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Nonlinear Model Predictive Control using Feedback Linearization and Local
Inner Convex Constraint Approximations

Daniel Simon Johan Löfberg Torkel Glad
Departement of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Abstract— Model predictive control (MPC) is one of the
most popular advanced control techniques and is used widely
in industry. The main drawback with MPC is that it is
fairly computationally expensive and this has so far limited
its practical use for nonlinear systems.

To reduce the computational burden of nonlinear MPC,
Feedback Linearization together with linear MPC has been
used successfully to control nonlinear systems. The main
drawback is that this results in an optimization problem with
nonlinear constraints on the control signal.

In this paper we propose a method to handle the nonlinear
constraints that arises using a set of dynamically generated
local inner polytopic approximations. The main benefits of
the proposed method is guaranteed recursive feasibility and
convergence.

I. INTRODUCTION

Model Predictive Control is an optimal control strategy
where instead of solving an infinite horizon optimal control
problem for the discrete-time system

xk+1 = f(xk, uk) (1)

one tries to approximate the solution with a finite horizon
optimal control problem

min
u

Ψ(xk+N ) +

N−1∑
i=0

`(xk+i, uk+i) (2)

s.t.

xk+i+1 = f(xk+i, uk+i)

xk+i ∈ X
uk+i ∈ U
xk+N ∈ T

The finite time optimization problem is solved in each
sample time k for a horizon of N time samples ahead
[1]. The result of this is an open-loop control sequence
uk:k+N−1 = [uk, uk+1, . . . , uk+N−1]. The first sample, uk,
from the control sequence is then applied to the system, and
the whole procedure is repeated in the next time instance
k + 1, yielding a so called receding horizon control. This
gives in practice a closed loop feedback optimal control
strategy [2].

Among the many different formulations of this finite time
optimal control problem the one that has attracted a lot
of attention and is widely used is the formulation with a
terminal cost and constraint set [1]. In practice this approach
adds the final state cost term Ψ(xk+N ) and a constraint T on

the final state xN to the optimization problem. The constraint
T ⊆ X is normally chosen to be a positively invariant set
[3] of the system under the feedback uk = κ(xk) ∈ U and
Ψ(xk+N ) is chosen to be a Lyapunov function associated
with local controller uk = κ(xk), since this guarantees,
under conditions relating Ψ and ` that the closed loop system
is stable and asymptotically converges to the origin [1].

If either the system (1) is nonlinear or the cost function
(2) is a nonconvex function of the states and controls
the resulting optimization problem becomes a Nonconvex
Program which is, in general, much harder to solve than the
Quadratic program that a linear system and quadratic cost
function results in [4]. The survey [5] of Cannon reviews
several different techniques to solve the nonlinear MPC
problem using, e.g., Sequential Quadratic Programming,
Euler-Lagrange and Hamilton-Jacobi-Bellman approaches
and Cost and constraint approximation.

Yet another way to handle nonlinear systems in MPC
without having to globally solve the complicated nonconvex
optimization problem is to first create a linear response from
input to output of the system [6]. This can be accomplished
with inner loop feedback linearization [7] of the form

u = γ(x, ũ) (3)

giving a closed loop system which is linear from ũ to y

ż = Az +Bũ, y = Cz (4)

In section I-A the details of computing γ(x, ũ) are outlined.
The first main issues with this is that even if the original

cost function (2) is convex the resulting cost function ex-
pressed in ũ can possibly be a nonconvex function. One could
simply ignore this complication and formulate a new cost
function which is quadratic in ũ. The performance tradeoff is
analyzed in [8] with the conclusion that this approximation
is justified only when the complete problem then can be
formulated as a QP.

The second issue, and in our view a much more prob-
lematic issue, is that even simple control signal constraints
as

u ≤ uk+i ≤ u (5)

will transform into a nonlinear constraints on ũ using (3).

π(xk+i, u) ≤ ũk+i ≤ π(xk+i, u) (6)
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Several different methods to handle this has been presented
in the literature. In e.g., [9] the authors calculate the exact
input constraints at time k and use them as constraints on the
whole prediction horizon, which clearly does not guarantee
recursive feasibility. Other authors such as [10]–[13] propose
to use the solution sequence from the previous time step
to construct an approximation of the nonlinear constraints.
These methods can in general guarantee stability under some
strict assumptions, e.g., recursive feasibility. Despite this
they can be quite computationally expensive if they work
in an iterative manner, e.g., in [10] this approximation is
done by iteratively solving the linear MPC problem and in
each iteration use the previous solution sequence x∗k:k+N
to calculate the input constraints using (6). The iterations
are cancelled when the solution sequence u∗k:k+N−1 has
converged.

