
Nonlinear Model Predictive Control for Aerial Manipulation

Dario Lunni, Angel Santamaria-Navarro, Roberto Rossi, Paolo Rocco, Luca Bascetta and Juan Andrade-Cetto

Abstract— This paper presents a nonlinear model predictive
controller to follow desired 3D trajectories with the end effector
of an unmanned aerial manipulator (i.e., a multirotor with a
serial arm attached). To the knowledge of the authors, this is the
first time that such controller runs online and on board a limited
computational unit to drive a kinematically augmented aerial
vehicle. Besides the trajectory following target, we explore the
possibility of accomplishing other tasks during flight by taking
advantage of the system redundancy. We define several tasks
designed for aerial manipulators and show in simulation case
studies how they can be achieved by either a weighting strategy,
within a main optimization process, or a hierarchical approach
consisting on nested optimizations. Moreover, experiments are
presented to demonstrate the performance of such controller
in a real robot.

I. INTRODUCTION

Over the last few years, the application field of unmanned

aerial vehicles (UAVs) has been considerably expanded from

“passive” applications, like monitoring or surveillance, to

“active” operations which require interactions with the en-

vironment (e.g., manipulation). With the improvements of

brush-less motors and batteries, new sophisticated UAV pro-

totypes have been developed that can physically interact with

the environment. These high-performance vehicles, called

unmanned aerial manipulators (UAMs), usually consist on

a multirotor platform with a robot arm attached underneath

(e.g., the UAM shown in Fig. 1).

First studies on UAMs analyzed how load transportation

affects the vehicle dynamics [1], [2]. In most of those works,

controllers were designed to achieve trajectory tracking with

the aerial vehicle during the navigation phases. However,

when using a serial arm able to move with respect to

the platform, the models involved in the design of these

controllers are complicated due to dynamic coupling between

the parts of the system [3]. A common practice is to simplify

the controller design and consider the dynamics of each part

decoupled. In [4] a scheme of nested proportional-integral-

derivative controllers (PIDs) was designed for attitude sta-

bilization, vision-based navigation and a gripping maneuver.

Similar PID schemes are compared with an integral back-

stepping controller in [5]. Among the undesired dynamic

Dario Lunni, Roberto Rossi, Paolo Rocco and Luca Bascetta
are with Politecnico di Milano, Dipartimento di Elettronica,
Informazione e Bioingegneria, Piazza Leonardo da Vinci, 32, Italy,
E-mail: dario.lunni, roberto.rossi, paolo.rocco,

luca.bascetta @polimi.it

Angel Santamaria-Navarro and Juan Andrade-Cetto are
with the Institut de Robòtica i Informàtica Industrial, CSIC-
UPC, Llorens i Artigas 4-6, Barcelona 08028, Spain, E-mail:
asantamaria,cetto@iri.upc.edu. Their work was partially
funded by the EU project AEROARMS H2020-ICT-2014-1-644271,
and by the Spanish Ministry of Economy and Competitiveness project
ROBINSTRUCT TIN2014-58178-R.

Fig. 1. Aerial manipulator, used in the experiments, consisting on a 3DR-
X8 coaxial multirotor platform with a custom-built 3 degrees-of-freedom
serial arm attached below.

effects, there is the change of the center of mass during flight,

that can be solved designing a low-level attitude controller

such as a Cartesian impedance controller [6], or an adaptive

controller [7]. Moreover, a desired end effector pose might

require a non-horizontal robot configuration that the low level

controller would try to compensate, changing in turn the arm

end effector position. In this way, [8] designs a controller

exploiting the manipulator and multirotor models, however

flight stability is preserved by restricting the arm movements

to those not jeopardizing UAM integrity.

Recently, there has been growing interest in using numer-

ical optimal control for aerial vehicles. In [9] a method is

presented for 3D trajectory generation of a UAV limiting the

3 translational jerks and accelerations. The computed trajec-

tory is then fed to a closed-loop control, achieving a similar

performance as in the case of using model predictive control.

Similarly, [10] describes a system for real-time generation

of optimal trajectories with minimum snap, allowing large

excursions from the hover position during operations like

take-off and navigation. In both [9] and [10] the generated

trajectories are for nonholonomic multirotors, which at a

high level of control have 4 degrees of freedom (DoF).

