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We discuss a nonlinear model for relaxation by energy redistribution within an isolated, closed system
composed of noninteracting identical particles with energy levels ei with i=1,2 , . . . ,N. The time-dependent
occupation probabilities pi�t� are assumed to obey the nonlinear rate equations � dpi /dt=−pi ln pi−��t�pi

−��t�eipi where ��t� and ��t� are functionals of the pi�t�’s that maintain invariant the mean energy
E=�i=1

N eipi�t� and the normalization condition 1=�i=1
N pi�t�. The entropy S�t�=−kB�i=1

N pi�t�ln pi�t� is a nonde-
creasing function of time until the initially nonzero occupation probabilities reach a Boltzmann-like canonical
distribution over the occupied energy eigenstates. Initially zero occupation probabilities, instead, remain zero at
all times. The solutions pi�t� of the rate equations are unique and well defined for arbitrary initial conditions
pi�0� and for all times. The existence and uniqueness both forward and backward in time allows the recon-
struction of the ancestral or primordial lowest entropy state. By casting the rate equations in terms not of the
pi’s but of their positive square roots �pi, they unfold from the assumption that time evolution is at all times
along the local direction of steepest entropy ascent or, equivalently, of maximal entropy generation. These rate
equations have the same mathematical structure and basic features as the nonlinear dynamical equation pro-
posed in a series of papers ending with G. P. Beretta, Found. Phys. 17, 365 �1987� and recently rediscovered
by S. Gheorghiu-Svirschevski �Phys. Rev. A 63, 022105 �2001�; 63, 054102 �2001��. Numerical results
illustrate the features of the dynamics and the differences from the rate equations recently considered for the
same problem by M. Lemanska and Z. Jaeger �Physica D 170, 72 �2002��. We also interpret the functionals
kB��t� and kB��t� as nonequilibrium generalizations of the thermodynamic-equilibrium Massieu characteristic
function and inverse temperature, respectively.
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I. INTRODUCTION

Much work has appeared in recent years on the study of
entropy-generating irreversible nonequilibrium dynamics.
Limited discussion of previous work is found in �1–3� and
references therein, but no thorough critical review of the sub-
ject is available, although it would be very helpful to provide
proper acknowledgement of pioneering work, avoid “redis-
coveries” such as in �4�, and outline the different frame-
works, motivations, approaches, and controversial aspects.
To be sure, recent discussions �2,4–6� on possible fundamen-
tal tests of standard unitary quantum mechanics, related to
the existence of “spontaneous decoherence” at the micro-
scopic level, and on understanding and predicting decoher-
ence in important future applications �7� involving nanomet-
ric devices, fast switching times, clock synchronization,
superdense coding, quantum computation, teleportation,
quantum cryptography, etc., show that the subject of irrevers-
ible nonequilibrium dynamics is by no means settled.

It is not the purpose of this paper to attempt such a diffi-
cult review, nor to address the related fundamental issues
lurking beneath interpretation �see, e.g., �8–10��. Rather we
wish to address the model problem recently outlined in �1�.

This model may prove useful to complement various his-
torical and contemporary efforts to extend linear Markovian
theories of dissipative phenomena and relaxation based on

master equations, the Lindblad and Langevin equations, to
the nonlinear and far nonequilibrium domain. For example,
spectroscopic studies of the effects of vibrational relaxation
on line shapes of two-level electronic transitions cannot be
regularized under the Markovian approximations so that
various nonlinear approaches are being developed and tested
�11� in some cases at the expense of giving up preservation
of �complete� positivity �12� or Hermiticity �13� of the �re-
duced� density operator.

Again, it is not our purpose here to review the literature of
these specific potential applications of our model dynamics,
nor to apply it explicitly to particular examples. Rather we
wish to focus on illustrating its general features �including
preservation of positivity and Hermiticity at all times, even
backward� that make it a good candidate �that is, compatible
with all reasonable requirements imposed by thermodynamic
principles �14�� of extensions of the traditional linear master
equations for open-system dynamics, capable of including
the description of nonlinear spontaneous relaxation within
the system �even if isolated� by energy redistribution be-
tween the occupied levels.

We consider an isolated, closed system composed of non-
interacting identical particles with single-particle energy lev-
els ei with i=1,2 , . . . ,N where N is assumed finite for sim-
plicity and the ei’s are repeated in case of degeneracy. We
restrict our attention to the class of dilute-Boltzmann-gas
states in which the particles are independently distributed
among the N �possibly degenerate� one-particle energy
eigenstates. In density operator language, this is tantamount*Electronic address: beretta@unibs.it
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to restricting attention to the subset of one-particle density
operators that are diagonal in the representation which diago-
nalizes the one-particle Hamiltonian operator. We denote by
pi the occupation probability of the ith eigenstate, so that the
per particle mean energy, normalization, and entropy func-
tionals are given by the relations

E�p� = �
i=1

N

eipi, U�p� = �
i=1

N

pi,

S�p� = − kB�
i=1

N

pi ln pi, �1�

where p denotes the vector of pi’s, the Boltzmann constant
kB may be used to nondimensionalize S �or we may assume
for simplicity kB=1 unit of entropy�, and of course U�p�=1
for any normalized distribution p.