In this paper we will adopt a different approach to handle
the nonlinear constraints based on using the exact constraints
for the current time step and a set of inner polytope approx-
imations for future time steps.

A. Feedback Linearization

Let us, before we outline the proposed controller, describe
the feedback linearization scheme.

If we consider the affine-in-control nonlinear system of
the form

ẋ = f(x) + g(x)u, y = h(x) (7)

and define the Lie derivative in the direction of f as

Lf =

n∑
i=1

fi(x)
∂

∂xi

then, if we repeatedly differentiate the output, we obtain ẏ =
Lfh, ÿ = Lf (Lfh) = L2

fh etc.
If we assume that the system has dim y = dimu = m and

apply the Lie derivative then we obtain for the i:th output

ẏi = L(f+gu)hi = Lf+u1g1+u2g2+...+umgm)hi

= Lfhi + u1Lg1hi + u2Lg2hi + . . .+ umLgmhi

Either all Lgjhi = 0 which means that ẏi = Lfhi and then
we have to keep differentiating in order for uj to affect yi,
or one of Lgjhi 6= 0 and then yi is affected by uj .

Differentiating one more time gives

ÿi = L2
fhi + u1Lg1Lfhi + . . .+ umLgmLfhi

and then if one of the LgjLfhi 6= 0 uj affect y and we say
that the system has a relative degree of 2 in x0 [7].

This procedure can be summarized in a decoupling matrix
R(x) according to

R(x) =

 Lg1L
ν1−1
f hi . . . LgmL

ν1−1
f hi

...
...

Lg1L
νm−1
f hm . . . LgmL

νm−1
f hm

 (8)

which gives
y
(ν1)
1
...

y
(νm)
m

 = R(x)

u1...
um

+

 L
ν1
f h1
...

Lνmf hm


If R(x) is nonsingular then the control signal can be

chosen as

u = R−1(x)

−
 L

ν1
f h1
...

Lνmf hm

+ ũ

 (9)

and the resulting closed loop system will be linear and
decoupled from ũ to y [7].

This procedure works well when the zero dynamics are
stable or when there are no zero dynamics, i.e., when the
relative degree is equal to the state dimension. In these
cases the system does not need to be transformed into a
controllable canonical form [7] and the original system states
can be kept which is especially good if we have constraints
on the states.

In the rest of this paper we restrict our discussion to these
kinds of systems that allow us to keep our original states.
The aircraft example in section III-B motivates this choice.

II. THE PROPOSED ALGORITHM

First we make the following assumptions.
Assumption 1: The nonlinear system (7) is input-output

feedback linearizable using the control (9) and the linearized
system has a discrete-time state-space description

xk+1 = Axk +Bũk (10)

with no unstable zero dynamics.
Assumption 2: The functions Ψ(·) and `(·) are such that

they satisfy the necessary conditions for stability [1], the sets
X and U are convex polytopes and for simplicity we assume
U to be simple bounds on the control signal.

Applying feedback linearization and MPC as described in
the previous section to a nonlinear system of the form (7)
the resulting MPC problem setup is

min
u

Ψ(xk+N ) +

N−1∑
i=0

`(xk+i, ũk+i) (11a)

s.t.

xk+i+1 = Axk+i +Bũk+i (11b)
xk+i ∈ X (11c)
xk+N ∈ T (11d)
ũk+i ∈ Π (11e)

where we have defined

Π = {ũk+i | π(xk+i, u) ≤ ũk+i ≤ π(xk+i, u)}

where the functions π(·) are the nonlinear constraints that
arise from feedback linearization (9).
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A. Nonlinear Constraint Approximations

A first step to handle the nonlinear constraint (11e) is
to simply replace it with an global inner convex polytopic
approximation

G = {(x, ũ) | x ∈ X , gl(X ) ≤ ũ ≤ gu(X )} (12)

where gu(X ) is a concave piecewise affine function such that
gu(X ) ≤ π(X , ū) and gl(X ) is a convex piecewise affine
function such that gl(X ) ≥ π(X , u). An example of an inner
approximation, G, is shown in Figure 1.

Note that this approximation is not unique and the degree
of suboptimality vary with the method of approximation.

If the nonlinear constraints (11e) form a highly nonconvex
set, then G is a poor approximation and can only be close to
the true constraints in some, possibly small, regions, cutting
of control authority in other regions.

