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e dimension reduction methods have been proved powerful and practical to extract latent features in the signal for process
monitoring. A linear dimension reduction method called nonlocal orthogonal preserving embedding (NLOPE) and its nonlinear
form named nonlocal kernel orthogonal preserving embedding (NLKOPE) are proposed and applied for condition monitoring
and fault detection. Di�erent from kernel orthogonal neighborhood preserving embedding (KONPE) and kernel principal
component analysis (KPCA), the NLOPE and NLKOPE models aim at preserving global and local data structures simultaneously
by constructing a dual-objective optimization function. In order to adjust the trade-o� between global and local data structures,
a weighted parameter is introduced to balance the objective function. Compared with KONPE and KPCA, NLKOPE combines
both the advantages of KONPE and KPCA, and NLKOPE is also more powerful in extracting potential useful features in nonlinear
data set than NLOPE. For the purpose of condition monitoring and fault detection, monitoring statistics are constructed in feature
space. Finally, three case studies on the gearbox and bearing test rig are carried out to demonstrate the e�ectiveness of the proposed
nonlinear fault detection method.

1. Introduction

Mechanical equipment is widely used in modern industrial
production, but it o�en su�ers from damage during the long
time operation, such as the fracture of bearings and the
broken tooth of gears; the defect of these parts may cause
the performance of the machine to degrade, or even cause
security accidents. 
erefore, the fault detection of mechan-
ical equipment is of great signi
cance to ensure the safety of
the industrial production process and the economic bene
ts.
In recent years, themultivariate statistical processmonitoring
(MSPM) technique has been developed and used to detect
the faults in industrial production process, such as principal
component analysis (PCA) [1], partial least squares (PLS)
[2], and independent component analysis (ICA) [3]. 
ese
classical monitoring methods perform dimension reduction
on the process data and extract few components to construct
monitoring statistics which can re�ect the characteristics of
the original data, at this point, the performance of dimension
reduction will a�ect the monitoring e�ect.

Multivariate data-driven statistical PCA-based monitor-
ing framework is the most frequently employed method in
condition monitoring and fault detection 
eld. To overcome
the weakness that linear monitoring method may perform
poorly in processing the nonlinear monitoring processes,
KPCA-based monitoring method is widely investigated and
used to detect faults [4, 5]. Although the improved PCA-
based monitoring methods can retain latent features of raw
data, they only capture the global structure of the data,
and the local structure characteristics in the data have been
ignored. However, the features extracted from the local
structure of the data can also represent the di�erent aspects
of the data. 
e loss of the important information may have
impact on dimension reduction and monitoring result [6].

As opposed to the global data structure preserving
dimension reduction techniques, manifold learning methods
have been developed to preserve the local data structure
characteristics, represented by Laplacian eigenmap (LE) [7],
local preserving projections (LPP) [8], locally linear embed-
ding (LLE) [9], and neighborhood preserving embedding
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(NPE) [10]. LPP and NPE both are linear projection methods
that can process the testing data conveniently; manifold
learning based monitoring methods can overcome some
limits of the PCA-based monitoring method. However, these
manifold learning methods only consider the neighborhood
relationships to preserve local properties among samples
and thus may also lose crucial information contained in
the global data structure. In order to take both global and
local data structure characteristics into account, the methods
which unify LPP and PCA have been proposed, and the
fault detection performances have proven to be better than
LPP and PCA [11, 12]. But these approaches are still linear
methods, as they are employed to process the nonlinear
process data; these methods have limitations and may obtain
a poor monitoring performance.

On the other hand, kernel function is usually investigated
to extend linear methods to nonlinear methods, by mapping
original data from input space into high dimension feature
space, and then perform the linear method in feature space.
For the purpose of taking full advantages of global and local
data structure and processing the nonlinearmonitoring prob-
lem e�ciently, a kernel global-local preserving projections
(KGLPP) method [13] based on KLPP and KPCA has been
proposed, and the results show that it outperforms the linear
global-local preserving projections (GLPP) method [14].
Orthogonal neighborhood preserving embedding (ONPE) is
an orthogonal form of conventional NPE algorithm, which
adds an additional orthogonal constraint on the projection
vectors [15]; thus, ONPE not only inherits the local struc-
ture preserving feature, but also can avoid the distortion
defects of NPE [16]. Moreover, the orthogonal property is
also an advantage for fault detection and fault diagnosis.
Firstly, orthogonal transformations can enhance the locality
preserving power, which is e�ective in data reconstruction
and computing reconstruction error; it is useful for fault
detection. Secondly, the dimension reduction methods con-
sidering orthogonal constraint can improve the performance
of identi
cation, which is helpful to detect fault e�ectively
[17].

In this paper, a new nonlinear dimension reduction
method named nonlocal kernel orthogonal preserving
embedding (NLKOPE) is proposed on the basis of a linear
dimension reduction method named nonlocal orthogonal
preserving embedding (NLOPE). NLOPE takes both advan-
tages ofONPE andPCA into account;NLKOPE is a nonlinear
extension of NLOPE. 
e exponentially weighted moving
average (EWMA) statistic is built for condition monitoring
and fault detection. To verify the e�ectiveness of our pro-
posed methods, these methods are employed to detect the
faults of gearbox and evaluate the performance degradation
of bearing. In order to diagnose the fault type of the bearing,
dual-tree complex wavelet packet transform (DTCWPT) is
used for noise reduction, and Hilbert transform envelope
algorithm is employed to extract the fault characteristic
frequency.


e rest of the paper is organized as follows. KPCA,
ONPE, and KONPE are reviewed and analyzed in Section 2.

e proposed NLOPE-based monitoring method is devel-
oped in Section 3.
e proposed NLKOPE-based monitoring

method is developed in Section 4. In Section 5, three cases
are used to demonstrate the e�ectiveness of the proposed
methods. Finally, conclusions are drawn in Section 6.