As is well known, for a given value of E, the
thermodynamic-equilibrium canonical distribution

pj
se�E� =

exp�− �se�E�ej�

�
i=1

N

exp�− �se�E�ei�

�2�

has inverse temperature �se�E�=1/kBT�E� and maximal en-
tropy Sse�E�=−kB�i=1

N pi
se�E�ln pi

se�E�.
We are interested in studying the dynamics of a nonequi-

librium distribution obtained, for example, by exciting some
energy eigenstates. As suggested in �1�, a way to alter the
distribution is to repopulate �e.g., by selective laser heating�
or depopulate �in principle, by selective cooling or resonance
fluorescence� a subset of eigenstates. This is described by
multiplying each pj by a perturbation factor f j �0 �with j
=1,2 , . . . ,N� �repopulation f j �1, depopulation f j �1� and
then renormalizing, to yield the perturbed nonequilibrium
distribution

p̃j =
f jpj

se�E�

�
i=1

N

fipi
se�E�

. �3�

Of course, in general the perturbed distribution has a differ-

ent mean energy Ẽ=�i=1
N eip̃i and different entropy S̃

=−kB�i=1
N p̃iln p̃i. However, a proper choice of the perturba-

tion factors f i may maintain Ẽ=E, in which case S̃�Sse�E�
�see Sec. VII�.

To describe the relaxation toward the new target canonical

equilibrium distribution pse�Ẽ�, the dynamical equation pro-
posed in �1� is, for j=1,2 , . . . ,N,

dpj

dt
= − 	�ln pj + aL�p� + bL�p�ej� , �4a�

where

aL�p� =

�
i

ei�
j

ej ln pj − �
i

ln pi�
j

ej
2

N�
i

ei
2 − ��

i

ei�2 , �4b�

bL�p� =

�
i

ln pi�
j

ej − �
i

ei ln pi

N�
i

ei
2 − ��

i

ei�2 . �4c�

This equation does have the capability of continuously rear-
ranging the distribution so that the perturbed distribution
evolves toward the maximal entropy target distribution given

by Eq. �2� with energy Ẽ. However, in the far nonequilibrium
region it has the defect of implying the unphysical feature
that an initially unpopulated eigenstate gets populated at an
infinite rate. This feature is in contrast with a wealth of suc-
cessful models of physical systems in which by limiting our
attention to a subset of relevant single-particle eigenstates we
get good results that are relatively robust with respect to
adding to the model other less relevant, unpopulated or little
populated eigenstates. According to Eq. �4�, instead, distri-
butions where some eigenstates are very little populated
would survive only for extremely short times.

The equation of motion that we propose for the time evo-
lution of the perturbed distribution is, for j=1,2 , . . . ,N,

dpj

dt
= −

1

�
�pj ln pj + ��p�pj + ��p�ejpj� , �5a�

where

��p� =

�
i

eipi�
j

ejpj ln pj − �
i

pi ln pi�
j

ej
2pj

�
i

ei
2pi − ��

i

eipi�2 , �5b�

��p� =

�
i

pi ln pi�
j

ejpj − �
i

eipi ln pi

�
i

ei
2pi − ��

i

eipi�2 . �5c�

We show in Sec. II that the apparently slight modification
with respect to Eq. �4� not only fixes the cited defect, while
maintaining the relevant overall features of conserving en-
ergy, normalization, nonnegativity of the probabilities, and
maintaining the entropy generation rate nonnegative. It also
features the existence and uniqueness of the solutions of the
Cauchy problem for all times −
 � t� +
, and entails a
large class of partially canonical equilibrium distributions
that are unstable, as well as a single conditionally stable
canonical equilibrium distribution for each value of the en-
ergy, as required by a well-known statement of the second
law of thermodynamics �15,16�.

We show in Sec. II that the structure of Eq. �5� is the same
as that of the general nonlinear quantum equation we discuss
in a series of papers written over 20 years ago �17–21� in
which we develop and propose a nonlinear quantum dynam-
ics in an attempt to unite ordinary quantum mechanics and
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general equilibrium and nonequilibrium thermodynamics. As
acknowledged also in �2,22�, the nonlinear quantum dynami-
cal law first proposed by this author �23� does have very
intriguing and appealing mathematical features. We must ad-
mit, however, that the physical interpretation, motivation,
and context of our pioneering scheme is still considered “ad-
venturous” �24� by most of the physical community, al-
though we would prefer to term it “revolutionary” in the
sense of Kuhn �25�. For this reason, in this paper we do not
pursue such controversial interpretation, but we wish to em-
phasize that—leaving aside its interpretation and focusing
attention only on its mathematics—our previous work repre-
sents to our knowledge the first time that the steepest-
entropy-ascent �or maximal-entropy-generation� ansatz has
been explicitly formulated and implemented in a general dy-
namical law capable of describing the relaxation of arbitrary
nonequilibrium states toward thermodynamic equilibrium.

In Sec. III we provide a derivation of Eq. �5� from the
assumption that the occupation probability distribution
evolves along the steepest-entropy-ascent trajectory in the
state space defined in terms not of the pi’s but of their posi-
tive square roots �pi’s. In Sec. IV we derive a fluctuation-
dissipation formulation of the equation and in Sec. V a varia-
tional formulation.

In Sec. VI we discuss the simplest degenerate case in
which the relaxation equation admits an analytical solution,
and we compare results with those numerically derived from
the natural extension of Eq. �4� to such a case. Finally, in
Sec. VII we show some numerical results that illustrate the
general features of the proposed nonlinear relaxation equa-
tion.