This motivates us to not use a global approximation for all
time steps in the control signal sequence. To begin with, since
the current state is known, the exact nonlinear constraint on
ũk can be calculated as

π(xk, u) ≤ ũk ≤ π(xk, u)

Obviously, since this is a linear constraint in ũk, our scheme
should be able to use this exactly without resorting to any
conservative approximation. It is thus our goal to derive an
algorithm where this constraint is used exactly, and future
constraints are included in an as non-conservative fashion as
possible, while guaranteeing stability and feasibility.

If one makes use of the fact that the true constraints are
known at time k it is easy to calculate the bounded evolution
of the system to time k + 1 and therefore all possible
states, Xk+1. It is then obvious that for this limited subset
of the state-space there might exist a better inner convex
approximation of the nonlinear constraints than the global
approximation G. Hence, we would like to construct a convex
polytope, L, over the set Xk+1 and constrain (xk+1, ũk+1)
to this local approximation.

This procedure can of course be repeated for time step
k+ 2, k+ 3, . . . , k+N −1, generating a new local polytope
for each (xk+i, ũk+i). A significant problem will however
occur if one tries to prove recursive feasibility of this scheme.
Since we always use the exact constraint for the first control
input, this conflicts with our inner approximation which was
used for future control input, when we shift the horizon in
standard MPC stability and recursive feasibility proofs. If
we use the full control authority in the next time instant,
the state predictions arising from that set will move outside
the predictions that were used in the previous time instant
when predictions were based on an inner approximation of
the control input at k + 1. To account for this, a scheme
based on both inner approximations of control inputs for
actual control decisions, and outer approximations of control
inputs to perform the propagation of states, will be used.

The local constraint approximations are constructed as
inner convex approximations of the nonlinear constraints
based on reachable sets.

Definition 1: At time k, the outer approximation of the
i:th step reachable set Xk+i is recursively defined as

Xk+i = AXk+i−1 +BOk+i−1

where

Xk = {xk}
The set Ok+i is an outer polytopic approximation of the

nonlinear control constraints in the reachable set Xk+i, i.e.,

Ok+i =
{
ũk+i | ωk+il (Xk+i) ≤ ũk+i ≤ ωk+iu (Xk+i)

}
where ωk+iu (·) is a concave piecewise affine function such
that

ωk+iu (Xk+1) ≥ π(Xk+1, ū)

and ωk+il (·) is a convex piecewise affine function that such
that

π(Xk+1, u) ≥ ωk+il (Xk+1)

The initial outer approximation, Ok, is the exact control
constraints, i.e.,

Ok = {uk | π(xk, u) ≤ ũk ≤ π(xk, u)}

Assumption 3: For all reachable sets Xk+i for
i = 1, . . . , N − 1 the following hold

Xk+i ∩ X 6= ∅
From the i:th step reachable set the local convex approx-

imation, Iki , i step ahead at time k can now be constructed
as the polytope defined from the constraints

hk+il (Xk+i ∩ X ) ≤ ũk+i ≤ hk+iu (Xk+i ∩ X )
xk+i ∈ Xk+i ∩ X

where hk+iu (·) is concave piecewise affine function such

gu(Xk+1) ≤ hk+iu (Xk+1) ≤ π(Xk+1, ū)

and hk+il (·) is convex piecewise affine function such

π(Xk+1, u) ≤ hk+il (Xk+1) ≤ gl(Xk+1)

In other words, the local polytope, Iki , shall be an inner
approximation to the nonlinear constraints and on the subset
Xk+i it shall hold that G ⊆ Iki , which can always be
achieved. Figure 1 shows an example that illustrate the
relationship between the local polytopes, the global polytope
and the nonlinear constraints. Note that as for the global inner
convex approximation this construction is non unique, in this
paper we have used a tangent plane for the concave surfaces
and a piecewise linear approximation of the convex surfaces
(described further in the examples).

B. MPC Receding Horizon Setup

Now let us summarize the discussion above into our
proposed MPC algorithm.
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Fig. 1: Example showing the nonlinear constraints on ũ as
upper and lower bound, the global approximation, G, in cyan
(dark shaded) and two local approximations, Ik1 , for different
xk in yellow.