In [11], this trajectory generation is optimized for a vehicle

with a cable-suspended load computing nominal trajectories

with various constraints regarding the load swing. All these

trajectory generation methods are actually considered part of

the planning module.

The application of optimal control to UAMs can be

seen in [12] where a nonlinear model predictive control

scheme (NMPC) is described using a direct multiple shooting

method, but results for a multirotor equipped with a serial

arm are only shown in a simulated environment. Similarly,

[13] presents an NMPC to achieve pick-and-place operations

with a real robot. However, both in [12] and [13] the

NMPCs are used for offline trajectory generation and online

performance is left for future work. Moreover, none of these

methods aims to accomplish several tasks simultaneously by

exploiting the redundancy of UAMs in terms of degrees-of-

freedom (DoFs).

The redundancy of UAM systems (i.e., 4 DoFs from the

multirotor and, at least, 3 DoFs from the arm system),

can be exploited not only to achieve a primary task (e.g.,

trajectory tracking) but also a lower priority stabilizing task

by optimizing some given quality indices (e.g., improving

manipulability or avoiding joint limits) as in [14], [15]. In

these works, as in most of recent approaches (e.g., [16],

[17], [18]) the problem is solved using hierarchical task

composition control but in almost all cases without using

optimal control. A close approach is [19], which presents

a trajectory generation method for UAMs through quadratic

programming, taking advantage of redundancy. However, the

hierarchy of tasks is softly imposed using a weighted sum

and conflicts with antagonistic tasks would arise.

In this paper, we combine both ideas of using optimal

control and accomplishing several tasks with kinematically

redundant UAMs. We present an NMPC controller for UAMs

able to work online and on board a limited computational

unit. We consider a task consisting on a 3D trajectory

tracking with the arm end effector, and define other tasks

to improve the arm manipulability and align the arm center

of gravity (CoG) with the platform gravitational vector.

Moreover, system bounds and constraints are set in the

optimization process to limit the UAM motion and avoid self-

collisions with the arm end effector. The use of these tasks

is shown in simulation case studies by using a weighting

strategy and a nested optimization scheme which allows us

to impose a hierarchy. Real robot experiments are presented

to show the performance of the NMPC.

The remainder of this article is structured as follows.

The robot kinematics is presented in the following Section.

Section III provides the NMPC details. Tasks and constraints

are defined in Sections IV and V, respectively. Section VI

presents the validation of the method throughout simulations

and real experiments. Finally, conclusions are given in Sec-

tion VII.

II. ROBOT MODEL

Multirotors are equipped with more than two aligned

coplanar propellers. Due to their symmetric design, motion

control is achieved by altering the rotation rate of one or

more of these propellers, thereby changing its torque load

and thrust lift characteristics. At a high level of control, a

multirotor is an underactuated vehicle with only 4 DoFs, i.e.,

the platform tilting (roll and pitch variables) is used by the

low level attitude controller to produce desired translational

velocities of the vehicle. Instead, attaching a robotic arm with

more than two degrees of freedom to a multirotor the whole

system becomes redundant.

In this paper, we consider a UAM composed of a free-

flying platform (i.e., a multirotor) with a serial arm attached,

allowing not only to accomplish tasks using the arm end

effector (e.g., end effector positioning) but also to exploit

the whole system redundancy to achieve internal motions

that ease the flight behaviour. The multirotor-arm system

considered has n DoFs, with n ≥ 7, defined as follows.

Let ipb and iφb denote the absolute position and ori-

entation (i.e., the triple of ZYX yaw-pitch-roll angles) of

the vehicle body (b) expressed in a global inertial reference

frame (i). Let q be the arm joint positions. The complete

state of the UAM can be described by

ξ =
[

ipb

⊤ iφb

⊤
q⊤

]⊤

. (1)

Considering the multirotor underactuation, it is worth to

separate the non controllable DoFs in the state, leading to

ξ =
[

µ⊤ σ⊤
]⊤

, (2)

where µ is the vector of controlled variables (i.e., platform

position plus yaw angle and arm joint variables) and σ the

non controlled variables (i.e., platform roll and pitch).

III. NONLINEAR MODEL PREDICTIVE CONTROL

Model predictive control (MPC) is a control technique that

consists in numerically solving an optimization problem at

each time step. A model of the process is used to predict

the future evolution of the system in order to optimize

the control signal. This future time horizon, in which the

algorithm is computed, is called prediction horizon. NMPC

refers to particular MPC problems where the process model

is nonlinear, the cost functional is nonquadratic or general

nonlinear constraints are used.