II. MAIN FEATURES OF THE ASSUMED NONLINEAR
RELAXATION EQUATION

By analogy with the dynamical law introduced in
�17,19,23,26�, Eq. �5� may also be written as a ratio of de-
terminants in the form

dpj

dt
= −

1

�

	
pj ln pj pj ejpj

� pi ln pi 1 � eipi

� eipi ln pi � eipi � ei
2pi
	


 1 � eipi

� eipi � ei
2pi



, �6�

where � · �=det�·�, and � is assumed constant �27� and may be
used to nondimensionalize time �or we may assume �=1 unit
of time�.

The resulting rate of entropy generation may be written as
a ratio of Gram determinants in the form

dS

dt
=

kB

�

	� pi�ln pi�2 � pi ln pi � eipi ln pi

� pi ln pi 1 � eipi

� eipi ln pi � eipi � ei
2pi

	

 1 � eipi

� eipi � ei
2pi



� 0, �7�

where the nonnegativity follows from the well-known prop-
erties of Gram determinants �see also Sec. III�.

Equation �5� or the equivalent Eq. �6� is well behaved in
the sense that the following general features can be readily
verified �detailed proofs in �4,17��.

�1� It conserves the normalization of the distribution
and the mean energy E along the entire time evolution.

�2� It preserves the nonnegativity of each pi.
�3� It maintains the rate of entropy generation nonne-

gative at all times.
�4� It maintains unoccupied all the initially unoccu-

pied eigenstates; in other words, given a distribution pi
and defining the vector ��p� of �i’s such that, for each
i=1,2 , . . . ,N, �i=0 if pi=0 or �i=1 if pi�0, the vector � is
time invariant.

�5� It drives any arbitrary initial distribution p�0� to-
ward the partially canonical �or canonical, if �i=1 for all
pi’s� equilibrium distribution, reached as t→
,

pj
pe�E,�� =

� j exp�− �pe�E,��ej�

�
i=1

N

�i exp�− �pe�E,��ei�

, �8�

where, of course, �=��p�0�� and the value of �pe is deter-
mined by the initial state through the relation
�i=1

N eipi
pe�E ,��=E=E�p�0��. Distributions �8� are those for

which dp /dt=0, i.e., that satisfy the equilibrium condition
pi ln pi=−�pi−�eipi for all i’s and some scalars � and �.

Moreover, Eq. �6� is well behaved not only in forward
time but also in backward time, consistently with the stron-
gest form of the principle of causality, by which future states
of a strictly isolated system should unfold deterministically
from initial states along smooth unique trajectories in state
domain, defined for all times �future as well as past�. Indeed,
for any given arbitrary “initial” distribution p�0� we can fol-
low the unique trajectory p�t� for −
 � t� +
. In forward
time the target distributions of all trajectories are given by
Eq. �8�, p�+
 �=ppe�E(p�0�) ,�(p�0�)�. The backward-time
earliest �or “primordial”� lowest-entropy distribution p�−
 �
is also uniquely identified by the given initial distribution
p�0� through Eq. �6�, but it is harder to characterize analyti-
cally in general. Depending on the given p�0�, the redistri-
bution among energy eigenstates may affect some of the oc-
cupation numbers in a nonmonotonic way. In the limit as
t→−
, however, all dpj /dt’s �the right-hand side of each of
Eqs. �6�� become sign definite; for example, they may be-
come all positive except for a particular one which tends to
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pk�−
 �=1, so that all others tend to zero, pj�k�−
 �=0 �this
can happen only if the mean energy E(p�0�) is exactly equal
to the kth energy level, i.e., only if E(p�0�)=ek�, or they may
all tend to zero except for two particular pj’s, say pj and pk
which tend to finite values, clearly with pj + pk=1 �examples
in Sec. VII�.

Because the model equation maintains the rate of entropy
generation nonnegative, the entropy functional S �Eq. �1�� is
an S function �16� and, therefore, every thermal-like canoni-
cal equilibrium distribution �8� is �-E-conditionally stable,
that is, stable with respect to perturbations that do not alter
the mean value E of the energy and the set of unoccupied
energy eigenstates �described by the zeros in vector ��.
These distributions constitute the “target” highest-entropy
states compatible with the mean value of the energy and the
invariant subset of unoccupied eigenstates. These distribu-
tions, however, are not E-conditionally stable, that is, stable
with respect to all perturbations that do not alter the mean
value E. Indeed, starting from a distribution �8�, a perturba-
tion that changes a zero probability to an infinitesimal value,
makes the perturbed distribution proceed in time by ampli-
fying that probability until a new, different, and higher-
entropy target canonical distribution is reached. For a given
mean energy E, the only canonical distribution that is
E-conditionally stable is the one for which all energy eigen-
states are occupied, i.e., the maximal-entropy canonical dis-
tribution �2�.

By interpreting the entropy S as a measure of how “well”
the energy is distributed among the available energy eigen-
states, the proposed nonlinear dynamics describes a sponta-
neous internal redistribution of the energy along the path of
maximal entropy increase leading toward an “optimally” dis-
tributed �highest-entropy� state compatible with the condi-
tion of maintaining unoccupied the initially unoccupied en-
ergy eigenstates.

