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Abstract— The paper focuses on developing power flow control 
strategy for electricity end users installed with photovoltaic-
battery systems. The control objective is to reduce the overall cost 
to the end users while meeting the users’ load demands. By taking 
into consideration the cost associated with the degradation of the 
battery, a nonlinear model predictive control technique is used to 
determine the short-term power exchange with the external grid 
system. The formulated nonlinear optimization problem is solved 
using dynamic programming technique, and an algorithm is 
developed to reduce the computational load. Numerical examples 
show the efficacy of the proposed method. 

Keywords— Battery energy storage system, lithium-ion battery, 
battery degradation, PV, model predictive control, dynamic 
programming. 

I. INTRODUCTION 
In recent years, photovoltaic (PV) panels have been widely 

deployed worldwide in the pursuit to achieve low-carbon 
electricity generation. In Australia, the number of households 
equipped with rooftop PV panels has reached 1.74 million in 
2017, accounts for about 1/5 of the residences [1]. However, as 
the penetration level of the renewable distributed generation 
increases, the intermittent nature of solar irradiance can pose 
severe technical challenges to the distribution network, in the 
form of voltage fluctuation and overload in distribution feeders, 
among other issues [2]. Such negative impacts would offset the 
economic and environmental benefits obtained from the free 
and clean energy resource. Fortunately, with the help of 
distributed energy storage devices such as lithium-ion (Li-ion) 
batteries, the afore-mentioned issues can be alleviated and even 
completely overcome. Energy market mechanisms can be used 
to bring further economic benefits to the distributed generators. 

In such distributed generator systems, the end users become 
electricity producers as well as consumers, the so-called 
“prosumers”. A prosumer can be an individual household, a 
commercial building, or a microgrid in a broader sense. By 
regulating the battery power, the local demand can be met while 
the prosumer can undertake electricity power/energy exchange 
with the external grid. The viability and reliability of such a 
system rely critically on the efficacy of the energy management 
system to govern the power flows between generations, loads, 
storage, and the external grid. The design of such an energy 
management system is a challenging task because of the 
uncertainties in the renewable generations and loads.  

Large amount of works have been reported pertaining to 
various aspects of the prosumers’ energy management systems. 
For example, the authors of [3] have proposed a number of 

household appliance models but they did not explore the 
possibility in which a prosumer can sell electricity back to the 
grid. In [4], the authors proposed a bi-directional plug-in hybrid 
electric vehicle charging/discharging model, although the 
degradation effect of the battery was not considered. The 
formulated optimization problems in these works are often 
solved using linear programming or mixed-integer linear 
programming techniques. Unfortunately, these techniques 
could fail to yield the solutions because electrochemical battery 
is a highly-nonlinear device. Indeed, literature [5] proposed a 
nonlinear predictive control strategy for residential buildings. 
Empirical battery model with predetermined degradation 
parameters were used in the study. However, the parameters 
were obtained under battery operating conditions which may be 
significantly different from that encountered in practice.   

The present investigation differs in a number of ways in 
comparison with the cited works. In particular, a physics-based 
dynamic model of Li-ion battery is used in which the major 
battery degradation mechanisms have been considered in the 
design of the control strategy. It then allows the prosumer to 
optimally determine the trading schedule based on the predicted 
load, solar irradiance and tariff information. The optimal power 
flow is determined by a nonlinear model predictive control 
(MPC) method, where the optimization problem is solved by a 
modified form of dynamic programming (DP). Furthermore, it 
is envisaged the future distribution energy market would be 
flexible and dynamic. Thus, this work assumes the prosumer 
would be permitted to submit its dispatch schedule to the 
distribution system operator (DSO) ahead of time. This will 
allow the DSO to arrange and schedule load, generation, storage 
and tariff to achieve optimal network control and management.  

II. SYSTEM CONFIGURATION AND MODEL 

A. System Configuration 

In this section, the overall configuration and mathematical 
model of each component in the proposed energy management 
system are presented. The schematic diagram of a prosumer 
with PV panels and battery packs is shown in Fig. 1. The PV 
panels and the battery packs are connected to a dc network via 
the corresponding dc/dc converters, and their combined power 
is converted to single-phase ac form to supply the local non-
deferrable loads. The net difference between the PV-battery 
output and the local load is compensated by the power exchange 
with the utility grid. 