A. Weighting strategy

Considering a generic dynamic system, which has a state

x and is controlled by the variables in u, the solution of the

optimal control problem at time tk = kTs (∀ 1 < k < N),

where Ts is the time step, over a finite prediction horizon of

N steps, is defined by

min
u

h(xk,u, tk)

s.t. xk+1 = f(xk,uk)

ymin ≤ g(xk,uk) ≤ ymax

xmin ≤ xk ≤ xmax

umin ≤ uk ≤ umax

(3)

where u =
[

u⊤

k ,u
⊤

k+1
, . . . ,u⊤

k+N−1

]⊤

is a vector of control

variables, f is the model of the system, g represents a generic

constraint, and h is a generic cost function defined by

h(xk,u, tk) =

N−1
∑

i=0

(

Nh−1
∑

j=0

hj + ||uk+i − uk+i−1||
2
Wu

)

+ ||uk+N ||2Ws

)

,

(4)

where hj = hj(xk+i,uk+i, tk) are Nh generic positive

cost functions to be minimized, and Wu and Ws weights

on control actions and terminal cost respectively. Notice

how in (3) the optimization process is constrained by the

dynamic model of the system, xk+1 = f(xk,uk), subject to

lower and upper bounds on state, control actions, and output

variables defined by xmin and xmax, umin and umax and

ymin and ymax, respectively.

B. Hierarchical approach

Instead of following a weighting strategy, we can impose a

hierarchy between the tasks (cost functions), similarly to [17]

and [18], but in this case using optimal control. The required

scheme is based on nested optimizations as explained in the

following.

Drawing inspiration from [20], we propose to compute

a cascade of optimizations for each time step in order to

minimize different cost functionals, each one related to a

different task. However and differently from [20], we do not

require to linearize the system. Initially, we solve the optimal

control problem considering the cost functional of a main

task (e.g., the end effector trajectory tracking described later

on in Section (IV-A)). From this minimization we are able to

compute the predicted values of the cost functional for the

N future steps. Then, the hierarchy is imposed by adding

a constraint in the secondary task resolutions. In particular,

the value of the cost function at higher priority is set as a

constraint to the next optimization iteration.

For a secondary task, the minimization of the cost functional

follows the same procedure as for the primary task, but this

time incorporating the constraint resulting from solving the

primary task (see (3)), defined by

g1(xk,u, tk) = 0 , ∀k. (5)

This method can be repeated as many times as wanted for

several subtasks imposing the hierarchy, depending on the

redundancy of the robot with respect to the task definitions,

e.g., the optimization solver will find a solution in the alloted

time only if the tasks higher in the hierarchy do not require

that DoF to be accomplished (i.e., if the optimization process

does not have a constraint for that DoF).

C. System model in the optimization problem

In this paper we consider that UAMs are not meant for

acrobatic maneuvers. Hence, we will not include the platform

tilt in the trajectory generation algorithm (platform roll and

pitch angles will be assumed negligible in our analysis).

Then, for the optimization problem we can consider the state

x = µ =
[

ip⊤

b
iψb q⊤

]⊤
, (6)

while the control action is directly the state derivative

u = µ̇ =
[

iṗ⊤

b
iψ̇b q̇⊤

]⊤

. (7)

Formulating the control action in differential form is a well-

known method to obtain zero steady state error. The function

of the system model f is just an integrator of input u.

The non-linearity of the approach appears in the definition

of the cost function and in the constraints. The choice of

this reduced system model was made to guarantee online

computation, on board a platform with limited resources.

Hereafter, we assume that the inner control loop of

the system can perfectly track the computed references.

There are some works [21], [22] which show that adding

a manipulator introduces unwanted external disturbances to

the multirotor which, if not compensated for, will make it

unstable. Although, with slow arm movements (as in our

case) the inner-loop controller can already compensate most

of these effects, one has to specially consider from the

following tasks, the ones designed to improve stability of

the platform.

IV. UAM TASKS

We can consider several cost functions for UAMs (3), in

order to accomplish a given task or to preserve stability. In

this Section we present a few of such task functions.