Algorithm 1: At each sample time k solve the open loop
optimal control problem

min
u

Ψ(xk+N ) +

N−1∑
i=0

`(xk+i, ũk+i) (13a)

s.t.

xk+i+1 = Axk+i +Bũk+i (13b)
π(xk, u) ≤ ũk ≤ π(xk, ū) (13c)

(xk+i, ũk+i) ∈ Iki ∀ i = 1, . . . , Nl (13d)
(xk+i, ũk+i) ∈ G ∀ i = Nl + 1, . . . , N − 1 (13e)

xk+N ∈ T (13f)

where the state and control are constrained to the local
polytopes up to horizon Nl ≤ N − 1 and constrained to
the global polytope for Nl < i < N . The introduction of the
horizon Nl is to highlight that, depending on the problem,
there might not be any performance gain in using the local
polytopes for the entire horizon, N − 1, so instead using
the fixed global inner approximation for the last part of the
horizon.

For next time sample k+1 update the local approximations
Ik+1
i as

Ik+1
i = Iki+1 ∀ i = 1, . . . , Nl − 1 (14)

and construct a new set Ik+1
Nl

from the procedure in Section
II-A. The invariant set T in (13f) is calculated from the
global convex approximation G as

T = {x | f(x) ∈ T ∀x ∈ T , (x, κ(x)) ∈ G}

where f(x) = Ax+Bκ(x).
We can now give the main result of this paper
Theorem 1: For any feasible initial state x0, the MPC

controller defined by Algorithm 1 remains feasible and
stabilizes the system (10).

Here we outline only the proof of recursive feasibility,
convergence of the proposed algorithm is not affected by the
local approximations and standard proofs hold without any
change, see e.g., [1].

Proof: Let us denote the set of states where (13) is
feasible with F . Assume that xk ∈ F and (13) have the
optimal solution sequence ũ∗k:k+N−1.

We now claim that a feasible solution at time k + 1 is
to use û = [ũ∗k+1:k+N−1, κ(x∗N )] where κ(x) is the local
controller from Section I.

To see that this is a feasible solution we first note that
since xk+N ∈ T we can select ûk+N = κ(x∗N ) since this
will ensure that xk+N+1 ∈ T and all constraints are satisfied
at k +N + 1. Also we note that since ũ∗k+1 ∈ Ik1 ⊂ Π this
means that π(xk+1, u) ≤ ũ∗k+1 ≤ π(xk+1, u) is feasible at
time k + 1.

Furthermore we have that all ũ∗k+i, i = 2, . . . , Nl are
feasible at time k + 1 since the local approximations are
shifted one timestep (14). The control ũ∗k+Nl+1 ∈ G at time
k are also feasible at time k+ 1 since ũ∗k+Nl+1 ∈ I

k+1
Nl
⊇ G

at time k + 1 and Ik+1
Nl

is nonempty due to Assumption 3.
All other ũ∗k+Nl+i

∈ G are trivially feasible.

III. EXAMPLES

In this section we present two examples to illustrate the
properties of the proposed algorithm. In the first example
we consider a fictitious nonlinear system whose purpose
is to illustrate the generation and propagation of the local
polytopes.

In the second example we consider the task of controlling
a fighter aircraft which has nonlinear unstable dynamics.
The purpose of this example is to illustrate the degree of
suboptimality for the proposed method.

The implementation and simulation has been performed in
MATLAB with YALMIP [14] and MPT [15].

A. Illustrative Example

Consider a nonlinear system given by

ẋ = 1.8x+
(
0.2x4 + 0.875

)
u

y = x

with the constraints −2 ≤ x ≤ 2, and −2 ≤ u ≤ 2. Follow-
ing the procedure in section I-A we obtain the feedback
linearization control law

u =
1

0.2x4 + 0.875
(ũ− 1.8x)

and the resulting linear system is an integrator from ũ to y.
The nonlinear feedback gives the following nonlinear

control constraints on ũ

−0.4x4 + 1.8x− 1.75 ≤ ũ ≤ 0.4x4 + 1.8x+ 1.75 (15)

shown in Figure 2.
The algorithm (13) is applied to the discrete-time version

of the integrator system with sample time 0.4s. Using N = 5
and Nl = 4, i.e., we use the global polytope G only to
calculate the terminal constraint set, T , and the objective is
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Fig. 2: Nonlinear constraints on ũ due to feedback lineariza-
tion and a global inner approximation G. Note the massive
loss of control authority at xk = ±2.

to control the system to the origin. The local polytopes are
calculated from the tangent line at the center point in the
reachable set.

−2 −1 0 1 2

−10

0

10

xk

ũ

Fig. 3: Local polytopes I0i for i = 1, . . . , 4 at time k = 0.

Starting in x = 1.9 the generated local polytopes at time
k = 0, I0i , are shown in Figure 3. It clearly demonstrates
the increased control signal ability compared to only using
the global approximation.