 
 

In Fig. 1, PPV, Pb, PL and Pd denote the harnessed PV power, 
battery pack power, non-deferrable local load and the power 
flow to grid respectively. The arrows indicate the reference 
direction of the power flows and Pd is referred to as the 
dispatched power in this work.. Power balancing demands that 

 GSC PVC PV BC[ ( ) ( )] ( ) ( )b d LP t P t P t P t      (1) 

where ηPVC, ηBC and ηGSC represent the energy conversion 
efficiencies of the PV converter, the battery converter, and the 
grid-side converter respectively. Note that should Pb and (PL 
+Pd) flow in the opposite direction to that of the reference 
directions, ηBC and ηGSC will be the reciprocal of the actual 
efficiencies of corresponding converters. For simplicity, the 
efficiencies are assumed constant.  

B. PV Panel Power and Load 

For short-term dispatch planning by the prosumer, 
forecasted PPV(t) is required. Various techniques have been 
applied in forecasting PPV(t) using either historical data, real-
time measurement or geographical /meteorological information 
[6]. As the proposed method to be described in this paper is not 
dependent of the forecasting techniques used, the forecast error 
e1 is assumed to be normally distributed [7], i.e., 

 2
PV, PV 1 1 1~ ( , )fP P e N     (2) 

where PPV,f(t) denotes the forecasted PPV(t). The mean (μ1) and 
standard deviation (σ1) are affected by the forecasting horizon. 
As an illustration, PPV(t) at 5-minute sample rate and the 
corresponding one-day-ahead forecast are shown in Fig. 2(a).  

Similar to PPV(t), the local load demand PL(t) is also 
assumed to be forecasted based on certain established 
technique. The forecasted error e2 is again assumed normally-

distributed with mean value μ2 and the standard deviation σ2. 
Typical PL(t) and its forecast PL,f(t) are shown in Fig. 2(b). 

PPV(t), and to some extent PL(t), can vary beyond the control 
of the prosumer. Thus, in order to achieve accurate performance 
evaluation, the sampling rate of PL(t) and PPV(t) needs to be 
sufficiently high and in line with the complexity of the battery 
model which will be discussed next. 

C. Li-Ion Battery Model 

Li-ion battery is assumed to be the energy storage element in 
the prosumer because its specific power and energy densities suit 
amicably the present application. The cost of battery has also 
decreased rapidly in recent years. As battery degradation will be 
one major consideration in this study, a physics-based single 
particle model (SPM) of Li-ion battery is selected. This is 
because: 1) compared to empirical models, the degradation 
mechanisms can be more accurately described and predicted 
from the basic working principles of electrochemistry; 2) For 
stationary power applications where the battery current rate is 
low (commonly under 1C), SPM is accurate and requires much 
less computation than other electrochemical battery models.  

By approximating the solid-phase diffusion using a two-
parameter model, the governing equations of the SPM for a Li-
ion battery cell are similar to that derived in [8], i.e. 
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where cs,avg and css are the average and the surface concentration 
of the lithium ions in the particle. jn, ηs, Φs0, i, I, and V are the 
pore-wall molar flux, the overpotential of the electrochemical 
reaction, the electrode potential, the applied charging current 
density, the applied current and terminal voltage respectively. 
In (6), the equilibrium potential of the main electrochemical 
reaction, or the open-circuit potential (OCP), is a nonlinear 
function of the surface stoichiometry xss = css/cs,max and it is 
governed by the characteristics of the materials of the electrode. 
The mathematical expression for OCP(xss) and the physical 
meanings of the constant parameters Ds, a, εs, Rp, F, L, Rg, Tcell, 
ce0, reff, cs,max, rcol, Acell are given in Appendix A. 

For practical applications, the battery coulomb capacity 
(Q±

max) and state-of-charge (SOC) are used and are defined as 

 max ,max 100% 0%( ) ( )( ) / 3600s sQ t FAL c t x x        (10) 

Fig. 1. Schematic diagram of a prosumer equipped with PV and battery pack. 