A. End effector tracking

The main interaction task will be executed by the arm

end effector, it is thus important to be able to track a desired

end effector trajectory. The following cost function can be

defined

h1 =

N−1
∑

i=0

||ee (xk+i) ||
2
W1

+ ||ee (xk+N) ||2Ws1
, (8)

where

ee (xk+i) =
ipe(xk+i)−

ipd
e (tk+i) (9)

is the end effector tracking error, ipd
e is the desired end

effector position over the predicted horizon, and W1 and

Ws1 are the weight matrices for the task and the terminal

cost. Although h1 encloses the end effector position error,

notice how this cost function can also consider its orientation

by augmenting with iφe and iφ
d

e the current and desired end

effector poses, respectively.

Notice that each cost function presented in the following

includes a terminal cost. In a number of works, collected

in [23], it is pointed out that terminal cost weights are a

key ingredient to achieve stability with NMPCs. However,

stability proof of the proposed NMPC is outside the scope

of the present work.

B. Robot center of gravity alignment

When the arm CoG is not aligned with the geometrical

center of the platform, undesired torques appear in the

vehicle’s base, which must be compensated with the action

of the propellers. In order to minimize this actuation effort

and avoid instability, it is beneficial to design a task to favor

this alignment, such as

h2 =

N−1
∑

i=0

||bpGxy(xk+i)||
2
W2

+ ||bpGxy (xk+N) ||2Ws2
,

(10)

where bpGxy(xk+i), is the vector describing the position of

the arm CoG projected onto the xy plane of the body ref-

erence frame during the prediction horizon. This expression

can be obtained as in [17], [18]. Notice that we are assum-

ing that the quadrotor is internally balanced. Otherwise, a

different equilibrium point should be assigned for the arm

CoG.

The formulation of (10) can effectively reduce the static

torques produced on the quadrotor. However, an additional

cost function can be considered in order to reduce the

disturbances produced by inertial forces on the quadrotor.

In fact, the following cost function accounts for the velocity

of the CoG:

h3 =

N−1
∑

i=0

||bvGxy (k + i) ||2W3
+ ||bvGxy (k +N) ||2Ws3

,

(11)

with
bvGxy (k + i) = bJGxy(xk+i)uk+i , (12)

and bJGxy(xk+i) the arm CoG Jacobian. Penalizing the

motion of the CoG has the goal of reducing the inertial

forces resulting on the quadrotor plane, thus on axes

orthogonal to the thrust direction.

C. Arm manipulability

During a manipulation task, a useful objective function is

represented by the arm manipulability index. A first direct

way of expressing this cost function is

h4 =

N−1
∑

i=0

W4

1

||D (xk+i) ||2
+Ws4

1

||D (xk+N) ||2
, (13)

where

D (xk+i)=det
(

Je,q (xk+i) Je,q (xk+i)
⊤
)

. (14)

Je,q (xk+i) is the submatrix of the end effector Jacobian

Je (xk+i) composed by the columns corresponding to the

arm joints.

A second cost function useful to maximize the manipula-

bility of the arm is obtained by minimizing the conditioning

number of matrix Je,qJ
⊤

e,q:

h5 =

N−1
∑

i=0

W5||1−ρJeq
(k + i)||2+Ws5||1−ρJeq

(k +N)||2 ,

(15)

with

ρJeq
(k + i) = ρ

(

Je,q (xk+i) Je,q (xk+i)
⊤
)

. (16)

ρ(A) = λA,M/λA,m is the conditioning number of a ma-

trix A, with λA,M and λA,m the maximum and minimum

eigenvalues, respectively. Notice that, far from singularity

points, the matrix Je,qJ
⊤

e,q is symmetric positive definite,

then its eigenvalues are real and positive. Notice also that

the closer the cost function h5 in (15) is to zero, the more

the manipulability ellipsoid is similar to a generalized sphere.

The weights W4, W5, Ws4 and Ws5 are scalar values.

A third alternative formulation of the cost function related

to manipulability can be obtained by applying the gradient

based method in [24]. It would be expressed with a cost

function on the control action u.

D. Cost function on the control action

The cost function h(xk,u, tk) includes the term

||uk+i − uk+i−1||
2
Wu

penalizing the control action. Notice

that the control action for our system consists in the deriva-

tives of UAM joint positions. Then, with the weight matrix

Wu properly set, the motion can be arbitrarily distributed on

the UAM joints. For instance, it can be desirable to penalize

quadrotor motion in favor of arm DoFs during manipulation

tasks, and vice versa during navigation phases.