At the next time step the first local approximation, I01 is
discarded, all other polytopes are shifted one step, i.e. I11 =
I02 , I12 = I03 etc. and a new one is generated at the end of the
sequence, I14 . Figure 4 shows how the local approximations
look at time k = 2, when x ≈ 0.6. In the figure one can
see that the polytope I03 from Figure 3 has been shifted and
is now, at time k = 2, the polytope I21 . The same holds for
I04 = I22 .

B. Nonlinear Aircraft

Using a simple model for the nonlinear dynamic equations
of an aircrafts short period dynamics we obtain the following

−2 −1 0 1 2

−10

0

10

xk

ũ

Fig. 4: Local polytopes I2i for i = 1, . . . , 4 at time k = 2.

two state model

α̇ = −k1α+ k2q (16a)
q̇ = k3α

2 + k4α− k5q + k6δe (16b)
y = α (16c)

where q is the angular velocity in pitch, α is angle between
the aircraft x-axis and the velocity vector. The input to the
system is δe which is the elevator control surface deflection
(for a complete description of aircraft dynamical equations
see [16]). The constants k1, k2, k4, k5 and k6 have been
selected to correspond to the linearized dynamics of the
ADMIRE model at Mach 0.6 and altitude 1000 m, for
details see, [17]. The constant k3 is selected to make the
α-contribution to the moment equation (16b) approximate
15% larger at α = 30◦ than that of the linearized model.

The constraints on the system are basic control surface
deflection limits |δe| ≤ 25◦ and a so called maneuver load
limit on the angle of attack −10◦ ≤ α ≤ 30◦.

For the system (16) it is now easy to see that by selecting
the nonlinear feedback as

δe = ũ− k3
k6
α2 (17)

the closed loop system from MPC control input, ũ, to the
output, α will be linear

α̇ = −k1α+ k2q (18a)
q̇ = k4α− k5q + k6ũ (18b)

We can now formulate a MPC problem for the system (18)
on the form (13) where we chose to use a cost function that is
quadratic in ũ since the goal is to end up in a standard MPC
problem. In the cost function we used the tuning parameters

Q =

[
5 0
0 1

]
, R = 2

and the sample time is 1/60 second.
Note that the state constraints are still linear after the

feedback linearization but the control constraints are now
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nonlinear and state dependent.

−25◦ +
k3
k6
α2
k+i ≤ ũk+i ≤ 25◦ +

k3
k6
α2
k+i (19)

In this case the nonlinearities are mild and the lower bound is
convex while the upper bound is concave. It is therefore quite
easy to make a good inner convex polytope approximation,
G, of these constraints, see Figure 5.

−10
0 10 20 30

−100

0
100

−20

0

20

40

α
q

ũ

Fig. 5: Nonlinear control signal constraints (19) and a global
inner convex polytope approximation, G

If we compare the proposed algorithm (13), with Nl = 1
and Nl = 10, with the global nonlinear branch and bound
solver in YALMIP [14] that uses the exact control constraints
(11), we obtain a measure of the performance loss, the
suboptimality of our algorithm. We have compared the open
loop optimal cost of the two algorithms for a set of different
initial conditions which are steady state points distributed
over the complete α range. In Table I we show the relative
error

η =

∣∣∣J∗ − Ĵ
∣∣∣

|J∗|

between the optimal cost of the proposed algorithm, Ĵ , and
the branch and bound solver, J∗.

TABLE I: Relative error, η, between proposed algorithm and
global solver for different initial conditions and number of
local polytope approximations

x0

(
−14.0
−26.5

) (
−5.0
−9.5

) (
15.0
28.3

) (
28.0
52.9

)

Nl = 1 0.4 · 10−3 0.0 · 10−3 0.8 · 10−3 24.6 · 10−3

Nl = 10 0.0 · 10−3 0.0 · 10−3 0.0 · 10−3 10.8 · 10−3

From the results in Table I we can see that the maximum
suboptimality obtained is approximately 2.4% and that in this
example, when there are only small nonlinearities, there is no
significant gain in increasing the number of local polytopes,
i.e., the important property is that we can use the full control
authority for the current control input.

IV. CONCLUSIONS

In this paper we have demonstrated a novel method of
model predictive control for nonlinear systems based on
feedback linearization and local convex approximations of
the control constraints.

We have shown recursive feasibility and convergence to
the origin and that the loss of optimality can be small with
reasonable simple computational efforts.

In this paper have we disregarded the fact that the feedback
linearization control law is derived in continuous time while
the model predictive controller works in discrete time. Hence
we asume there is a inner linearizing feedback loop.
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