 

Fig. 2. Examples of (a) PPV and PPV,f  and (b) PL and PL,f 
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where xs,avg = cs,avg/cs,max. Qmax(t) and Qmax,0 are the capacity of 
the electrode at time t and at the pristine state (i.e. new battery). 
Note each equation in (3)–(11) actually represents two 
equations: one for the positive electrode and one for the 
negative electrode, and the corresponding quantities are 
denoted by the superscript “+” and “–”, respectively.  

Next, two major degradations are considered: that of the 
irreversible increase of the resistance rf of solid-electrolyte 
interphase (SEI) layers on the surface of the electrodes, and the 
decrease of the electrode capacity Qmax over time. The change 
of rf and Qmax are caused by the side-reaction, and such side-
reaction is dominant at the negative electrode [9]. So in the 
remaining part of this manuscript the superscript “–” is omitted 
to simplify notation: i.e. SOC = SOC‒, Qmax = Q‒

max, rf = rf
‒. 

Furthermore, it is shown in [10] that the corresponding rates of 
change of Qmax and rf and are 

 max 1( ) (SOC, ) 0    [Ah/s]Q t f I   (12) 

 2
2( ) (SOC, ) 0    [m /s]fr t f I    (13) 

In summary, (3)‒(13) describe the complete Li-ion cell 
model with the four state variables: c+

s,avg(t), c‒s,avg(t), rf(t) and 
Qmax(t). Note that SOC±, x±

s,avg, x±
ss, and c±

ss may also be 
selected as state variables, considering the linear relationships 
given in (3), (4) and (11).  

Additionally, the battery cell temperature is assumed to be 
effectively regulated to a constant value, so the thermodynamic 
model of the cell is not incorporated. Assuming identical cells, 
cell model can be scaled up to the pack-level. The battery pack 
power Pb(t) as shown in Fig. 1 is  

 3
cell( ) ( ) ( ) 10     [kW]bP t n V t I t     (14) 

where ncell is the number of cells. The minus sign in (14) 
indicates that the direction of pack power Pb(t) is defined 
opposite to the cell current I(t). 

D. Electricity Tariff 

In this study, it is assumed that the prosumer is allowed to 
autonomously determine the dispatched power Pd. The 
prosumer is to trade Pd so as to minimize the operating cost to 
the prosumer. Such trading of Pd can bring income to the 
prosumer through exporting Pd to the grid. This will incentivize 
the prosumer to engage in the active control of the network 
within its purview.  

To simplify analysis, it is assumed the same electricity tariff 
applied to the exporting and importing of Pd. Variations in tariff 
can be readily included in the study, if the tariff structure is 
known. Furthermore, it is assumed the DSO is to provide the 
prosumer the short-term forecast (λf(t)) of the spot price of 
electricity. An example of half-hourly actual and forecasted 
electricity tariffs λ(t) and λf(t) respectively are shown in Fig. 3. 
The data was modified from the wholesale spot price provided 
by the Australian Energy Market Operator (AEMO).   

III. DETERMINATION OF THE DISPATCH   

A. Market Rules on Pd 

In this study, it is assumed the market rule for the prosumer 
is similar to that applicable for a large-scale renewable 
generator [11]. According to such rule, the prosumer is to 
submit to the DSO the D-hour dispatch schedule R hours ahead. 
The schedule contains the power level over each dispatch 
interval T and at specified set time. However, the prosumer is 
allowed to alter the submitted schedule except for the 
immediate Y hours. This rule is illustrated in Fig. 4 for time t. 

According to the rule, the dispatch schedule from time t + R 
to t + H (denoted by the blue dashed line, where H = R + D) 
must be submitted to the DSO at time t. The dispatch schedule 
from t to t + Y has been determined before t (denoted by the red 
solid line) and cannot be altered. While the schedule from t + Y 
to t + R has been submitted before t, the schedule over this 
interval can be revised and resubmitted together with that over 
the interval t + R to t + H at t.  

B. Prediction Model 

The proposed control strategy will use MPC technique to 
determine the optimal power flow Pd at the point of coupling 
(POC) shown in Fig. 1. Using system model (1)‒(14), the 
prediction model can be expressed in the state-space form, i.e. 

