions for the three rings in resonance case 1: (a-c) Contact pressure distribution; (d-f) Contact

gap distribution
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(e) Resonance 3
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(f) Resonance 3
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Fig. 11: Nonlinear modal properties: (a, b) Resonance case 1, (c, d) Resonance case 2, (e, f) Resonance case 3; Left:

Normalised resonant frequency; Right: Modal damping ratio
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creases to 1.015 at the level of displacement 0.005 mm.

When the system starts to vibrate at low level of ampli-

tude, those separated nodes with small initial gap become in-

contact and a larger stiffness is achieved leading to a higher

resonant frequency. As for modal damping ratio ζ, a small

peak is observed in low level of amplitude and the zoom-in

of the peak is also shown in the Fig.11(f). The modal damp-

ing ratio ζ increases to 0.03% and gradually reduce to value

around 0.008%. The separated nodes with small gap start

to slide at low amplitude and the frictional damping is gen-

erated. In this case, the nodes are partial-separating-partial-

sliding within one period of vibration. The modal damp-

ing ratio for these nodes increases with the proportion of the

sliding status. The gradual decrease of the modal damping

ratio is caused by increased proportion of the separation in

partial-separating-partial-sliding. The similar phenomenon

was found and described in [30].

5.3 Dynamic contact condition

The evolution of the modal damping ratio ζ and res-

onant frequency ω0 with respect to the displacement have

been described above. To further investigate the contact phe-

nomenon, the evolution of contact status and energy dissi-

pated for each contact node are considered for the three ring

dampers under resonance case 3 as shown in Fig.12. The

left column in the figure (a, c, e) demonstrates the evolu-

tion of the contact status for all contact nodes. In Fig.12 (a,

c, e), red circles represent the separation; blue squares are

partial-separating-partial-sliding; black triangles are sliding

status; the sticking status are left as no markers. The right

column (b, d, f) shows the energy dissipated for each con-

tact node, the bandwidth and colour represent the magnitude

of the energy dissipated. The contact node map is given in

Fig.3.

In Fig.12 (b, d, f), it is obvious that the Ring C shows

largest amount of energy dissipated, which corresponds to

the results in Fig.11(f). By considering both contact status

and energy dissipation, the higher level of energy dissipation

can be observed in nodes which are sliding (black triangles,

i.e. node 1, 4, 8 for Ring C). The energy dissipated is zero

for the sticking nodes and separated nodes (red circles). For

the nodes which are partial-separating-partial-sliding (blue

squares), the energy dissipated is in a relatively low level

compared to the sliding nodes. Taking the node 6 (partial-

separating-partial-sliding node) for Ring C as an example,

the energy dissipated for node 6 at maximum displacement

is 2e−3 J, which is much lower than 5.7e−2 J the value of

node 8 (sliding node).

The evolution of resonant frequency and modal damp-

ing ratio for Ring B under resonance case 3 are discussed

in previous section. The evolution of the contact status

for Ring B are shown in Fig.12(c). Compared to other

two rings, these separated nodes in Ring B (i.e. node 2,

3) become partial-separating-partial-sliding at lower ampli-

tude. Once they transit from separation to partial-separating-

partial-sliding, the system becomes stiffer leading to an in-

crease in the resonant frequency. The energy is dissipated

(a) Ring A (b)  Ring A

(c)  Ring B (d) Ring B

(e)  Ring C (f)  Ring C

Fig. 12: Contact conditions for three rings, resonance case

3: Left: Contact status (separation ❯ , partial-separation-

partial-slidingP , sliding◗ ; Right: Energy dissipation

by those nodes, which are partial-separating-partial-sliding.

Therefore, a positive modal damping ratio is obtained.

6 Conclusion

A three-dimensional finite element model is used in this

work to represent the integrally blisk and ring damper. Three

different ring dampers are studied through nonlinear modal

analysis and damping abilities are assessed and compared us-

ing the modal damping ratio. The maximum modal damping

ratio can be efficiently identified through nonlinear modal

analysis when the full ring has a rigid body rotation. The

general damping achieved by ring damper is around 0.1% to

0.2%. The ring with curved contact surface (Ring C) has the
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best damping performance among three ring dampers stud-

ied in this work. The damping ability varies with mode and

nodal diameter. The contact pressure and gap within the

contact interface also have significant impact on the damp-

ing performance. Separations within contact interface are

expected to be avoided to achieve a higher damping perfor-

mance. A topological optimisation for the cross section of

the ring damper is considered as the future work.
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