V. SPECIFIC NMPC CONSTRAINTS FOR UAMS

We introduce a first constraint consisting in avoiding self-

collisions. To do so, we impose a safety distance between

the joints and the aerial base with

bzi (xk) ≥ 0.1 [m]
bze (xk) ≥ 0.1 [m] ,

(17)

where bze is the position of the end effector in the z direction

of the body reference frame and, similarly, bzi is the distance

of the i-th joint. Notice that just a limited number of points

of the arm can potentially have a collision with the aerial

base, reducing the number of required constraints. These

constraints will be integrated in the optimization through the

term g (see (3)). Thanks to the flexibility of the method, a

generic constraint can be added to the problem.

A part from constraints, we also impose bounds to both

joint positions and velocities. Joint position bounds are ex-

pressed as state bounds, by imposing specific values to xmin

and xmax. On the other hand, velocity bounds correspond

to control action constraints, thus they can be obtained by

setting values of umin and umax.

VI. VALIDATION AND EXPERIMENTAL RESULTS

A. Preliminary simulations using a reduced model with a

weighting task strategy

In order to validate the described controller, we first

present simulation case studies programmed in MATLAB

and considering a simplified model. In particular, the system

consists of a planar multirotor, thus described by three DoFs,

roll angle, y displacement and z altitude, and a 2 DoFs

robotic arm. As described in Section III, roll angle is not

considered in the state of the NMPC model. Therefore,

the model of the system has 4 DoFs. The aim of this

preliminary test is to show how several cost functions can

be integrated using different weights, and solved exploiting

the redundancy. The main cost function is the end effector

trajectory tracking h1. The end effector desired trajectory is

described by the two translational positions ye and ze. In

addition, the CoG cost functions h2 and h3 are integrated in

the model.

The low cardinality of the model state allows to include

the manipulability cost functions h4 and h5 too, which

is quite difficult for systems of higher order, due to the

required computational burden. This is only possible for

those optimization solvers able to obtain a solution even

0 2 4 6 8 10

Time [s]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

E
E

P
o
si
ti
o
n
[m

]

y

z

ydes

Fig. 2. End effector trajectory compared with the reference signal. Notice
how the z reference is not reported because it is always null.

0 2 4 6 8 10

Time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

U
A
M

co
n
tr
o
l
a
ct
io
n

uy [m/s]
uz [m/s]
uq1 [rad/s]
uq2 [rad/s]

Fig. 3. Control actions on the four degrees of freedom computed by the
NMPC. Blue and red lines represent multirotor translational DoFs, while
yellow and violet lines represent arm joint velocities.

without the analitical Jacobians of the cost functions (i.e.,

using numerical computations).

The desired end effector trajectory is in y direction and it

is divided in two phases. In the first phase a small sinusoidal

trajectory is required, while the second phase is characterized

by a bigger sinusoid.

The chosen optimization solver for the non linear problem

is the ACADO Toolkit [25]. The system can be set with

different weight ratios among the cost functions, depending

on the desired interactions between them. Hereafter, we

present the results of a test in which all the five cost functions

have weights different from zero.

In Fig. 2, the end effector trajectory is reported. The

reference trajectory is correctly tracked in both directions.

The z reference is not reported because it is always null. In

Fig. 3, the control actions, output of the NMPC algorithm,

are represented. Notice that bounds on maximum velocity

are respected. It is interesting to show how the motion is

distributed on different joints. In fact, analyzing the blue line,

corresponding to the control action on y, it is evident that the

small sinusoidal motion is mainly performed with the arm

joints, while the large sinusoid is performed using multirotor

DoFs.

Fig. 4 reports the behavior of the conditioning number

ρJe,q
, defined in (16), by showing results of three exper-

iments, performed with different weights. The blue line

0 2 4 6 8 10

Time [s]

2

3

4

5

6

7

8

ρ
(J

J
T
)

Null
Medium
High

Fig. 4. Behavior of the conditioning number ρJe,q
in three different

experiments, differing in the weight assigned to the conditioning number
cost function. The red line represents the experiment with larger assigned
weight, achieving a smaller ρJe,q

, whereas the blue line is the result of the
experiment with zero weight assigned to the cost function, thus not reducing
ρJe,q

.

represents an experiment when the cost function h5 is not

included in the optimization process. The red line is a result

of an experiment in which a large weight was assigned to

this cost function, while the yellow line is the case of the

experiment presented in the previous Figures. The approach

can effectively reduce the conditioning number ρJe,q
with a

proper choice of the associated weight.

