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A theoretical and experimental investigation is presented on the intermodal coupling between the

flexural vibration modes of a single clamped-clamped beam. Nonlinear coupling allows an arbitrary

flexural mode to be used as a self-detector for the amplitude of another mode, presenting a method to

measure the energy stored in a specific resonance mode. The observed complex nonlinear dynamics are

quantitatively captured by a model based on coupling of the modes via the beam extension; the same

mechanism is responsible for the well-known Duffing nonlinearity in clamped-clamped beams.
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An important topic in nanomechanics is the motion

detection of mechanical resonators. Several schemes

have been proposed to attain sensitivities near the quantum

limit of mechanical motion [1], whereas application-driven

research is focussed on on-chip detection [2] and readout

of resonator arrays [3]. Central in any detection scheme is

the coupling of a mechanical resonator to another system,

which transduces the motion into a measurable quantity.

Examples of sensitive detectors include a single-electron

transistor [4], a microwave cavity [5], or an optical inter-

ferometer [6]. A second mechanical resonator can also be

used to detect the motion of the resonator [7,8]. Such a

system of coupled resonators has been proposed as a

quantum nondemolition detection scheme, in which one

resonator is in a quantum state [9]. Coupling between

different mechanical resonators is often present in large-

scale integrated arrays due to electrostatic [7] and me-

chanical interaction [8]. Coupling between individual res-

onators can also lead to complex behavior [10].

In this Letter, we study the coupling between vibrational

modes in a single beam resonator. We demonstrate that

flexural modes are coupled by the displacement-induced

tension in the beam. Using this coupling, the displacement

of any mode can be detected by measuring the response of

another mode. We present a general theoretical framework

based on the Euler-Bernoulli equation extended with

displacement-induced tension. The model quantitatively

describes the complex dynamic behavior observed in the

regime where two modes are simultaneously driven non-

linear. The coupling mechanism plays an prominent role in

the dynamics of carbon nanotube resonators and resonators

under high tension, and should be taken into account when

describing such systems accurately.

Experiments are performed on a single-crystalline sili-

con beam with dimensions L� w� h ¼ 1000� 35�
6 �m3 fabricated by patterning a silicon-on-insulator wa-

fer and subsequent wet etching. The resonator is placed in a

magnetic field of B ¼ 2:1 T and a magnetomotive tech-

nique [3,11] is used to detect the mechanical motion of the

beam at room temperature and atmospheric pressure [see

Fig. 1(a)]. The beam is driven at multiple frequencies by

sending alternating currents through a conductive alumi-

num path, evaporated on top of the resonator. The beam

motion in the magnetic field generates an electromotive

force, which is balanced using a Wheatstone bridge, am-

plified, and digitized. The frequency response (amplitude

and phase) of the resonator at the two drive frequencies is

calculated using a digital signal processor.

Measurements are conducted on the first and third flexu-

ral mode of the beam. In Fig. 1(b) the frequency response

of the third mode is shown for three different drive ampli-

tudes of the first mode. The resonance frequency of the

third mode increases when the amplitude of the first mode
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FIG. 1 (color online). (a) Setup, with a colored scanning

electron micrograph of the resonator beam. DSP is the digital

signal processor, R is used to balance the bridge and set to 22 �

and A is the amplifier. (b) Frequency responses of the third mode

(amplitude jA3j) for different drive amplitudes of the first mode

jA1j on resonance. The drive current of mode 3 is I3 ¼ 1:5 mA.

Inset: beam shapes of the first (solid) and third mode (dashed) for

increasing amplitude of the first mode. (c) Resonance frequency

of mode 3 (fR;3) as a function of jA1j: measurements (black

squares) and model (red line). For small drive currents a qua-

dratic dependence is observed (dashed blue line). Inset: sche-

matic of the resonator showing the beam shape of the first (blue)

and third (red) mode. (d) On a different device, the resonance

frequency of the first mode is used to detect the second mode.