 ( ) ( ( ), ( ), ( ))x t f x t u t d t  (15) 

where the state variables are selected as x(t) = [SOC+(t), SOC‒

(t), Qmax(t), rf(t)], control variable u(t) = Pd(t), disturbance d(t) 
= [PPV,f(t), PL,f(t), λf(t)]. In current work, the comfort level of the 
prosumer is of the highest priority and it is assumed that there 
is no deferrable load.  

As such, within the prediction horizon H, the control 
objective is to minimize the overall operating cost to the 
prosumer. The cost would include the income from the trading 
of electricity and the cost incurred due to the degradation in the 
battery. It is meaningful to include the cost of the battery 
degradation in the evaluation because the lifetime of battery is 
expected to be lower than that of the PV generator. Other 
objectives, such as the emission level, can be readily 

 
Fig. 3. An example of the hourly actual and day-ahead forecasted tariff. 

Fig. 4. Prevailing market rule within the time horizon [t, t+H]. 



 
 

incorporated into the presented framework if the corresponding 
cost models are available.  

The income from the trading of electricity is given by 

 1( ) ( ) ( )    [$ / h]dC t P t t   (16) 

Thus a negative value of C1 means that the prosumer has 
obtained a net gain from the cost of electricity trading and vice 
versa. The cost due to battery degradation is related to the 

capacity fading rate max ( )Q t . This cost component can be 

expressed as: 

 cell
2 max

max,0

( ) ( ) 0    [$ / h]
(1 %)

bn C
C t Q t

K Q
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where max ( )Q t is governed by (12). Cb is the capital cost per cell, 

thus ncellCb is the total cost of the battery packs. K% defines the 
percentage of the remaining capacity of the packs when the 
packs are considered to be at the end of their service life. The 
value of K% is assumed known. As the capacity fading rate is 
always negative, C2(t) is always positive.  

In view of the above and within the time interval [t, t+H], the 
objective cost function J can be expressed as 

  1 2( ( )) ( ) ( )
t H

t

J u t C C d    
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The weighting factors α, β ∈	[0, 1]	can be set in accordance to 
the purpose of latter analysis. As (18) represents the overall cost 
to the prosumer over H, the objective is to minimize J.  

Considering the practical limits of the components in the 
system, the following inequality constraints are applicable: 
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where Pb,max and Pd,max are the power ratings of the battery 
converter and the interface transformer respectively. SOCmin 
and SOCmax are the lower and the upper SOC limits of the 
battery. They are included in (19) to prevent permanent damage 
to the battery cells caused by overdischarge and overcharge 
respectively.  

As the first Y hours’ schedule is determined in the previous 
prediction horizon and cannot be changed, the following 
constraints are used to reflect this market rule, i.e. 
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where Pd,opt(.) represents the optimal dispatch schedule 
determined in the previous prediction horizon [t‒T, T].  

Additionally, the following constraint signifies constant 
dispatch within each dispatch internal T, i.e. 

 ( ) ( / ) d dP t P t T T     (21) 

where t    is the largest integer that does not exceed t.  

C. Model Predictive Control 

To implement MPC, the continuous-time model (15) and 
the objective cost function (18) as well as the constraints (19)‒
(21) must first be discretized in the time domain using the 
selected time-step Ts (expressed in second in this study). 
According to the classical theory of MPC, the discrete optimal 
dispatch power sequence Pd,k (where the integer k is the time 
step index) can be determined via the following steps: 

Step 1: Obtain the discretized forecasted PV panel power 
PPV,f,k, forecasted load PL,f,k, and forecasted electricity price λf,k. 
The prediction horizon (number of discrete points for 
optimization) is N = 3600H/Ts;  

Step 2: Compute the optimal control sequence Pd,opt,k by 
solving the optimization problem. In the next sub-section, more 
will be said about the optimization method used;  

Step 3: Only apply the optimal control sequence in the next 
dispatch interval T to the system model. The number of discrete 
points within one dispatch interval is n = 3600T/Ts. 

Step 4: Forward the prediction horizon by one dispatch 
interval T: Measure the resulting system states, update system 
constraints and the forecasted disturbances, and repeat the 
above procedure starting from the time corresponding to the (k 
+ n)th time step. 