A clear disadvantage of a weighting strategy is the lack

of good solutions when tasks are antagonistic (i.e., when the

accomplishment of a task requires the oposite solution of

an other task). Instead, when using a hierarchical solution,

we cannot guarantee the fulfillment of a secondary task, but

at least we can find reasonable solutions for tasks higher

in the hierarchy. In the following sections simulations and

experiments using a hierarchical NMPC are presented.

B. Simulations using a complete model and a hierarchical

task strategy

In this Section a simulation of a fully actuated UAM

consisting on a multirotor with 4 DoFs plus a 3-DoF serial

arm (UAM of 7 DoFs) is used to show how the secondary

tasks can also be executed with a different approach.

The effect of adding a secondary task hierarchically is

shown in Fig. 5. In this simulation the controller is set with

a prediction horizon of 8s. In both cases the optimal control

drives the end effector through the required waypoints. This

comparison is then extended to Fig. 6 with a different

trajectory. Here, it is reasonable to expect the improvement of

the flight behaviour when the whole CoG is vertically aligned

with the platform center of rotation. Moreover, considering

that most of the workspace of the arm exists below the

aerial platform (i.e., without colliding with the multirotor),

it is clearly shown how the multirotor (black line trajectory)

performs quite better when a secondary task to align the arm

CoG is present (Fig. 6(b)). In these particular simulations we

removed all motion bounds to show how, in the case where

only the tracking task is present (Fig. 6(a)), the platform and

end effector are moving in similar vertical positions, thus

with the arm fully extended in a forward position.

0.3

0.2

0.1

00.3

0.2

0.1

0

-0.1

0.3

0

0.05

0.1

0.15

0.2

0.25

0.35

y [m]x [m]

z
[m

]

(a) Non-hierarchical NMPC

0.3
0.2

0.1
0

0.3

0.2

0.1

0

-0.1

0.4

0.2

0

0.1

0.5

0.3

-0.2

y [m]x [m]

z
[m

]

Trajectory

End effector

Quadrotor

(b) Hierarchical NMPC

Fig. 6. Simulation results for 3D trajectories, done by the arm end effector using only the positioning task (non-hierarchical) or adding a secondary
task (hierarchical) to vertically align the arm CoG and improve the platform flight behavior. In both cases the main task consists in following 4 desired
waypoints with the arm end effector.

0 5 10 15 20 25 30

1.5

1.0

0.5

0

2

1

0

−1

2

1

0

−1

Non-hierarchical

Hierarchical

Waypoints

Time [s]

z
[m

]
y

[m
]

x
[m

]

Fig. 5. Simulation results for 3D end effector positioning. NMPC
performance comparison between applying only the positioning task (non-
hierarchical, dashed black line) or together with a secondary task (hierar-
chical, blue line)

C. Experiments

Here we present the results of the implementation of

the NMPC strategy on the real UAM shown in Fig. 1.

The platform is equipped with a Pixhawk board to allocate

lower level controllers for the multirotor and the arm (PID

controllers), which are tuned to track the references provided

by the NMPC. As in the previous Section, the optimization

algorithm has been implemented using the ACADO toolkit

[25], already used to generate complex 3D trajectories for

multirotors [26], and runs on board an ODROID XU3 at

2Hz with a prediction horizon of 5s (i.e., N = 10). In

the following experiments, we use the hierarchical NMPC

as in the previous section, with a main task consisting on

positioning the end effector and a secondary task to vertically

align the arm CoG.

Fig. 7 shows a trajectory following experiment with the

arm end effector during a 13 minutes flight. The control on

both x and y directions work properly, however the vertical

End effector

Reference

100 200 300 400 500 600 700 800
0.8

1

1.2

-2

-1.5

-1

-1

1

0
z

[m
]

y
[m

]
x

[m
]

Time [s]

Fig. 7. Real arm end effector positions during a trajectory following task
and using the hierarchical NMPC, with the arm CoG alignment as secondary
task. The arm end effector position (blue line) has been obtained using a
motion capture system.