Inset: beam shape of the first (blue) and second (red) mode. The

error bars are within data markers.
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jA1j becomes larger. At the same time the amplitude de-

creases slightly. The resonance frequency fR;3, obtained by
fitting a damped driven harmonic oscillator response, is

plotted as a function of the drive amplitude of the first

mode in Fig. 1(c). For small amplitudes jA1j, a quadratic

dependence of fR;3 on jA1j is found [dashed line in

Fig. 1(c)]. A qualitative picture explaining the mode cou-

pling is presented in Fig. 1(b). When driving the third mode

on resonance, the tension in the beam increases as the

amplitude of the first mode increases. This results in a

higher frequency and a lower amplitude of the third mode.

Using the magnetomotive measurement scheme it is not

possible to detect the even resonance modes. However, by

exploiting the coupling to detectable odd modes, their

motion is observable. We have detected the motion of

the second mode by measuring its influence on the first

mode. To drive the second mode, the sample (different

device, h ¼ 10 �m) is mounted on a piezo actuator and

excited at frequencies around the second resonance mode.

Off-resonance, no frequency shift of the first mode is

observed. When driven at fR;2, fR;1 shifts to a higher value
[Fig. 1(d)]. The response of the second mode is obtained by

measuring the shift in fR;1, whereas a magnetomotive

measurement around the same frequency shows no signa-

ture of the second mode. For weak piezo driving the

frequency shift is proportional to jA2j
2 and a squared

damped driven harmonic oscillator function fits the data

well with f2 ¼ 287 kHz and Q ¼ 250.

In order to quantify the coupling between the flexural

modes of the beam, an analytical model is developed. First,

the equations are derived for the general situation with

modes coupled; then we focus on the experimental situ-

ation, where only two modes are considered. The Euler-

Bernoulli equation including tension T [12–14] is used as

starting point. To simplify the notation, the displacement u
is scaled with the beam thickness h, and the coordinate x
with the beam length L. A displacement of the beam causes

an elongation and increases the tension. The dimensionless

tension T ¼ L2T =D (D is the bending rigidity) is given by

T ¼ T0 þ
�

2

Z 1

0

�
@u

@x

�
2

dx: (1)

T0 is the residual tension in the beam and � ¼ h2A=Iy, with

Iy the second moment of inertia and A the cross section.

For a rectangular beam � equals 12 [15]. The displacement

u and dimensionless force F ¼ L4F =Dh can be split into a
dc and an ac part, i.e., u ¼ udc þ uac and F ¼ Fdc þ Fac.

This yields a well-known equation for the static displace-

ment [12–14] and an equation for the ac motion

€uac þ � _uac þL½uac� � ðT � TdcÞu
00
ac

� ðT � T � TacÞu
00
dc
¼ Fac: (2)

Here, Tdc is the residual tension plus the tension from the

dc displacement and �T is the time-averaged tension, which

also contains terms proportional to u2ac. For small ac dis-

placements �T � Tdc. Tac contains all terms that are linear

in uac. The operator L½u� is defined as [14]

L ½u� ¼ u0000 � Tdcu
00 � Tac½u�u

00
dc
: (3)

The first three terms on the left-hand side of Eq. (2)

determine the linear response of the system. The nonline-

arity is introduced with u2ac and u
3
ac, which occur in the last

two terms.

The resonance frequency for infinitesimal small ampli-

tudes !2
0;i and the corresponding shape �iðxÞ of mode i are

the eigenvalues and orthonormal eigenfunctions of L re-

spectively. The ac displacement is expanded in terms of the

mode shapes as uac ¼
P

1
i¼1

uiðtÞ�iðxÞ. The dc displace-

ment is defined as udc � u0�0ðxÞ, and
R
1
0
�0
iðxÞ�

0
jðxÞdx is

denoted as Iij. The value of the integral Iij depends only on

the shapes of mode i and j and can be calculated numeri-

cally. Using this notation the tension T is

TðtÞ ¼ T0 þ
�

2

X1

i;j¼0

uiðtÞujðtÞIij; (4)

so that Tdc ¼ T0 þ
�
2
u2
0
I00 and Tac ¼

�
2
u0

P
1
n¼1

unIn0. For

nonzero amplitudes un the tension increases, tuning the

resonance frequencies !R;i away from !0;i. The effect of

the resonance frequency on its own motion results in a

Duffing equation (i.e., the resonance frequency increases

with its own amplitude). Based on the same concept, the

tuning of the resonance frequency due to the motion of

other modes can be envisaged and this coupling is the

central theme of this work.