D. Modified DP 

In Step 3, due to the high-nonlinearity of the system model 
(1)‒(14), DP technique will be used to solve this constrained 
nonlinear optimization problem. However, conventional DP 
suffers from the “curse of dimensionality” problem: the 
computation load increases exponentially as the number of the 
state variables. The fourth-order battery model will incur long 
computation time. To obviate this problem, a new algorithm is 
now proposed to speed up the optimization process.  
Considering that the degradation process described by (12) and 
(13) is much slower than the charging process described by (3)
‒(11), Step 2 and Step 3 will be modified to: 

Step 2 (modified): keep the slow-varying variables Qmax and 
rf in (10) and (6) constant and use DP to obtain the optimal 
control input sequence P'd,opt,k. As only two states are needed for 
DP, the computational load can be significantly reduced. The 
discretized objective cost function is thus 
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Step 3 (modified): Only apply the first n-step of the optimal 
control sequence P'd,opt,k to the original model (1)‒(14). In this 
way all the four state-variables including rf and Qmax can be 
updated. 

E. Two Measures on Cost 

The effectiveness of the control strategy can be evaluated 
using the total cost (TC) or the average cost (AC). TC at time 
step k can be calculated by summating all the cost incurred since 
the initial time step k = 1, i.e. 
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The AC at time step k can be defined as the TC per unit time 
(say per day), i.e. 
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IV. ILLUSTRATIVE EXAMPLES AND DISCUSSIONS 

A. Contributions of Electricity Trading and Battery 
Degardation Costs  

The following parameters are used in the simulation study: 
Qmax0 = 1.74 Ah, Cb = $4, K% = 60%, ncell = 6000. Prediction 
horizon H = 24 h, dispatch interval T = 1 h, Y = 2 h, Ts = 300 s.  

The weighting factors in (18) represent how much emphasis 
is placed on the income obtained from the trading of electricity 
and the cost of battery degradation. When α = 1 and β = 0, 
battery degradation is not considered for the optimization and 
only the net income of trading electricity is considered; 
conversely, for α = 0 and β = 1, the cost of battery degradation 
is the only concern. For α = 1 and β = 1, trading and degradation 
are considered concurrently. A 24-hour simulation result for the 
three cases are shown in Fig. 5.  

From Fig. 5, it can be seen that with the trading-emphasized 
strategy, the dispatch and battery power changes most 
drastically in response to the price fluctuations, but such 
changes will speed up the battery degradation due to the high 
power/current generated. On the other hand, for the 
degradation-emphasized strategy, less power is applied to the 
battery so its lifetime can be most effectively prolonged. 
However, less income can be gained from the trading of the 
electricity. When the trading and degradation are considered 
concurrently, the highest economic benefit can be obtained. 
This is verified by observing the TC values after one-day 
operation (which numerically equals to AC) in Fig. 5(f): i.e. 
‒ $2.325, ‒$0.747 and ‒$2.985 for the three cases respectively. 
Also, in this particular short-duration study, it shows that the 
prosumer has secured a net gain from the optimized operation. 

B. Longer Term Electricity Trading and Battery Degardation 
Costs  

The simulation results for a 32-day operation are shown in 
Fig. 6. From Fig. 6 (c), it can be seen that for the three cases 
described in Section IV-A, TCs are, $181.8, $240.2 and $162.5 
after one month, and the corresponding ACs are $5.68/day, 
$7.51/day and $5.07/day. This shows that the proposed MPC 
can indeed bring economic benefits to the prosumer by 
considering the electricity trading and battery degradation at the 
same time, although the prediction horizon is much smaller than 
the total simulation time. In this case, the total costs can be 
saved by more than 10% compared to the case without 
considering the battery degradation. Additionally, it shows that 
although in the 1-day operation considered in Section IV.A in 
which the user can obtain a net gain, for the longer term 
operation shown in this section has resulted in a net loss to the 
prosumer. 