100 200 300 400 500 600 700 800
0.8

1

1.2

-2

-1.5

-1

-1

1

0

Time [s]

q
1

[r
ad

]
q

2
[r

ad
]

q
3

[r
ad

]

Joints

Bounds

Fig. 8. Arm joint positions (qi) during the same trajectory following task
and hierarchical NMPC as in Fig. 7. The horizontal dashed lines correspond
to lower and upper bounds of a constraint, set to avoid self-collisions.

axis shows slower dynamic response, requiring finer thrust

tuning.

100 200 300 400 500 600 700 800
1

1.2

-2

-1.5

-1

0

z
[m

]
y

[m
]

x
[m

]

Time [s]

Quadrotor

Bounds

0.4

0.2

1.4

Fig. 9. Real platform positions during the same trajectory following task
and hierarchical NMPC as in Fig. 7. The multirotor position (blue line) has
been obtained using a motion capture system. The horizontal dashed lines
correspond to lower and upper position bounds.

In these experiments, we also imposed a main constraint

consisting on avoiding self-collisions between the arm end

effector and the platform base. Fig 8 shows the positions

of the joints, where it is clear how some joints reach

their bounds but without overpassing them. Moreover, we

added bounds in the solver for the platform positioning. The

resulting multirotor movements are shown in Fig. 9.

VII. CONCLUSIONS

This paper presents the implementation of an NMPC

controller for UAMs able to work online and on board a

hardware with limited computational power. Several cost

functions for UAMs are presented in order to accomplish

a given task or to preserve stability. Among them, tasks

to track trajectories with the arm end effector, improve the

arm manipulability or align the arm CoG with the platform

gravitational vector have been discussed. Two methods are

presented to accomplish these tasks within simulation case

studies. Firstly, a weighting strategy, then a hierarchical

solution consisting on nested optimizations. The NMPC

architecture has been validated through experiments with a

real UAM.

REFERENCES

[1] D. Zameroski, G. Starr, J. Wood, and R. Lumia, “Rapid swing-free
transport of nonlinear payloads using dynamic programming,” J. of

Dyn. Syst. Meas. and Cont., vol. 130, no. 4, p. 041001, 2008.
[2] I. Palunko, R. Fierro, and P. Cruz, “Trajectory generation for swing-

free maneuvers of a quadrotor with suspended payload: A dynamic
programming approach,” in Proc. IEEE Int. Conf. Robotics Autom.,
Saint Paul, May. 2012, pp. 2691–2697.

[3] K. Kondak, K. Krieger, A. Albu-Schaeffer, M. Schwarzbach, M. La-
iacker, I. Maza, A. Rodriguez-Castano, and A. Ollero, “Closed-loop
behavior of an autonomous helicopter equipped with a robotic arm for
aerial manipulation tasks,” I. J. of Adv. Robotic Syst., vol. 10, 2013.

[4] V. Ghadiok, J. Goldin, and W. Ren, “Autonomous indoor aerial
gripping using a quadrotor,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots

Syst., San Francisco, Sep. 2011, pp. 4645–4651.
[5] A. Jimenez-Cano, J. Martin, G. Heredia, A. Ollero, and R. Cano,

“Control of an aerial robot with multi-link arm for assembly tasks,”
in Proc. IEEE Int. Conf. Robotics Autom., Karlsruhe, May. 2013, pp.
4916–4921.

[6] V. Lippiello and F. Ruggiero, “Exploiting redundancy in Cartesian
impedance control of UAVs equipped with a robotic arm,” in Proc.

IEEE/RSJ Int. Conf. Intell. Robots Syst., Vilamoura, Oct. 2012, pp.
3768–3773.

[7] G. Antonelli, E. Cataldi, P. Giordano, S. Chiaverini, and A. Franchi,
“Experimental validation of a new adaptive control scheme for quadro-
tors MAVs,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Tokyo,
Nov. 2013, pp. 2439–2444.

[8] M. Orsag, C. Korpela, M. Pekala, and P. Oh, “Stability control in aerial
manipulation,” in Proc. Amer. Cont. Conf., Washington, Jun. 2013, pp.
5581–5586.

[9] M. Hehn and R. D’Andrea, “Quadrocopter trajectory generation and
control,” in In Proc. 18th IFAC World Con., vol. 44, no. 1, 2011, pp.
1485–1491.

[10] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in Proc. IEEE Int. Conf. Robotics Autom.,
Shanghai, May. 2011, pp. 2520–2525.