The beam displacement driven at frequencies !i is

uðx; tÞ ¼
X

i

jaij�iðxÞ cosð!itþffaiÞ; (5)

where the ai ¼ Ai=h are the complex amplitudes of the

mode at !i. Substituting Eq. (5) into Eq. (4) gives an

expression for the total tension. The two tension terms in

the ac equation are given by

T�Tdc¼
�

2

X

i>0

�
1

2
jaij

2Iiiþ
u0
2
aie

i!itI0iþc:c:

�

þðT�T�TacÞ

T�T�Tac¼
�

4

X

i�j>0

�
1

2
a2i e

i2!itIiiþaia
�
je

ið!i�!jÞtIij

þaiaje
ið!iþ!jÞtIijþc:c:

�

: (6)

Here, c.c. stands for the complex conjugate of the term

before c.c. in parentheses. The expressions for the tension,

Eq. (6), are substituted in the equation of motion, Eq. (2).

The time-averaged equation for the amplitude of mode i
driven at frequency !i, is then given by

X

i�j>0

��

!2
0;i�!2

i þ i!i!0;i=Qiþ
�

4
jaij

2I2ii

þ
�

4
ðjajj

2IiiIjjþjajj
2I2ijÞ

�

ai�
Z 1

0

Fac�idx

�

¼0; (7)
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where Fac ¼ L4F ac=Dh is the dimensionless ac force. So

far, the analysis is valid for any flexural resonator. We now

focus on the experimental situation where, unlike in

buckled beams [13] and stringlike resonators [16], the

residual tension does not play a significant role, T0 ¼ 0.

Moreover, the static displacement u0 ¼ 0, which may not

be the case for carbon nanotube resonators [17], where a

gate voltage induces a static displacement. We finally

assume that the resonances are resolvable: j!R;i �

!R;jj � !R;i=Qi þ!R;j=Qj for i � j. The homogeneous

force per unit length on the beam is F ac ¼ BI, where I is
the current through the resonator.

To compare the model with the data in Fig. 1(c), we first

extract the experimental values of the parameters. The

resonance frequencies for the first and third mode are f1 ¼
48:2 kHz and f3 ¼ 273:4 kHz, close to the predicted val-

ues of 46.1 and 249 kHz for a beamlike resonator. Their Q
factors are Q1 ¼ 41 and Q3 ¼ 172. The values of Iij
determine the coupling strength: I11 ¼ 12:3, I33 ¼ 98:9,
and I13 ¼ I31 ¼ �9:7. The average displacement of the

modes per unit deflection,
R
1
0
�iðxÞdx, are 0.83 and 0.36 for

mode 1 and 3, respectively. The model is solved numeri-

cally by calculating the amplitudes of the two modes self-

consistently for the experimental conditions and without

any free parameters. The calculated resonance frequency

of the third mode as a function of the amplitude of the first

mode is shown in Fig. 1(c). Excellent agreement is found

between the observed frequency shift and the prediction by

the model. For large amplitudes, the resonance frequency

scales with jA1j
2=3, indicating that the beam is in the strong

bending regime [12]. For small jA1j, the tuning is quadratic
and the third mode can be used to detect the amplitude of

the first mode with a sensitivity of 0:18 Hz nm�2, which is

determined from the quadratic curve in Fig. 1(c).

To further test the consistency of our model, we study

the complex dynamics of the coupled modes. When driv-

ing both modes nonlinear, interesting features are ob-

served. In Fig. 2(a) the amplitude of the nonlinear first

mode is plotted versus the driving frequencies f1 and f3.
Simultaneously, the amplitude of the third mode is re-

corded [Fig. 2(b)]. The two modes interact with each other

as the nonlinear line shape of one mode is reflected in the

response of the other mode. Also a frequency response

with two peaks, which is clearly different from a Duffing

line shape, is observed as illustrated more clearly in

Figs. 2(e) and 2(f). The two peaks arise from the bistable

first mode, where two values for the amplitude are possible.

These two amplitudes correspond to two values of the

tension, which leads to two resonance frequencies of the

third mode and to two peaks in its frequency response. The

simulation with the parameters as stated above, reproduces

all observed features in the amplitude of both modes

[Figs. 3(c) and 3(d)]. This indicates that the model captures

the coupling mechanism in detail [18].