C. Performance Under Different BESS Capacity 

Fig. 7 shows the trading costs, battery degradation cost and 
the average costs when the BESS of 4,000 cells or 6,960 Ah, 

6,000 cells or 10,440 Ah and 8,000 cells or 13,920 Ah capacities 
are assumed. As can be seen from Fig. 7(a) and (b), smaller 
BESS capacity will incur higher trading cost while larger BESS 
capacity will incur higher battery costs due to degradation. 
From Fig. 7(c), it can be seen that the average costs fluctuate 
significantly at the beginning of the simulation and it can go 
negative. AC becomes more stable with time. Thus, in order to 
evaluate the economic effectiveness, long term study is more 

Fig. 5. 24-hour simulation results for: trading-emphasized (blue), degradation-
emphasized (red) and when both factors are concurrently emphasized (green). 

Fig. 6. 32-day simulation results for: trading-emphasized (blue), degradation-
emphasized (red) and when both factors are concurrently emphasized (green). 



 
 

reasonable. Additionally, it can be clearly seen that ncell = 6000 
will cost least amongst these three cases.  

 
Fig. 7. Trading costs, battery costs due to degradation and average costs for 
BESS of 4000x1.74 Ah (blue), 6000x1.74 Ah (red) and 8,000x1.74 Ah (green).  

V. CONCLUSIONS 

This paper proposes a general approach to determine the 
optimal control strategy for a prosumer equipped with PV and 
Li-ion battery under the dynamic energy market environment. 
The control objective is to minimize the overall cost to the 
prosumer while meeting the electrical demand of the prosumer. 
Nonlinear model predictive control technique is used to 
determine the optimal power exchange with the grid. 
Considering the highly nonlinear nature of the lithium-ion 
battery, the optimization problem is formulated and dealt with 
using a much simplified dynamic programming approach. From 
the study, it appears that in designing the dispatch strategy, the 
battery degradation cost has to be included in the cost 
evaluation. The developed Li-ion battery model is such that 
short-term dispatch strategy for the prosumer can be determined 
in real-time.    
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APPENDIX A 

The Li-ion cell electrochemical parameters and OCP vs. 
stoichiometry equations are obtained from [9] with minor 
adaptation of εs, x0%, and x100%. 

Sym- 
bol 

Physical meaning [Unit] 
Parameters 
+ ‒ 

Rp particle radius (×10‒6 m) 2 2 
Ds diffusion coefficient in the solid phase  

(×10‒14 m2/s) 
1 3.9 

a specific surface area of electrode (×105 m‒1) 8.85 7.236 

L length of the electrode (×10‒6 m) 80 88 
εs volume fraction of the solid phase 0.59 0.4824 

cs,max theoretical maximum Li-ion concentration 
in the solid phase (mol/m3) 

51554 30555 

x0% stoichiometry at SOC = 0% 0.9433 0.0117 
x100% stoichiometry at SOC = 100% 0.4938 0.8551 
reff electrode rate constant (×10‒6 A·m2.5·mol‒1.5) 2.252 4.854 
F Faraday’s constant (s·A/mol) 96485 

Tcell temperature (K) 298 
Rg universal gas constant [J/(K·mol)] 8.31446 
rcol current collector resistance (Ω·m2) 0.002 
ce0 average Li-ion concentration in the 

electrolyte (mol/m3) 
1000 

Acell electrode plate area (m2) 0.0596 
2 4 6 8 10

0 1 2 3 4 5

2 4 6 8 10

0 1 2 3 4 5

( ) ( ) ( ) ( ) ( )
OCP ( )

( ) ( ) ( ) ( ) ( )

a a x a x a x a x a x
x

b b x b x b x b x b x

    

 

    

     


     
 

0.5 1 1.5

0 1 2 3 4

5 6 7 8 9 10

OCP ( ) ( ) ( ) ( ) ( )

exp( ( )) exp( ( ) )

x c c x c x c x c x

c c c x c c x c

       

 

     

   
 

a0 = 4.656, a1 = 88.669, a2 = 401.119, a3 = 342.909, a4 = 462.471, a5 = 
433.434; b0 = 1, b1 = 18.933, b2 = 79.532, b3 = 37.311, b4 = 73.083, b5 = 
95.96; c0 = 0.7222, c1 = 0.1387, c2 = 0.029, c3 = 0.0172, c4 = 0.0019, c5 = 
0.2808, c6 = 0.90, c7 = 15, c8 = 0.7984, c9 = 0.4465, c10 = 0.4108. 
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