III. CONSTRUCTION OF THE EQUATION
FROM THE STEEPEST-ENTROPY-ASCENT ANSATZ

In this section, we provide a brief derivation of Eq. �6�
from the assumption that the occupation probability distribu-
tion evolves along the steepest-entropy-ascent trajectory in
the proper state space. We also discuss an important degen-
erate case.

For the purpose of this derivation, instead of working with
the vector p of the occupation probabilities, we work in
terms of their positive square roots �28�, yi=�pi, and the
corresponding vector y. We rewrite the mean energy, normal-
ization, and entropy functionals as

E�y� = �
i=1

N

eiyi
2, U�y� = �

i=1

N

yi
2,

S�y� = − kB�
i=1

N

yi
2 ln yi

2 �9�

where, of course, U�y�=1 for any y. The ith components of
the gradients of these functionals are, respectively,

ei� = 2eiyi, ui� = 2yi, si� = − 2kB�yi ln yi
2 + yi� �10�

and, therefore, the time-rate-of-change functionals may be
written as

Ė = �ẏ,e��, U̇ = 2�ẏ,y�,

Ṡ = �ẏ,s�� , �11�

where �· , · � denotes the scalar product of two vectors �e.g.,
the normalization condition U�y�=1 may be rewritten as
�y ,y�=1�, and the energy and entropy gradient vectors e�
and s� are defined by the components in �10�, while we
choose to substitute immediately the obvious relation u�
=2y.

In order to maintain �ẏ ,y�=0 and �ẏ ,e��=0 the vector ẏ
must be orthogonal to the linear manifold spanned by y and
e�.

For unconstrained maximal-entropy generation, ẏ would
be in the direction of the gradient s� of the entropy functional
S�y�; in this case, however, because s� is almost never or-
thogonal to the ye� manifold, in general U�y� and E�y�
would not remain time invariant. Instead, we assume
constrained—constant E�y� and U�y�—maximal-entropy
generation. We obtain it by taking ẏ in the direction of the
component of s� orthogonal to the ye� manifold. Denoting
such component by s

�ye�
� we therefore assume

ẏ =
1

4kB��y�
s�ye�
� , �12�

where ��y� may be any positive definite functional of y with
dimensions of time, which determines the time rate at which
y evolves along the path of constrained steepest entropy as-
cent. For simplicity, and for the purpose of comparison with
�1�, we assume � a positive constant as done in our first
proposal of this equation of motion in �17,20,21,23�.

Using the well-known theory of Gram determinants, we
can write an explicit expression for s

�ye�
� . If y and e� are

linearly independent, we have

s�ye�
� =

	 s� y e�

�s�,y� �y,y� �e�,y�
�s�,e�� �y,e�� �e�,e��

	

 �y,y� �e�,y�

�y,e�� �e�,e��



. �13a�

If instead y and e� are linearly dependent, i.e., if e�=2ey for
some scalar e, the expression is

s�ye�
� = 
 s� y

�s�,y� �y,y�

� �y,y� = s� − �s�,y�y ,

�13b�

where we use �y ,y�=1. In either case, we readily verify that

Ė = �ẏ,e�� = 0, U̇ = 2�ẏ,y� = 0,

GIAN PAOLO BERETTA PHYSICAL REVIEW E 73, 026113 �2006�

026113-4



Ṡ = �ẏ,s�� = 4�kB�ẏ, ẏ� , �14�

from which we see that the rate of entropy generation is
related to the norm of ẏ and is positive definite.

Combining Eqs. �12� and �13a� we find

4kB�ẏ = s� − a�y�y − b�y�e�, �15a�

where

a�y� =
�s�,y��e�,e�� − �s�,e���e�,y�
�y,y��e�,e�� − �y,e���e�,y�

, �15b�

b�y� =
�s�,e���y,y� − �s�,y��y,e��
�y,y��e�,e�� − �y,e���e�,y�

, �15c�

and, setting pi=yi
2 and ṗi=2yiẏi we readily obtain Eq. �5� and

the identities ��p�=1+a�y� /2kB and ��p�=b�y� /kB.
Similarly, combining Eqs. �12� and �13b� we find

4kB�ẏ = s� − �s�,y�y �16a�

and, therefore, in the degenerate case of y and e� linearly
dependent, the relaxation equations are, for j=1,2 , . . . ,N,

dpj

dt
= −

1

�
pj ln pj − pj��
i

pi ln pi�� , �16b�

or, equivalently,

dpj

dt
= −

1

�

 pj ln pj pj

� pi ln pi 1

 . �16c�

In this case, the rate of entropy generation may be written as

dS

dt
=

kB

�

� pi�ln pi�2 � pi ln pi

� pi ln pi 1

 � 0, �17�

where the nonnegativity follows from the well-known prop-
erties of Gram determinants.

Equation �16c� substitutes for Eq. �6� when e�=2ey for
some scalar e or, equivalently, when eipi=epi for every i, that
is, when the populated eigenstates all correspond to the same
energy level. If satisfied at one instant in time this condition
is satisfied at all times, both forward and backward in time. It
follows that in such degenerate cases the entire time evolu-
tion is governed by Eq. �16b�. In the general nondegenerate
cases, i.e., when at one time �and, hence, at all times� eipi
�Epi for two or more i’s, where E is the mean energy, the
time evolution is entirely governed by Eq. �5� �or, equiva-
lently, �6� or �15��. This also implies that the denominators of
��p� and ��p� �or, equivalently, of a�y� and b�y�� remain
positive definite at all times and, hence, the entire time evo-
lution is well defined.