An example of how the coupling between the modes can

be used in practice is the increase in the dynamic range of

the mechanical resonator. In small-scale resonators the

dynamic range is limited by the nonlinear response at

strong driving amplitudes, which is disadvantageous for

many applications [19,20]. Our analysis and experiments

show that there is a way to extend the dynamic range of one

mode by driving another mode on resonance at high ampli-

tudes. Figures 3(a) and 3(c) show the frequency response of

the third mode when the frequency of the first mode is

swept across its nonlinear resonance. Away from fR;1 the

third mode shows a Duffing-like response as illustrated in

the top and bottom panel of Figs. 3(b) and 3(d). However,

when driving the first mode on resonance (middle panel)

the third mode displays a hysteresis-free response. Effec-

tively, the nonlinearity constant in the Duffing equation is

decreased, which can be understood as follows: when the

third mode enters its resonance, its amplitude increases and

the increased tension tunes the resonance frequency of the

first mode up. The amplitude of the first mode then drops,

reducing the tension and lowering the resonance frequency

of the third mode. This feedback mechanism reduces the

FIG. 2 (color online). Frequency-frequency response of the

simultaneously driven and detected first and third mode. The

drive frequency of the third mode is swept, while driving the first

mode at a fixed frequency. After each sweep the frequency of the

first mode is increased. The amplitudes jA1j (a) and jA3j (b) are
recorded. The driving currents are I1 ¼ 0:8 mA and I3 ¼
7:0 mA. Red indicates a high amplitude and blue corresponds

to a low-amplitude response. Simulations are shown in (c) and

(d). The frequency response is plotted for the amplitude of mode

1 (e) and mode 3 (f) at f1 ¼ 48 kHz.
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cubic stiffness of the third mode and makes the third mode

linear, thereby increasing the dynamic range.

The presented model applies to any clamped-clamped

geometry, ranging from suspended bridges to carbon nano-

tubes. For nanomechanical devices with high aspect ratios,

the flexural rigidity can be neglected and the restoring

force originates from the axial rigidity. The energy of the

resonator is stored in the beam elongation which couples

directly to the ac tension. This increases the coupling be-

tween the resonance modes and makes the detection

mechanism well suited for nanowires and nanotubes. Fur-

thermore in nanomechanical devices, significant residual

tension (T0) may be present in the beam. Only the numeri-

cal values Iij (the off-diagonal elements Iij ¼ 0, I11 ¼ 9:9,

and I33 ¼ 88:8) change in that case, and the coupling

remains of the same order of magnitude. To quantify the

effect of modal interactions in a nanomechanical resonator

with tension, we consider the suspended carbon nanotube

with a high-quality factor from Ref. [21]. Taken the pa-

rameters listed in that paper, we calculate the sensitivity of

the third mode to the amplitude of the first mode. We find a

value of 1 MHz nm�2, which is more than 6 orders of

magnitude larger than the value found from the dashed

line in Fig. 1(c).

In conclusion, we have measured the coupling between

flexural modes of a clamped-clamped beam resonator by

simultaneously driving the beam at multiple frequencies.

When describing the motion of a mechanical resonator, it is

necessary to include this interaction, since this mechanism

divides the available energy over the modes, and plays a

role in the energy dissipation in the resonator. A theoretical

model is developed, which couples arbitrary flexural

modes via the tension. The model is in excellent agreement

with the measurements and quantitatively captures the

observed complex dynamics. The nonlinear coupling can

be used to detect resonance modes that would otherwise be

inaccessible by the experiment, to tune the nonlinearity

constant, and to increase the dynamic range of micro- and

nanomechanical resonators.
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FIG. 3 (color online). (a) Frequency-frequency response for

the forward sweep of the third mode. Red indicates a high

amplitude and blue corresponds to a low amplitude. On reso-

nance of the first mode, the third mode is linear and off-

resonance it is nonlinear. (b) Forward (black lines) and back

(red lines) sweeps below resonance, on resonance and above

resonance, with f1 ¼ 45, 52 and 55 kHz, respectively. Driving

currents are I1 ¼ 2 mA and I3 ¼ 8 mA. (c) Result of the simu-

lation with parameters extracted from the experiment.

(d) Simulated responses for the situation in (b).
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