[11] K. Sreenath, N. Michael, and V. Kumar, “Trajectory generation and
control of a quadrotor with a cable-suspended load-a differentially-flat
hybrid system,” in Proc. IEEE Int. Conf. Robotics Autom., Karlsruhe,
May. 2013, pp. 4888–4895.

[12] M. Geisert and N. Mansard, “Trajectory generation for quadrotor based
systems using numerical optimal control,” in Proc. IEEE Int. Conf.

Robotics Autom., Stockholm, May. 2016, pp. 2958–2964.

[13] G. Garimella and M. Kobilarov, “Towards model-predictive control
for aerial pick-and-place,” in Proc. IEEE Int. Conf. Robotics Autom.,
Seattle, May. 2015, pp. 4692–4697.

[14] S. Chiaverini, “Singularity-robust task-priority redundancy resolution
for real-time kinematic control of robot manipulators,” IEEE Trans.

Robotics Autom., vol. 13, no. 3, pp. 398–410, Jun 1997.

[15] P. Baerlocher and R. Boulic, “Task-priority formulations for the kine-
matic control of highly redundant articulated structures,” in IEEE/RSJ

Int. Conf. Intell. Robots Syst., vol. 1, Oct 1998, pp. 323–329.

[16] A. Santamaria-Navarro, V. Lipiello, and J. Andrade-Cetto, “Task
priority control for aerial manipulation,” in Proc. IEEE Int. Symp.

Safe. Sec. Resc. Robotics., Toyako-cho, Oct. 2014, pp. 1–6.

[17] A. Santamaria-Navarro, P. Grosch, V. Lippiello, J. Sola, and
J. Andrade-Cetto, “Uncalibrated visual servo for unmanned aerial
manipulation,” IEEE/ASME Transactions on Mechatronics, vol. PP,
no. 99, pp. 1–1, 2017.

[18] V. Lippiello, J. Cacace, A. Santamaria-Navarro, J. Andrade-Cetto,
M. . Trujillo, Y. R. Esteves, and A. Viguria, “Hybrid visual servoing
with hierarchical task composition for aerial manipulation,” IEEE Rob.

Autom. Letters, vol. 1, no. 1, pp. 259–266, Jan. 2016.

[19] R. Rossi, A. Santamaria-Navarro, J. Andrade-Cetto, and P. Rocco,
“Trajectory generation for unmanned aerial manipulators through
quadratic programming,” IEEE Rob. Autom. Letters, vol. 2, no. 2, pp.
389–396, Apr. 2017.

[20] A. Del Prete, F. Romano, L. Natale, G. Metta, G. Sandini, and
F. Nori, “Prioritized optimal control,” in Proc. IEEE Int. Conf. Robotics

Autom., Hong Kong, Jun. 2014, pp. 2540–2545.

[21] G. Antonelli, F. Arrichiello, S. Chiaverini, and P. R. Giordano, “Adap-
tive trajectory tracking for quadrotor mavs in presence of parameter
uncertainties and external disturbances,” in IEEE/ASME Int. Conf. on

Adv. Int. Mech., Wollongong, Jul. 2013, pp. 1337–1342.

[22] Y. E. Tlatelpa-Osorio, J. J. Corona-Sánchez, and H. Rodrguez-Cortés,
“Quadrotor control based on an estimator of external forces and
moments,” in Int. Conf. on Unman. Airc. Syst., Arlington, June 2016,
pp. 957–963.

[23] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert,
“Constrained model predictive control: Stability and optimality,” Au-

tomatica, vol. 36, no. 6, pp. 789–814, 2000.

[24] Y. Zhang, D. Guo, K. Li, and J. Li, “Manipulability-maximizing
self-motion planning and control of redundant manipulators with
experimental validation,” in In Proc. IEEE Int. Conf. on Mech. and

Autom., Chengdu, Aug 2012, pp. 1829–1834.

[25] B. Houska, H. J. Ferreau, and M. Diehl, “Acado toolkitan open-
source framework for automatic control and dynamic optimization,”
Opt. Cont. App. and Methods, vol. 32, no. 3, pp. 298–312, 2011.

[26] D. Brescianini, M. Hehn, and R. D’Andrea, “Quadrocopter pole
acrobatics,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Tokyo,
Nov. 2013, pp. 3472–3479.