2. Background Techniques

2.1. Kernel Principal Component Analysis. As a multivariate
method, PCA is widely used for process monitoring. How-
ever, for some complicated cases in industrial processes with
nonlinear characteristics, PCA performs poorly as it takes
the process data as linear, and some useful nonlinear features
may be lost when the PCA is used to reduce the dimension
and extract features. KPCA performs a nonlinear PCA that
constructs a nonlinear mapping from the input space to the
feature space through the kernel function. Given data set{�1, �2, ⋅ ⋅ ⋅ , ��} ∈ ��, where � is the number of samples
and � is the number of variables, the samples in the input
space are extended into the feature space by using a nonlinear
mapping Φ : �� → 
, the covariance matrix in the feature
space 
 can be expressed as

�� = 1�
�∑
�=1
Φ(��)Φ (��)� (1)

where it is assumed that the data set {Φ(�1), Φ(�2),⋅ ⋅ ⋅ , Φ(��)} in feature space is centered and ∑�
�=1Φ(��) = 0.


e principal component can be calculated by solving the
eigenvalue problem in the feature space.

�V = ��V (2)

��V = 1�
�∑
�=1
(Φ (��)Φ (��)�) V

= 1�
�∑
�=1
⟨Φ(��) , V⟩Φ(��)

(3)

where ⟨Φ(��), V⟩ denotes the dot product between Φ(��)
and V and � denotes eigenvalue and V denotes eigenvector.
For � ̸= 0, eigenvector V is regarded as a linear com-
bination of {Φ(�1), Φ(�2), ⋅ ⋅ ⋅ , Φ(��)} with the coe�cients�1, �2, ⋅ ⋅ ⋅ , ��, V = ∑�

�=1 ��Φ(��).
Multiplying Φ(��) at both sides of (2), � = 1, 2, ⋅ ⋅ ⋅ ,�, we

obtain

� �∑
�=1
�� ⟨Φ (��) ,Φ (��)⟩

= 1�
�∑
�=1
��⟨Φ(��) , �∑

�=1
��⟩⟨Φ(��) , Φ (��)⟩

(4)

De
ning a � × � kernel matrix  with  �� =⟨Φ(��), Φ(��)⟩, (4) can be expressed as

�! =  �! (5)

where � = [�1, �2, ⋅ ⋅ ⋅ , ��]�, by solving the eigenvalue
problem of (5), this yields eigenvectors �1, �2, ⋅ ⋅ ⋅ , �� with
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the eigenvalues �1 ≥ �2 ⋅ ⋅ ⋅ ≥ ��. 
e coe�cients � are

normalized to satisfy ‖�2�‖ = 1/�� and to ensure ‖V2�‖ = 1.

e projection of a test sample � is obtained as follows:

$� = ⟨V�, Φ (�)⟩ = �∑
�=1
��� ⟨Φ (��) , Φ (�)⟩ (6)

2.2. Kernel Orthogonal Neighborhood Preserving Embedding

2.2.1. Orthogonal Neighborhood Preserving Embedding.
Given a high dimensional data set% = {�1, �2, ⋅ ⋅ ⋅ , ��} ∈ ��,
as a linear dimension reductionmethod,ONPE is used to 
nd
a transformation matrix & = [�1, �2, ⋅ ⋅ ⋅ , �	] ∈ ��×	 (' < �)
that maps the high dimensional data set to the low

dimensional data set * = {+1, +2, ⋅ ⋅ ⋅ , +�} ∈ �	, that
is, * = &�%. In NPE algorithm, in order to preserve the
local geometric structure, the adjacency graph is built to
re�ect the relationship between samples; each sample can be
reconstructed by a linear combination of its neighbors with
the corresponding weight coe�cients.
eweight coe�cients
matrix- is computed byminimizing the following objective
function:

min ∑
�

...........�� −∑� -����
...........
2

(7)


e reconstruction weight coe�cients between �� and its
neighbors are preserved to reconstruct +� by using its corre-
sponding neighbors. 
en, the low dimensional embedding* is obtained by optimizing the error function:

min ∑
�

...........+� −∑� -��+�
...........
2

(8)

s.t. *�* = &�%%�& = 4 (9)

where ∑�
�=1-�� = 1, 5 = 1, 2, ⋅ ⋅ ⋅ , �, 6 = 1, 2, ⋅ ⋅ ⋅ , �, and � is

the number of neighbors of ��. If �� is not the neighbor of ��,-�� = 0. In ONPE, any high dimensional data can bemapped
into the reduced space by the orthogonal projection matrix&, according to (7)-(8), matrix & is obtained by the following
formulations:

�1 = argmin



∑
�

...........+� −∑� -��+�
...........
2

= arg min



&�%7%�&
(10)

s.t. &�%%�& = 4 (11)

�� = argmin



∑
�

...........+� −∑� -��+�
...........
2

= argmin



&�%7%�&
(12)

s.t. V
�
V1 = V

�
V2 = ⋅ ⋅ ⋅ = V

�
V�−1 = 0

&�%%�& = 4 (13)

where � = 2, 3, ⋅ ⋅ ⋅ , ', 7 = (4 − -)�(4 − -). Using
the Lagrange multiplier method, the orthogonal vectors & is
calculated iteratively as follows:

(1) �1 is the eigenvector corresponding to the smallest

eigenvalue of matrix (%%�)−1%7%�.