As stated above, the feature that unpopulated eigenstates
remain unpopulated is extremely important as it is compat-
ible, for example, with the widely accepted and successful
possibility to describe real systems by means of simplified
models with a limited number of relevant energy eigenstates.

The same feature does not hold for Eq. �4�, because it
implies that an initially unpopulated eigenstate gets popu-

lated at an infinite rate. For the same reason, Eq. �4� does not
allow tracing the time evolution backward in time beyond
the instant when the first eigenstate becomes unpopulated,
for at earlier times the condition pi�0 is not satisfied.

IV. FLUCTUATION-DISSIPATION FORMULATION

It is noteworthy that Eq. �6� admits a general fluctuation-
dissipation formulation and interpretation. To see this, we
introduce the energy and entropy fluctuation functionals as
follows:

��E�E��p� = �
i

pi�ei − E�p��2 = �
i

piei
2 − ��

i

piei�2

=
1

4

 �y,y� �e�,y�

�y,e�� �e�,e��

 , �18�

��S�S��p� = �
i

pi�− kB ln pi − S�p��2

= kB
2�

i

pi�ln pi�2 − kB
2��

i

pi ln pi�2
, �19�

��E�S��p� = �
i

pi�ei − E�p���− kB ln pi − S�p�� , �20�

and rewrite functionals ��p� and ��p� as

��p� =
1

kB

��E�S��p�
��E�E��p�

, �21�

��p� =
S�p�
kB

− ��p�E�p� . �22�

At the thermodynamic-equilibrium distribution with en-
ergy E, pse�E�, we have

kB��pse�E�� = kB�se�E� = 1/T�E� , �23�

kB�„pse�E�… = kB�se�E� = Sse�E� − E/T�E� ,

�24�

and in Eq. �24� we recognize the thermodynamic-equilibrium
Massieu characteristic function �15�

Mse = S − E/T . �25�

It is therefore natural, in this framework, to adopt the
following generalization of the Massieu function to arbitrary
nonequilibrium distributions:

M�p� = kB��p� = S�p� − kB��p�E�p� , �26�

with ��p� given by Eq. �21�. The corresponding fluctuation
functional is

��M�M��p� = �
i

pi�− kB ln pi − kB��p�ei − M�p��2.

�27�

We can readily verify that �Eq. �7�� may be rewritten as
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dS

dt
=

1

kB�
��M�M� �28�

and, therefore, the rate of entropy generation is directly pro-
portional to the fluctuations of our generalized Massieu func-
tion �29�. Such fluctuations are related to entropy and energy
fluctuations through functional kB��p� as follows:

��M�M��p� = ��S�S��p� − kB
2��p�2��E�E��p� , �29�

and become zero at every canonical thermodynamic-
equilibrium distribution pse�E�, Eq. �2�, and at every partially
canonical equilibrium distribution ppe�E ,��, Eq. �8�, as well.

It is noteworthy that the functional kB��p�, which is well
defined by Eq. �21� only for distributions with ��E�E��0,
may be interpreted in this framework as a natural generali-
zation to nonequilibrium of the inverse temperature, at least
insofar as for t→ +
 it tends to the thermodynamic-
equilibrium inverse temperature kB�se of distribution �2� or
the partial equilibrium inverse temperature kB�pe of distribu-
tion �8�.

The special case of distributions with ��E�E�=0 happens
if and only if e�=2ey for some scalar e �see Sec. III�. In such
a special degenerate case, ��E�E� remains zero along the
entire time evolution, which is given by Eq. �16b�, and the
role of the Massieu function is taken up by the entropy S, for
both equilibrium and nonequilibrium distributions. The
fluctuation-dissipation form of the rate of entropy generation
�Eq. �17�� becomes the following:

dS

dt
=

1

kB�
��S�S� , �30�

and in this special degenerate case the canonical and partially
canonical equilibrium distributions all have ��S�S�=0, for
they consist of N�= �� ,�� probabilities pi all equal to 1/N�

and of N−N� all equal to zero.
As regards the fluctuation-dissipation relations, the vari-

ous well-formulated arguments, derivations and interpreta-
tions discussed for Eq. �4� by Englman in the Appendix of
Ref. �1� and based on the steepest-entropy-ascent ansatz—
introduced in quantum thermodynamics by the present au-
thor �19�—apply with minor modifications also for our
better-behaved dynamical equation Eq. �5�. In addition, we
prove in �26� that Eq. �5� implies a generalized Onsager reci-
procity theorem.