(2) �� is the eigenvector corresponding to the smallest

eigenvalue of matrix 9(�):

9(�) = {4 − (%%�)−1

⋅ &(�−1) [(&(�−1))� (%%�)−1 &(�−1)]−1 (&(�−1))�}
⋅ (%%�)−1%7%�

(14)

where &(�−1) = [�1, �2, ⋅ ⋅ ⋅ , ��−1].
2.2.2. Kernel Orthogonal Neighborhood Preserving Embed-
ding. ONPE algorithm has some nonlinear data processing
ability, but it is essentially a linear method, the limitations
are obvious as it comes to extract the nonlinear features of
data. KONPE is a nonlinear extension of ONPE; the original
data are mapped into the kernel space that it is feasible to use
ONPE to obtain low dimensional nature characteristics.

Given a data set % = {�1, �2, ⋅ ⋅ ⋅ , ��} ∈ ��, the
data are projected on to the high dimensional feature space{Φ(�1), Φ(�2), ⋅ ⋅ ⋅ , Φ(��)} by using the nonlinear mapping

function Φ, assuming that the data is centered and satis
es∑�
�=1Φ(��) = 0. De
ning V = [V1, V2, ⋅ ⋅ ⋅ , V	] be the linear

mappingmatrix to project the data from feature spaceΦ(�) to
the low dimensional space, the low dimensional embedding* = {+1, +2, ⋅ ⋅ ⋅ , +�} ∈ �	 are obtained by using matrix V,

that is * = V
�Φ(�). 
e matrix V can be expressed as a linear

combination ofΦ(�) with the coe�cients ��� (5 = 1, 2, ⋅ ⋅ ⋅ , �).
V� = �∑

�=1
���Φ(��) (15)

where A = 1, 2, ⋅ ⋅ ⋅ , '. According to  �� = Φ(��)Φ(��), the
formulations for calculating the matrix V are as follows:

V1 = argmin
V

∑
�

...........V
�Φ (��) −∑

�
-��V

�Φ(��)
...........
2

= �� �7 �
(16)

s.t. V
�Φ(%)Φ (%)� V = 1 (17)

V� = argmin
V

∑
�

...........V
�Φ (��) −∑

�
-��V

�Φ(��)
...........
2

= �� �7 �
(18)

s.t. V
�
V1 = V

�
V2 = ⋅ ⋅ ⋅ = V

�
V�−1 = 0

V
�Φ(%)Φ (%)� V = 1 (19)
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where � = 2, 3, ⋅ ⋅ ⋅ , ',7 = (4 −-)�(4 −-). 
e problem of
computing V can be converted to solve the coe�cients vectors� based on the Lagrangemultipliermethod. According to (16)
and (18), the speci
c steps are as follows:

(1) �1 is the eigenvector corresponding to the smallest

eigenvalue of matrix (  �)−1 7 �.

(2) �� is the eigenvector corresponding to the smallest

eigenvalue of matrix 9(�):

9(�) = {4 − ( � )−1
⋅  ��(�−1) [(�(�−1))� ( � )−1 ��(�−1)]−1

⋅ (�(�−1))�} ( � )−1 �7 
(20)

where �(�−1) = [�1, �2, ⋅ ⋅ ⋅ , ��−1]; the kernel matrix  should
be centered by

 =  − B −  B + B B (21)

where B�� = 1/� (5, 6 = 1, 2, ⋅ ⋅ ⋅ , �).
Given a test sample ��
�, the �$ℎ variable of the low

dimensional sample +�
� is obtained by mapping Φ(��
�)
into vector V� in the feature space, � = 1, 2, ⋅ ⋅ ⋅ , '.

+��
� = V�Φ (��
�) = �∑
�=1
��� (Φ (��) Φ (��))

= �∑
�=1
��� �
� (��, ��
�)

(22)


e test kernel matrix should also be centered as follows:

 �
� =  �
� − E −  �
�B + E B (23)

where �
� = Φ(��
�)Φ(�), E = 1/�[1, ⋅ ⋅ ⋅ , 1] ∈ �1×�.
3. Nonlocal Orthogonal Preserving Embedding

3.1. AlgorithmDescription. In order to preserve both the local
and global data structures, NLOPE algorithm is proposed to
unify the advantages of PCA and ONPE. Given a data set � ={�1, �2, ⋅ ⋅ ⋅ , ��} ∈ ��×�, the objective function of NLOPE is
as follows:F (�)����� = GF (�)���
� − (1 − G) F (�)����
�

= Gmin
 ���7���
− (1 − G) max
 ����

= min
 �� (G�7�� − (1 − G) �) �
= min
 �� (GH� − (1 − G) �) �

(24)

s.t. ��� �1 = ��� �2 = ⋅ ⋅ ⋅ = ��� ��−1 = 0
�� [G��� + (1 − G) 4] � = 1 (25)

where � = (1/�)∑�
�=1(�� − �)(�� − �)�, � = (1/�)∑�

�=1 ��.

Using the Lagrange multiplier method, the projection
vector � can be calculated by solving following eigenvector

problems:

(1) �1 is the eigenvector corresponding to the smallest

eigenvalue of matrix K−1L.
(2) �� is the eigenvector corresponding to the smallest

eigenvalue of matrix 9(�):

9(�) = {4
− (K)−1 �(�−1) [(�(�−1))� (K)−1 �(�−1)]−1 (�(�−1))�}
⋅ K−1L

(26)

where � = 2, 3, ⋅ ⋅ ⋅ , ', ' is the dimension of samples in

NLOPE space, �(�−1) = [�1, �2, ⋅ ⋅ ⋅ , ��−1], K = G��� + (1 − G)4,
and L = G�7�� − (1 − G)�. A strict mathematical proof of

the projection vector � is given in Appendix A.

3.2. Selection of Parameter G. 
e parameter G describes

di�erent roles of global and local data structure preserving
in constructing the NLOPE model; it is important to choose

an appropriate value of G, which will a�ect the extraction
of latent variables. As we need to solve a dual-objective

optimization problem, usually it is hard to 
nd an absolutely
optimal solution which simultaneously optimizes the two

subobjectives. However, it is possible to obtain a relatively
optimal solution by making balance between them. 
e

parameter G is used to balance the matrix H� and matrix � in
(24), and it can be regarded as balancing the energy variations

of H� and �. 
us, we choose spectral radius of the matrix to
estimate the value of G.

To balance the global and local structure of the data, G can
be selected as follows [6]:

GK���
� = (1 − G) K����
� (27)

where K����
� = M(�) and K���
� = M(H�) denote the energy
variations of F(�)����
� and F(�)���
�. M(⋅) is the spectral radius
of the matrix. H� and � are de
ned in (24). 
us, G is
computed by

G = M (�)M (H�) + M (�) (28)

3.3. Monitoring Model. In PCA-based monitoring method,

Hotelling’s N2 statistic and the squared prediction error KOB
statistic are o�en used for fault detection. Similarly, the two

monitoring statistics are applied in NLOPE-based model.

Hotelling’s N2 is used to measure the variation in latent
variable space and detects a new sample if the variation in

the latent variables is greater than the variation explained by
the model, which is computed as

N2 = +�Λ−1+ (29)
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where Λ = ++�/(� − 1) is the covariance matrix of
the projection vectors of training samples in the NLOPE
subspace.


e squared prediction error KOB statistic is a measure-
ment of the variation in residual space and is used tomeasure
the goodness of 
t of the new sample to the model; it is
de
ned as follows [20]:

KOB = ⟨�, �⟩ − ⟨+, +⟩ (30)

where + is the embedding of input sample � in NLOPE
subspace.

As it is hard to estimate the condition of the machine
only by the original vibration signal, some features need to be
constructed. Time-domain and frequency-domain features
can be generated from vibration data and are also widely used
to characterize the state of machinery, time-domain features
such as kurtosis, crest factor, and impulse factor, i.e., are sensi-
tive to impulsive oscillation, and frequency-domain features
can reveal some information that can not be characterized
by time-domain features. In this study, 11 time-domain
features and 13 frequency-domain features [21] were extracted
from each sample to construct the high dimensional feature
sample. For the purpose of condition monitoring and fault
detection, it is critical to extract the most useful information
hidden in current machine state. 
erefore, the dimension
reduction methods can be employed to extract latent features
e�ectively.

In order to detect the incipient fault of mechanical
equipment more accurately and reliability, the exponentially
weighted moving average (EWMA) statistic based on a

combined index ofN2 and KOB statistics is developed to detect
the fault of the mechanical equipment. 
e combined indexQ is a summation of N2 and KOB statistics as follows:

Q = N2H�2 +
KOBH��� (31)

where H�2 and H��� are the control limits of N2 and KOB
statistics, they can be computed by kernel density estimation

(KDE) algorithm, the values of N2/H�2 statistic should be
normalized between 0 and 1 by using the maximal value

and minimum value of N2/H�2 , and the values of KOB/H���
statistic should be normalized, too.


e B-7& statistic is computed as follows:

-� = (1 − R)-�−1 + RQ� (32)

where -� is calculated by the average of preliminary data
and R is a smoothing constant between 0 and 1. While R is
large, the value of-� putsmoreweight on the current statisticQ� than on the historic statistic. Calculate the control limitH���� for B-7& statistic by KDE method, too. In this
study, the value of R is set to 0.2.


e o�ine modeling procedure is listed as follows:

(1) 
e healthy samples are used to be the training sam-
ples, convert each original training sample into the
high dimensional feature sample, and then normalize
the high dimensional feature samples � to zero mean
and unit variance.

(2) Use (26) to calculate the projection matrix �, and
calculate the projected vectors of the training samples
in the NLOPE subspace.

(3) ComputeN2 and KOB statistics of all training samples,
and calculate the control limits H�2 and H���, and
then obtain the EWMA statistics and the control limitH����.


e online monitoring procedure is listed as follows:

(1) Convert each testing sample into the high dimen-
sional feature sample, and normalize the high dimen-
sional feature samples ��
� with the mean and vari-
ance of the training feature samples �.

(2) Calculate the projected vectors of testing samples as+�
� = ����
�.
(3) Compute EWMA statistics associated with ��
�, and

monitor if they exceed the control limit H����.

4. Nonlocal Kernel Orthogonal
Preserving Embedding

4.1. Algorithm Description. NLKOPE algorithm performs a
nonlinear NLOPE by using the kernel trick. Given a data

set � = {�1, �2, ⋅ ⋅ ⋅ , ��} ∈ ��×�, the nonlinear mappingΦ is used to project � onto the feature space, the data setΦ(�) = {Φ(�1), Φ(�2), ⋅ ⋅ ⋅ , Φ(��)} in the feature space is

assumed to be centered, and ∑�
�=1Φ(��) = 0. 
e objective

function of NLKOPE algorithm is computed as follows:

F (�)������ = GF (�)���
� − (1 − G) F (�)����
�
= Gmin
 �� �7 �
− (1 − G) max
 �� � � �

= min
 ��(G �7 − (1 − G)  � � )�
= min
 �� (GH� − (1 − G) H) �

(33)

s.t. V
�
V1 = ⋅ ⋅ ⋅ = V

�
V�−1 = �� ���−1 = 0

V
�Φ(%)Φ (%)� V = �� � � = 1
V
�
V = �� � = 1

(34)

According to (33), computing V is reduced to obtain the
coe�cients vectors �, using the Lagrange multiplier method,
the formulation is converted as follows:

�� [G �7 − (1 − G)  � � ]�
− � {�� [G ( � +  ) + (1 − G) 4] � − 1}
− �∑

�=1
\���� ��� = 0

(35)
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e coe�cients vectors � are obtained as

(1) �1 is the eigenvector corresponding to the smallest

eigenvalue of matrix 9(1):

9(1) = K−1L (36)

(2) �� is the eigenvector corresponding to the smallest

eigenvalue of matrix 9(�):

9(�) = {4 − K−1 ��(�−1) [(�(�−1))� K−1 ��(�−1)]−1

⋅ (�(�−1))�} K−1L
(37)

where � = 2, 3, ⋅ ⋅ ⋅ , ', ' is the dimension of samples in

NLKOPE space, �(�−1) = [�1, �2, ⋅ ⋅ ⋅ , ��−1], K = G( � + )+(1−G)4,L = G �7 −(1−G) � /�, and is the centered
kernel matrix of � obtained by (21). A strict mathematical

proof of the coe�cients vectors � is given in Appendix B.