V. VARIATIONAL FORMULATION

In terms of the yi=�pi notation, we can derive our equa-
tion of motion also as a result of the following equivalent
variational formulation �along the lines recently proposed in
�4��:

max
ẏ

Ṡ = �ẏ,s�� subject to Ė = �ẏ,e�� = 0,

U̇ = �ẏ,y� = 0, and �ẏ, ẏ� = 
�y� , �31�

where the last constraint implies that we maximize the en-
tropy generation rate only with respect to the “direction” of

ẏ, i.e., at every given y we select the maximizing ẏ among a
subset of vectors that share the same �but otherwise arbi-
trary� norm 
�y�. For y and e� linearly independent, using the
standard method, we associate the Lagrange multipliers a, b,
and 4kB� with the constraints, and from Eq. �14� and the
necessary Euler-Lagrange conditions

�

� ẏ
��ẏ,s�� − a�ẏ,y� − b�ẏ,e�� − 4kB��ẏ, ẏ�� = 0, �32�

we readily obtain Eq. �15� as well as, upon substitution into
the constraints, the multipliers given by Eqs. �15b� and �15c�,
and the square norm of ẏ,


�y� =
Ṡ

4kB�
=

1

16kB
2�2

��s�,y,e��

��y,e��

=
1

16kB
2�2

	�s�,s�� �y,s�� �e�,s��
�s�,y� �y,y� �e�,y�
�s�,e�� �y,e�� �e�,e��

	

 �y,y� �e�,y�

�y,e�� �e�,e��



, �33�

where � denotes the Gram determinant of the argument vec-
tors.

Similarly, for the degenerate cases with y and e� linearly
dependent, the normalization and constant energy conditions
collapse into a unique constraint with which we associate the
Lagrange multiplier c, and by the same standard procedure
we obtain Eq. �16a� and, upon substitution into the con-
straints, the multiplier c= �s� ,y�, and the square norm of ẏ,


�y� =
Ṡ

4kB�
=

1

16kB
2�2��s�,y� =

1

16kB
2�2
�s�,s�� �y,s��

�s�,y� �y,y�

 .

�34�

VI. SIMPLEST CASE: TWO-LEVEL PARTICLES
WITH DEGENERATE EIGENSTATES

The simplest mathematical form of the model equation
that derives from the equation of motion proposed in the
previous sections is obtained when we have an isolated,
closed gas composed of noninteracting identical two-level
particles with degenerate energy levels, such as electronic
spins in the absence of an applied magnetic field. Then for
N=2, both levels have energy e1=e2=e, the occupation prob-
abilities of the two corresponding eigenstates are p1=1− p
and p2= p, respectively, and the model equation �16c� for
redistribution among the two eigenstates becomes

dp

dt
= p�1 − p�ln

1 − p

p
, �35�

where we set �=1. The rate of entropy generation �kB=1� is

Ṡ = p�1 − p��ln
1 − p

p
�2

. �36�

GIAN PAOLO BERETTA PHYSICAL REVIEW E 73, 026113 �2006�

026113-6



Not only is Eq. �35� well behaved at all times �existence
and uniqueness of the solution for any initial p�0� with
0� p�0��1�, but it can also be integrated to yield

t = �
p�0�

p�t� dp

p�1 − p�ln
1 − p

p

= ln

ln
1 − p�0�

p�0�

ln
1 − p�t�

p�t�

, �37�

or, equivalently,

p�t� =
1

1 + �1 − p�0�
p�0� �exp�−t/�� �38a�

=
1

2
+

1

2
tanh�−

1

2
exp�− t/�� ln

1 − p�0�
p�0� � , �38b�

from which we readily find p�
�=1/2 and

p�− 
 � =
1

1 + �1 − p�0�
p�0� �
 = �0 for p�0� � 1/2,

1 for p�0� � 1/2.
�39�

By analogy, the extension to this degenerate case of the
model equation proposed in �1� is dpj /dt=	�−ln pj +aL� with
2aL=�i=1

2 ln pi=ln p+ln�1− p�, that is �setting 	=1/2 and
adding, for clarity, the subscript L�,

dpL

dt
=

1

4
ln

1 − pL

pL
, �40�

which yields the entropy generation rate

ṠL =
1

4
�ln

1 − pL

pL
�2

. �41�

Figure 1 shows a comparison between the time depen-
dence �38� implied by our rate equation �35� and that ob-
tained by numerical solution �by a standard Runge-Kutta

method� of the rate equation �40�, for both p�−
 �=0
= pL�0� and p�−
 �=1= pL�0�. For the purpose of compari-
son, time t=0 is selected where pL�0�=0 or 1 and the initial
state p�0� is selected so as to emphasize that in the limit as
t→ +
 we have p�t�� pL�t�. In fact, we readily verify from
both Eqs. �35� and �40� that the two time dependences have
the same asymptotic behavior as they approach the equilib-
rium distribution, that is,

dp

dt
�

1

2
− p and Ṡ � 4�1

2
− p�2

. �42�

This simplest case brings out the evident different behav-
ior at early times and the unphysical feature of the solution
of Eq. �40� at pL=0 where the repopulation rate is infinite,
implying that no unpopulated eigenstate can survive unpopu-
lated. Instead, our Eq. �35� maintains unpopulated any ini-
tially unpopulated eigenstate, and it also maintains relatively
little populated an initially little populated eigenstate for a
lapse of time that is quantified by Eq. �37� and depends on
how close the initial value p�0� is to zero. For example, the
time required to take p�0�=10−2n to p�t�=10−2 is t� ln n
�that is, t�� ln n�.

Figure 2 shows a plot of the entropy generation rate Ṡ

versus p obtained from Eq. �36� compared with ṠL versus pL
as obtained from Eq. �41�, where again the essential differ-
ences for small values of p and 1− p are singled out.