4.2. Selection of Parameter G. 
e method to choose the

parameter G in NLKOPE model is same as in the NLOPE
model, while the values of spectral radius are di�erent, andG is set as

G = M (H)M (H�) + M (H) (38)

where H =  � /�, H� =  �7 .
4.3. Monitoring Model. Hotelling’s N2 statistic and the
squared prediction error KOB statistic are also used in

NLKOPE-based model to monitor the abnormal variations.

e N2 statistic de
nes as

N2 = +�Λ−1+ (39)

where Λ = ++�/(� − 1) is the covariance matrix of the

projection vectors in the training samples.

e KOB statistic de
nes as [22]

KOB = ⟨Φ (�) , Φ (�)⟩ − ⟨+, +⟩
= � (�, �) − 2�

�∑
�=1
� (��, �) + 1�2

�∑
�=1

�∑
�=1
� (��, ��)

− +�+
= 1 − 2�

�∑
�=1
� (��, �) + 1�2

�∑
�=1

�∑
�=1
� (��, ��) − +�+

(40)

+�
� = �� �
� (�, ��
�) (41)

where  �
�(�, ��
�) is the centered kernel vector of ��
�
obtained via (23).


e o�ine modeling procedure is listed as follows:

(1) 
e healthy samples are used to be the training sam-
ples, convert each original training sample into the
high dimensional feature sample, and then normalize
the high dimensional feature samples � to zero mean
and unit variance.

(2) Compute the kernel matrix  by selecting a kernel
function, and center the kernel matrix  via (21).

(3) Obtain the projection matrix V by calculating the
eigenvector problem of (36)-(37).

(4) ComputeN2 and KOB statistics of all training samples,
and calculate the control limits H�2 and H���, and
then obtain the EWMA statistics and the control limitH����.


e online monitoring procedure is listed as follows:

(1) Convert each testing sample into the high dimen-
sional feature sample, and normalize the high dimen-
sional feature samples ��
� with the mean and vari-
ance of the training feature samples �..

(2) Compute the kernel vector �
�(�, ��
�) and center it
to get �
�(�, ��
�) via (23).

(3) Calculate the projected vectors of testing samples+�
�
via (41).

(4) Compute EWMA statistics associated with ��
�, and
judge whether they exceed the control limit H����.


e procedure of condition monitoring and fault detec-
tion by the method of NLKOPE is shown in Figure 1. 
e
healthy vibration signals are collected to implementNLKOPE
and construct the o�ine model, and then the model will be
employed to implement online condition monitoring, fault
detection, and performance degradation assessment.

5. Case Studies and Result Analysis

5.1. Fault Detection of Gearboxes. 
e 2009 PHM gearbox
fault data [18] is a representative of generic industrial gearbox
data; we use it to evaluate the proposedmethods.
e gearbox
contains 4 gears, 6 bearings, and 3 sha�s, themeasured signals
consist of two accelerometer signals and a tachometer signal
with a sampling frequency of 66.67 kHz, and the schematic
and overview of the gearbox are shown in Figure 2. In this
study, 3 di�erent health conditions of the helical gearbox
under low load and 30 Hz speed are used to test the e�ect
of fault detection, and the detailed description of the data
and pattern is shown in Table 1. In the pattern of health, all
the mechanical elements in the gearbox are normal. In the
pattern of fault 1, the gear with 24 teeth on the idler sha� is
chipped. In the pattern of fault 2, the gear with 24 teeth on
the idler sha� is broken, and the bearing at output side of the
idler sha� also has inner race defect.

In this case, 1024 sampling points are selected as a sample,
and we extract 30 samples for each pattern. 
e 
rst 30
samples from the pattern of health are used as training
samples, and the remaining 60 samples from pattern of fault 1
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Healthy
vibration signals

Vibration
signals

Training

Testing

High dimensional
feature samples

High dimensional
feature samples

Monitoring model:

NLKOPE-EWMA

Signal

processing

Signal

processing

EWMA

Fault detection

Degradation

assessment

O�ine model

Online monitoring

Figure 1: Procedure of condition monitoring and fault detection.

Figure 2: Schematic and overview of the gearbox used in PHM 2009 Challenge Data [18].

Table 1: Pattern description of the gearbox: IS=input sha�;:IS=input side; ID=idler sha�;:OS=output Side; OS=output sha�.

Pattern
Gear Bearing Sha�

16T 48T 24T 40T IS:IS ID:IS OS:IS IS:OS ID:OS OS:OS Input Output

Health Good Good Good Good Good Good Good Good Good Good Good Good

Fault 1 Good Good Chipped Good Good Good Good Good Good Good Good Good

Fault 2 Good Good Broken Good Good Good Good Good Inner Good Good Good
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Table 2: Fault detection rates of 
ve methods.

KPCA KONPE NLOPE KGLPP [13] NLKOPE

FDR(%) 90 96.67 98.33 98.33 100

and fault 2 are collected as testing samples. In other words, we
use these 90 samples to detect whether the gearbox is faulty,
and actually the gearbox starts to fail at 31st sample.

For the purpose of comparison, 
ve monitoring meth-
ods based on KPCA, KONPE, NLOPE, KGLPP [13], and
NLKOPE are presented to detect the fault of gearbox respec-
tively. 
e embedding dimension in each model is set to 3,
and the number of nearest neighbors is set to 20 in KONPE,
NLOPE, KGLPP, and NLKOPE models. 
e 99% con
dence
limit is used for N2, KOB, and EWMA statistics. In order
to compare the results more clearly, the indicator of fault
detection rate (FDR) is applied in this case.

Monitoring charts of 
ve methods are shown in Figure 3,
and the detailed fault detection results of these monitoring
methods are listed in Table 2. Obviously, gearbox starts to
fail at 33rd sample that detected by KPCA monitoring model
as shown in Figure 3(a), and 35th, 36th, 37th, 38th samples
are all under the control limit, that means the failure of
detection at these samples. Figure 3(b) illustrates that gearbox
starts to fail at 33rd sample that detected by KONPE, that
means the failure of detection at 31st and 32nd samples. As
shown in Figures 3(c)-3(d), gearbox starts to fail at 32nd
sample that detected by NLOPE and KGLPP, but in fact,
gearbox starts to fail at 31st sample. 
e detection result
of NLKOPE monitoring model is shown in Figure 3(e);
the EWMA statistic can work well and detect the fault of
gearbox accurately. Besides, as shown in Table 2, the fault
detection rates of NLOPE, KGLPP, and NLKOPE are higher
than KPCA and KONPE which only consider the global or
local data structure, although NLOPE has considered the
global-local data information; the ability to process nonlinear
data is not prominent when compared to NLKOPE. 
e
results indicate that the NLKOPE-based monitoring method
outperforms KPCA, KONPE, NLOPE, and KGLPP-based
monitoring method.

5.2. Dimension Reduction Performance Assessment. In this
case, the experimental data from Case Western Reserve
University [23] are used to evaluate the dimension reduction
performance of the proposed methods. 
e bearings used at
the drive end are the deep groove ball bearing 6205-2RS JEM
SKF. Data was collected with 12kHz sampling frequency at
the rotating speed of 1797 rpm and 0HP load. 
e sample
sets include 7 di�erent severity conditions, i.e., health, inner
race faults with faulty sizes 0.007, 0.014, 0.021, and 0.028,
respectively, outer race, and ball fault with faulty size 0.014,
respectively. We select 1024 sampling points as a sample, and
extract 70 samples for each severity condition. Furthermore,
the 
rst 35 samples of each severity condition are collected as
training samples, then the remaining 35 samples are used as
testing samples.


e purpose of dimension reduction is to make the
intraclass low dimensional samples clustering and interclass

Table 3: 
e clustering degree of di�erent reduction algorithms.

KPCA KONPE NLOPE KGLPP [13] NLKOPE

J 0.0198 0.0182 0.0185 0.0102 0.0088

separation, which will be helpful to improve the performance
of fault classi
cation. 
us, the clustering degree is used as
a quanti
cation index to evaluate the dimension reduction
performance; it de
nes as follows:

F = K�K� (42)

K� = 1̂
�

�∑
�=1
∑
�∈��

(+ − ��) (+ − ��)�

K� = �∑
�=1
(�� − �) (�� − �)�

(43)

where � is the number of fault types, ^� is the sample size
of the 5th fault type, + is the low dimension embedded

coordinate, & � = (+1� , ⋅ ⋅ ⋅ , +��� ), �� is the mean value of
embedded coordinates of the 5th fault type, and� is the mean
value of all low dimension embedded coordinates.

11 time-domain features and 13 frequency-domain fea-
tures [21] are extracted from each sample to be the variations
and make up the high dimensional sample, and in order to
visualize clearly, the embedding dimension is set to 3. For
the purpose of comparison, 
ve methods including KPCA,
KONPE, NLOPE, KGLPP [13], and NLKOPE are presented
to obtain the dimension reduction results on the training and
testing samples, respectively; scatter plots of three features
are as shown in Figure 4. Furthermore, Health, Fault1, Fault2,
Fault3, Fault4, Fault5, and Fault6 in Figure 4 represent 7
di�erent fault types which contain health, four inner race
faults with faulty sizes 0.007, 0.014, 0.021, and 0.028 in, outer
race, and ball fault with faulty size 0.014 in, respectively, and
x, y, z indicate three-dimensional representation based on
the three features extracted from the training and testing
samples by the proposed methods. Figure 4 illustrates the
classi
cation abilities of 
ve methods for the 3D-clusters
samples, where samples in the same fault types are marked
in the same color.


e distribution of the same fault type of samples is dis-
persed in Figure 4(a), and the di�erent fault types of samples
gather together as shown in Figure 4(b), both of these two
situations may increase the probability of misclassi
cation.

e clustering degree is calculated as shown in Table 3, the
clustering degree value of KGLPP is close to NLKOPE, and
the result of dimension reduction based on NLKOPE has the
minimum clustering degree, which is bene
cial to improve
the accuracy of fault classi
cation.