VII. NUMERICAL RESULTS

The energy versus entropy diagram introduced by Gibbs
represents the intersection with the E-S plane of the
E-S-V-n surface representing the stable thermodynamic-
equilibrium states of a system, assuming that the energy ei-
genvalues depend on the volume V and the amounts of con-
stituents n, so that the surface is represented by the so-called
fundamental relation S=S(E , �ej�V ,n��). In �15� the use of
such a diagram has been extended to include the projection
onto the E-S plane of all other states, i.e., not only the stable

FIG. 1. Comparison of the
time dependences p�t� and pL�t�,
respectively, implied by the rate
equation �35� that we propose and
the rate equation �40� discussed in
�1�.
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equilibrium states but also the nonequilibrium and the non-
stable equilibrium states, with given fixed values of V and n
and, therefore, a given fixed set of energy eigenvalues. On
such a diagram, therefore, one point represents in general a
multitude of distributions, except at every point of maximal
entropy for each given value of E �V and n are fixed� which
corresponds to a unique canonical distribution �2�, i.e., a
unique stable thermodynamic-equilibrium state.

For a four-level nondegenerate system, Fig. 3 represents
on the diagram the families of possible canonical �2� and

partially canonical �8� equilibrium distributions which in our
dynamics are the only ones with zero entropy generation
rate. We recall that the slope of these curves is related to the
parameter �pe�E ,�� because �Spe�E ,�� /�E��=kB�pe�E ,��,
which for the canonical distribution �all �i’s equal to unity� is
�S�E� /�E=kB��E�=1/T�E�.

The number of possible distributions that share a given
pair of values of E and S is in general an �N−3�-fold infinity
except at maximal entropy for each value of E, where the
distribution is unique, and at few other notable exceptions
such as at minimal entropy for each given E where the dis-
tribution may be unique or sometimes manyfold. For all pos-
sible distributions represented by a given point on the E-S
diagram, we may evaluate the rate of entropy generation
dS /dt according to Eq. �6� and select the highest value, that

we denote by Ṡmax�E ,S�. The result of this numerical com-

putation is sketched in Fig. 4 where the iso-Ṡmax contour
curves are plotted on the entire allowed domain on the en-
ergy versus entropy diagram �of course, under the restriction
to the subset of states specified in the Introduction�.

The next figures show typical time dependences of the
occupation probabilities that result from the numerical inte-
gration �by means of a standard Runge-Kutta algorithm� of
Eq. �6� in both forward and backward time. All trajectories in
these figures refer to a system with N=4 and nondegenerate
eigenstates with e= �0,1 /3 ,2 /3 ,1�, and all have the same
mean energy E=2/5; they all tend, of course, to the canoni-
cal distribution pse�2/5�= �0.3474,0.2722,0.2133,0.1671�
that has inverse temperature �se�2/5�=0.7321. They are ob-
tained by assuming for all cases an initial distribution p�0�
obtained by perturbing the canonical distribution pse�E� �Eq.
�2�� according to Eq. �3� with the energy-preserving perturb-
ing factors defined as follows, for j=1,2 , . . . ,N:

FIG. 2. Comparison between the entropy generation rate Ṡ ver-

sus p as given by Eq. �36� for kB=1 and �=1 and ṠL versus pL as
given by Eq. �41� for kB=1 and 	=1/2.

FIG. 3. Representation on an energy versus entropy diagram
�for N=4 and nondegenerate eigenstates with energies e
= �0,1 /3 ,2 /3 ,1�� of the families of possible canonical and partially
canonical equilibrium distributions which in our dynamics are the
only ones with zero entropy generation rate. For example, a hori-
zontal line at E=0.4 intersects seven different families of partially
canonical states.

FIG. 4. Representation on an energy versus entropy diagram
�for N=4 and nondegenerate eigenstates with energies

e= �0,1 /3 ,2 /3 ,1�� of the iso-Ṡmax contour curves where Ṡmax rep-
resents at each point in the diagram the highest value of the rate of
entropy generation dS /dt according to Eq. �6� among all the pos-
sible distributions represented by that point.
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f j = 1 − � + �
pj

pe�E,��
pj

se�E�
with 0 � � � 1, �43�

where � is otherwise arbitrary, and also � is arbitrarily cho-
sen among the possible vectors of 0’s and 1’s compatible
with the given value of E and form �8� of the distribution
ppe�E ,�� �see Fig. 3�, where �pe�E ,�� is computed by solv-
ing the relation �i eipi

pe�E ,��=E. For all subsequent figures
we use �=0.9.

Figure 5 shows the time dependence of the occupation
probabilities that results under the assumptions just cited us-
ing E=2/5, �=0.9, and �= �1,1 ,0 ,1� in Eq. �43� and subse-
quently substituting in Eq. �3�, that is,

p�0� = �ppe�E,�� + �1 − ��pse�E� . �44�

It is noteworthy that when the trajectory gets very close to
the partially canonical unstable-equilibrium distribution
ppe�E=2/5 ,�= �1,1 ,0 ,1�� the entropy surface presents a lo-
cal “plateaux” and the entropy generation rate drops almost

to zero, but shortly after the trajectory bends in a direction of
steeper slope that drives the generation up again until the
canonical distribution pse�E�= �0.3474, 0.2722, 0.2133,
01671� is finally approached, with inverse temperature
�se�2/5�=0.7321. Of course, the entropy is a monotonically
increasing function of time along the entire trajectory.

FIG. 5. Top: typical time dependences of the occupation prob-
abilities that result from the numerical integration of Eq. �6� both
forward and backward in time, for N=4, e= �0,1 /3 ,2 /3 ,1�, energy
E=2/5, initial state at t=0 from Eq. �44� with �=0.9 and �
= �1,1 ,0 ,1�. The dots on the right represent the maximal-entropy
distribution; the dots at the left represent the lowest-entropy or pri-
mordial distribution; the dots in the middle represent the ppe�E ,��
distribution used in Eq. �44� to select the t=0 state, plotted at the
instant in time when the entropy of the time-varying trajectory is
equal to the entropy of the ppe�E ,�� distribution. Bottom: the cor-
responding time dependence of the entropy �left axis� and the en-
tropy generation rate �right axis�.

FIG. 6. Plots of pi�t� versus S�t� for seven sample time depen-
dences of the occupation probabilities that result from the numerical
integration of Eq. �6� both forward and backward in time, for dif-
ferent initial distributions.
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Figure 6 shows the same trajectory as well as six other
trajectories, but instead of plotting the time dependence of
the occupation probabilities we plot them against entropy.
The initial �time t=0� distributions used to obtain these
seven sample trajectories are obtained from Eq. �44� with
E=2/5, �=0.9, and each of the seven partially canonical
states corresponding to the given value of the energy. These
seven states are easily identified on the E-S diagram in Fig. 3
by drawing a horizontal line at E=0.4. For the first, third,
and sixth trajectories we use the ppe�E ,�� states with �
= �1,0 ,1 ,0�, �1,0 ,0 ,1�, and �0,1 ,0 ,1�, respectively, which
�as apparent from the subsequent Fig. 7� are lowest-entropy
boundary points of the entropy surface for the given energy,
and turn out to be also the primordial states of the corre-
sponding trajectories. For the remaining trajectories we use
the ppe�E ,�� states with �= �1,1 ,1 ,0�, �1,1 ,0 ,1�,
�1,0 ,1 ,1�, and �0,1 ,1 ,1�, respectively. These too are
boundary points of the entropy surface, but they correspond
to partial maxima �over the subset of distributions with one
unoccupied eigenstate as specified by the corresponding zero
element of ��. It is seen that these partial maxima affect the
trajectories passing nearby by acting as partial attractors es-
pecially in the initial phase of the time evolution.

Figure 7 is a more elaborate representation of the same
seven trajectories. They are shown four times from different

perspectives on the background of contour plots of the en-
tropy surface, for four pairs of occupation probabilities. In-
deed, for N=4 and fixed energy E, the number of indepen-
dent occupation probabilities is 2. Thus for four pairs of
probabilities �p1-p2, p2-p3, p3-p4, p4-p1�, we draw the con-
tour plot of the entropy surface over the entire domain of
allowed values �which of course are contained in a triangular
region of the first quadrant�, and over this plot we draw the
seven trajectories �and the seven partially canonical states
used to choose them�. To save space, we then rotate each of
the four graphs �respectively by 45°, 135°, 225°, 315°� and
combine them on the same graph in Fig. 7. The figure visu-
alizes clearly that the trajectories indeed follow paths of
locally-steepest-entropy ascent and unfold smoothly also
backward in time to the primordial states. We also note that
these lowest-entropy states exhibit a singular behavior in
that, for example, state �2/5,0,3/5,0� is the primordial state
for two entirely different trajectories, state �3/5,0,0,2/5� for
three others, and state �0,9/10,0,1/10� for the remaining two.
Moreover, the partially canonical states appear as partial at-
tractors of trajectories passing nearby, as seen quite clearly
for the second, fourth, and fifth trajectories of Fig. 6, which
are partially attracted by the partially canonical states with
�= �1,1 ,1 ,0�, �1,1 ,0 ,1�, and �1,0 ,1 ,1�, respectively.

VIII. CONCLUSIONS

The model we propose for the description of the time
evolution of the occupation probabilities of a perturbed, iso-
lated, physical system with single-particle eigenstates with
energies ei for i=1,2 , . . . ,N, is in good agreement with gen-
eral thermodynamic requirements such as energy conserva-
tion, conservation of normalization, and nonnegativity of the
probabilities, entropy nondecrease, E-conditional stability of
the maximal-entropy canonical equilibrium states,
E-conditional nonstability of each non-maximal-entropy par-
tially canonical equilibrium states, and existence and unique-
ness of solutions for all initial perturbed distributions, in both
forward and backward time. As in our previous work
�17,19,20,23,26�, the proposed rate equations implement the
fundamental ansatz that nonequilibrium time dependence
follows the path of steepest entropy ascent �or, using the
terminology adopted in �2,4�, maximal-entropy generation�.

The model can be readily generalized to include addi-
tional constraints and therefore adapted to other physical and
nonphysical �e.g., information theoretical, biological� prob-
lems that obey the same maximal-entropy formalism and the
maximal-entropy generation rate ansatz. Using the formalism
developed in Sec. III it can even be readily generalized to
different entropy functionals or nonlinear objective function-
als that may be relevant in many other contexts that share
with the present the basic mathematical framework.

FIG. 7. Each rotated quadrant of the graph represents, for the
corresponding pair of occupation probabilities, a plot of the seven
trajectories shown in Fig. 6 drawn over contour plots of the entropy
surface.
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