5.3. Condition Monitoring and Performance Degradation
Assessment of Bearing. In this case, the aim is to implement
condition monitoring and evaluate the performance degra-
dation of bearing, and the degradation index is important
to assess the state of bearing. 
us, we hope to identify the
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Figure 3: Monitoring charts: (a) KPCA, (b) KONPE, (c) NLOPE, (d) KGLPP, and (e) NLKOPE.
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Figure 4: 
ree-dimensional representation based on the three features extracted from the training and testing samples by (a) KPCA, (b)
KONPE, (c) NLOPE, (d) KGLPP, and (e) NLKOPE.
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Figure 5: Bearing test rig [19]. Figure 5 is reproduced from H. Qiu
et al. (2006).

degradation at an early stage to avoid continuous deterio-
ration of the state and minimize machine downtime. 
e
bearing experimental data were generated from the run-
to-failure test [19, 24]. Figure 5 illustrates the bearing test
rig. 
e rotation speed was kept constant at 2000 rpm, and
each sample consists of 20480 points with the sampling rate
set at 20kHz. 
e structural parameters and kinematical
parameters (sha� frequency _!, inner-race fault frequency_�, rolling element fault frequency _�, and outer-race fault
frequency _�) of the experiment bearing are listed in Table 4,
and the detailed information about the experiments have
been introduced in the literature [19]. One bearing (i.e., the
bearing 3 of testing 1) with inner race defect is used to verify
the performance of the proposed algorithm. We extract 2100
sets of test-to-fail samples recorded for the bearing 3, the 
rst
500 samples are used as the training samples, and the rest are
generated as the testing samples.

For the purpose of comparison, 
ve monitoring meth-
ods based on KPCA, KONPE, NLOPE, KGLPP [13], and
NLKOPE are presented to explain the bearing performance

state, respectively. 
e 99% con
dence limit is used for N2,KOB, and EWMA statistics. In this case, we extracted 2100
test-to-fail samples, and the 1790th sample was regarded as
the initial weak degradation point based on the research in
literature [25].

As shown in Figures 6 and 7, the EWMA statistic has
presented the state of the bearing, and the 1797th sample is
considered to be the initial weak degradation point where
the performance of the bearing begins to degrade. As the
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Figure 6: Monitoring chart by KPCA.
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Figure 7: Monitoring chart by KONPE.

samples were recorded every tenminutes, it is 70minutes late
to detect the failure by KPCA or KONPE-based monitoring
method when compared with the result in literature [25],
and the KPCA-EWMA statistic with large �uctuations is
not suitable for condition monitoring. Figures 8–10 illustrate
the detection results of NLOPE, KGLPP, and NLKOPE-
based monitoring methods, and they all obtain the initial
weak degradation point of the bearing at the 1789th sample,
which is 10 minutes earlier than the result in literature
[25], and the statistics a�er 1789th sample all exceed the
control limits, but LPP-EWMA statistics [25] between 1950th
sample and 2150th sample are below the control limit, that
means the failure of detection in these interval. 
ough
the fault detection accuracy of NLOPE-based monitoring
method outperforms KPCA and KONPE, this advantage of
NLOPE is not prominent, since the EWMA statistic a�er the
initial weak degradation point has a relative big �uctuation
as shown in Figure 8, which is not conducive to evaluating
the bearing performance state. 
e performance degradation
assessment of KGLPP-based monitoring method is slightly
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Table 4: Structural parameters and kinematical parameters of the experiment bearing.

Bearing designation
Number of rolling elements Diameter of the pitch (in.) Contact angle Diameter of the rolling element (in.)

16 2.815 15.17∘ 0.331

Characteristic frequency
_! (Hz) _� (Hz) _� (Hz) _0 (Hz)

33 296.9 279.8 236.4
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Figure 8: Monitoring charts by NLOPE: (a) EWMA statistic; (b) local enlargement of (a).
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Figure 9: Monitoring chart by KGLPP.

inferior to the performance of NLKOPE-based monitoring
method, because NLKOPE-EWMA statistic can re�ect the
damage degree of the bearing from the severe degradation
occurrence of incipient defect to 
nal failure, as shown in
Figure 10, the EWMA statistic continues to grow from severe
degradation to 
nal failure stage, which is consistent with
actual bearing degradation. 
us we can draw the conclusion
that the NLKOPE-based monitoring model which considers
the global and local data structure together will obtain better
monitoring performance than the model considering only
the global structure or local structure of data.
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Figure 10: Monitoring chart by NLKOPE.


e above results have shown that the proposed method
can be e�ectively used for the task of bearing fault detection.

e next step is to diagnose the fault type of the bearing. We
extract the 1789th sample to analysis, the signal is complex
and messy that contains lots of noise as shown in Figure 11,
and thus it is hard to diagnose whether the bearing is faulty
only by the time waveform of the vibration signal, as the
features have been submerged by the strong noise. In order
to extract useful features for diagnosis, it is necessary to
eliminate the noise in the original vibration signal. Dual-
tree complex wavelet packet transform (DTCWPT) is a
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Figure 11: Time waveform of vibration signal.

multiscale method with such attractive properties as nearly
shi�-invariance and reduced aliasing, which has been widely
used in signal processing [26]. In this study, DTCWPT is
employed to denoise the original vibration signal combined
with the threshold method, and Hilbert transform enve-
lope algorithm is applied to extract the fault characteristic
frequency. As shown in Figure 12, the noise in vibration
signal has been greatly reduced, and transient periodicity can
be found because of the impacts produced by the bearing
defect. 
e envelop spectrum of denoised vibration signal
is presented in Figure 13, we can 
nd the sha� frequency _!
and its harmonics, the fault characteristic frequency _� and its
harmonics are all quite e�ectively extracted, and there are also
side bands _1 and _2 on both sides of the fault characteristic
frequency _�. 
erefore, the bearing inner race can be judged
to be faulty, which is also in line with the actual condition of
the bearing.

6. Conclusions

In this paper, a linear dimension reduction method called
nonlocal orthogonal preserving embedding is proposed,
and the nonlinear form of NLOPE named nonlocal kernel
orthogonal preserving embedding is also presented. In order
to retain the geometric of the latent manifold, NLOPE and
NLKOPE both take global and local data structures into
account, and a tradeo� parameter is introduced to balance
the global preserving and local preserving. Hence, compared
to KPCA and KONPE,NLKOPE is more general and �exible,
and it is alsomore powerful to extract latent information from
nonlinear data than NLOPE. Based on the results of three
cases, the dimension reduction performance of NLKOPE
is the best, which is bene
cial to improve the accuracy of
fault classi
cation, and NLKOPE-based monitoring method
has higher fault detection rate, it is also more sensitive
and e�ective to evaluate the performance degradation of
bearing in comparison with KPCA, KONPE, and NLOPE-
based monitoring method.
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Figure 12: Time waveform of denoised vibration signal.
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Appendix

A.

To obtain the result of �1, we construct the Lagrange function
of H(�1) based on (24)

H (�1) = ��1 [G�7�� − (1 − G) �] �1
− � {��1 [G��� + (1 − G) 4] �1 − 1} (A.1)

Let K = G��� + (1 − G)4, L = G�7�� − (1 − G)�, set the
partial derivative of H(�1) with respect to �1 to be zero, and
we get

dH (�1)d�1 = 2L�1 − 2�K�1 = 0 (A.2)


us, �1 is the eigenvector corresponding to the smallest

eigenvalue of matrix K−1L.
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To obtain the result of ��, we construct the Lagrange
function of H(��) based on (24)

H (��) = ��� [G�7�� − (1 − G) �] ��
− � {��� [G��� + (1 − G) 4] �� − 1}
− �−1∑

�=1
\���� ��

(A.3)

Substituting K and L into (A.3), we get

H (��) = ���L�� − � (��� K�� − 1) − �−1∑
�=1
\���� �� (A.4)

Set the partial derivative of H(��) with respect to �� to be
zero

dH (��)d�� = 2L�� − 2�K�� − �−1∑
�=1
\��� = 0 (A.5)

Multiplying the le� side of (A.4) by ��� K−1, we have
��� K−1�−1∑

�=1
\��� = 2��� K−1L�� (A.6)

5 = 1, 2, ⋅ ⋅ ⋅ , � − 1, (A.6) can be represented as

[[[[
[

��1...
���−1

]]]]
]
K−1 [�1, ⋅ ⋅ ⋅ , ��−1][[[[

[

\1...
\�−1

]]]]
]

= 2[[[[
[

��1...
���−1

]]]]
]
K−1L��

(A.7)

Let \(�−1) = [\1, \2, ⋅ ⋅ ⋅ , \�−1]�, �(�−1) = [�1, �2, ⋅ ⋅ ⋅ , ��−1],
we obtain

\(�−1) = 2 [(�(�−1))� K−1�(�−1)]−1 (�(�−1))� K−1L�� (A.8)

Multiplying (A.4) by K−1 and substituting (A.8), we obtain
{4 − K−1�(�−1) [(�(�−1))� K−1�(�−1)]−1 (�(�−1))�}
⋅ K−1L�� = ���

(A.9)


us, �� is the eigenvector corresponding to the smallest

eigenvalue of matrix 9(�):

9(�) = {4 − (K)−1 �(�−1) [(�(�−1))� (K)−1 �(�−1)]−1

⋅ (�(�−1))�} K−1L
(A.10)

B.

To obtain the result of �1, we construct the Lagrange function
of H(�1) based on (31)

H (�1) = ��1 [G �7 − (1 − G)  � � ]�1
− � {��1 [G ( � +  ) + (1 − G) 4] �1 − 1}

(B.1)

Let K = G( � +  ) + (1 − G)4, L = G �7 − (1 −G) � /�, set the partial derivative of H(�1) with respect to�1 to be zero, we get
dH (�1)d�1 = 2L�1 − 2�K�1 = 0 (B.2)


us, �1 is the eigenvector corresponding to the smallest

eigenvalue of matrix K−1L.
To obtain the result of ��, we construct the Lagrange

function of H(��) based on (31)

H (��)
= ��� [G �7 − (1 − G)  � � ]��
− � {��� [G ( � +  ) + (1 − G) 4] �� − 1}
− �−1∑

�=1
\���� ���

(B.3)

Substituting K and L into (B.3) and setting the partial
derivative of H(��) with respect to �� to be zero, we obtain

H (��) = ���L�� − � (��� K�� − 1) − �−1∑
�=1
\���� ��� (B.4)

dH (��)d�� = 2L�� − 2�K�� − �−1∑
�=1
\� ��� = 0 (B.5)

Multiplying the le� side of (B.4) by ��� K−1, we have
��� K−1�−1∑

�=1
\� ��� = 2��� K−1L�� (B.6)

5 = 1, 2, ⋅ ⋅ ⋅ , � − 1, (B.6) can be represented as

[[[[
[

��1...
���−1

]]]]
]
K−1 � [�1, ⋅ ⋅ ⋅ , ��−1] [[[[

[

\1...
\�−1

]]]]
]

= 2[[[[
[

��1...
���−1

]]]]
]
K−1L��

(B.7)
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Let \(�−1) = [\1, \2, ⋅ ⋅ ⋅ , \�−1]�, �(�−1) = [�1, �2, ⋅ ⋅ ⋅ , ��−1],
and we obtain

\(�−1)
= 2 [(�(�−1))� K−1 ��(�−1)]−1 (�(�−1))� K−1L�� (B.8)

Multiplying (B.4) by K−1 and substituting (B.8), we obtain
{4 − K−1 ��(�−1) [(�(�−1))� K−1 ��(�−1)]−1

⋅ (�(�−1))�} K−1L�� = ���
(B.9)


us, �� is the eigenvector corresponding to the smallest

eigenvalue of matrix 9(�):

9(�) = {4 − K−1 ��(�−1) [(�(�−1))� K−1 ��(�−1)]−1

⋅ (�(�−1))�} K−1L
(B.10)
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