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Abstract

In this paper, we propose, discuss, and validate an online Nonlinear Model Predictive Control (NMPC) method for multi-

rotor aerial systems with arbitrarily positioned and oriented rotors which simultaneously addresses the local reference

trajectory planning and tracking problems. This work brings into question some common modeling and control design

choices that are typically adopted to guarantee robustness and reliability but which may severely limit the attainable

performance. Unlike most of state of the art works, the proposed method takes advantages of a unified nonlinear model

which aims to describe the whole robot dynamics by explicitly including a realistic physical description of the actuator

dynamics and limitations. As a matter of fact, our solution does not resort to common simplifications such as: (1) linear

model approximation, (2) cascaded control paradigm used to decouple the translational and the rotational dynamics of the

rigid body, (3) use of low-level reactive trackers for the stabilization of the internal loop, and (4) unconstrained optimization

resolution or use of fictitious constraints. More in detail, we consider as control inputs the derivatives of the propeller

forces and propose a novel method to suitably identify the actuator limitations by leveraging experimental data. Differently

from previous approaches, the constraints of the optimization problem are defined only by the real physics of the actuators,

avoiding conservative – and often not physical – input/state saturations which are present, e.g., in cascaded approaches.

The control algorithm is implemented using a state-of-the-art Real Time Iteration (RTI) scheme with partial sensitivity

update method. The performances of the control system are finally validated by means of real-time simulations and in real

experiments, with a large spectrum of heterogeneous multi-rotor systems: an under-actuated quadrotor, a fully-actuated

hexarotor, a multi-rotor with orientable propellers, and a multi-rotor with an unexpected rotor failure. To the best of our

knowledge, this is the first time that a predictive controller framework with all the valuable aforementioned features is

presented and extensively validated in real-time experiments and simulations.
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1 Introduction

In the last decade, thanks to the development of both

new hardware technologies and software algorithms, the

employment of Multi-Rotor Aerial Vehicles (MRAVs) has

significantly spread across a wide set of challenging real-

life applications, thanks to their vertical take-off and landing

(VTOL) and hovering capabilities, their agility, relatively

compact structure, good robustness, and low cost. Clas-

sical multi-rotor platforms with under-actuated dynamics

(e.g., the popular quadrotors), have been extensively stud-

ied by the scientific community and widely employed

in contact-less civil applications such as aerial photogra-

phy, visual inspection of infrastructures, area patrolling,

crop monitoring, and urban search and rescue (USAR) mis-

sions [1]. The total thrust direction in the body frame of
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these platforms is fixed and a re-orientation of the robot

chassis is needed to continuously steer the exerted force

towards the desired direction. We refer to the vehicles in this

class as unidirectional-thrust (UDT) aerial vehicles.

On the other hand, recent platforms characterized by

particular actuator arrangements can exploit the multi-

directional-thrust (MDT) capability, i.e., the possibility

to exert forces in more than one direction without the

need to re-orient their body frame, allowing to partially

decouple the robot rotational dynamics from the transla-

tional one. A subset of this class is represented by the

so-called fully-actuated systems, for which the control force

can be varied in all directions, disregarding the actuator

constraints. Vehicles of this kind have been demonstrated

to be particularly suitable for the accomplishment of aerial

physical interactions tasks [2, 3], i.e., operations which

require an active contact and a consequent exchange of

energy between the robots and the surrounding environ-

ment. Examples of such operations are grasping, transporta-

tion and manipulation of loads, contact-based inspection

tasks, and building/decommissioning of structures.

Many different control strategies for MRAVs have

been designed for trajectory tracking. The most common

controllers implemented on these systems are PIDs (i.e.,

Proportional, Integrative and Derivative) designed based on

models, either linearized around the hovering condition as

in [24], or obtained with feedback linearization as in [25–

27]. Other control methods applied to MRAV include, but

are not limited to, adaptive control [28], back-stepping,

and sliding-mode [29]. The interested reader is addressed

to [30] for a detailed overview about available control

strategies for under-actuated MRAVs, while an extension

of [25] to the fully-actuated case has been proposed in our

previous work [31]. The main limitations of the mentioned

algorithms are: (i) they are not predictive, in the sense that

the control input at any time instant is not computed with

the objective of optimizing the system performance on a

future time horizon, possibly based on a reference motion

trajectory; (ii) they are not able to enforce the fulfillment

of limitations on input and state variables, which might be

crucial for safety reasons.

In the last decades, intense research has been devoted to

the development, testing, and implementation of Model Pre-

dictive Control (MPC), a model-based optimization-based

predictive control method which has gained large popular-

ity especially in the process and chemical industries. More

recently, thanks to the growing availability of increasingly

efficient embedded computers, the popularity of MPC is

broadening to safety and time-critical applications with fast

dynamics, e.g., in the automotive and robotic fields. MPC

is nowadays theoretically well founded and its popularity

is mainly related to the following facts. First, it is able to

optimize, in a predictive fashion, the system behavior on

a given future time horizon based on the system model.

Also, in view of the fact that (at least in its most common

implementation) it is based on the iterative solution of a con-

strained optimal control problem (OCP), it allows to enforce

dynamic constraints on the state and the inputs of a physical

system. Furthermore, since the related OCP is solved at each

sampling instant as new state measurements get available, it

is able to mitigate for possible model perturbations.

Regarding the application of MPC to MRAVs, several

notable works have been done in the past few years. On the

one hand, some papers tackle the problems of offline gen-

erating (by solving a suitable OCP) a reference trajectory,

feasible with respect to (w.r.t.) the state limits of the system

while avoiding possible fixed obstacles, e.g., [16, 18–20].

Other references to MPC in this perspective can be found

in a recent review of motion planning methods for swarms

of aerial robots [32]. Other works, instead, are devoted

to closed-loop schemes, that allow for stabilization of the

vehicle dynamics and possibly for local trajectory planning.

Here we will focus on the latter class. In this framework,

cascaded control schemes are very common, that rely on

the decoupling between the translational and the rotational

dynamics of the rigid body. In the majority of the works that

rely on this approach, e.g., [5, 7, 9, 10, 14], MPC is used for

position control, while the inner-loop attitude control task

is obtained using unconstrained regulators (e.g., Lyapunov-

based, PIDs, etc.). On the contrary, in [13, 15], the authors

employ MPC for control of the inner rotational loop.

In either ways, the common strategy is to stabilize the

rotational dynamics in an inner loop and to use the rota-

tion configuration (or the angular velocity) as a virtual input

commanded by the outer position-control loop. However,

cascaded control methods do not allow to exploit the poten-

tialities of the vehicles at their best, in our opinion. Indeed,

the problem with this decoupled approach is the introduc-

tion of fictitious (non-real from a physical point of view)

constraints in the virtual inputs, i.e., in the state variables

that represent the interface between the two nested con-

trolled systems. As a matter of fact, any constraint imposed

on state variables such as the linear velocity, acceleration,

jerk, snap, or on the orientation (e.g., Euler angles) and

the angular velocity, constitutes a heuristic limitation which

does not model accurately the real physical constraints of

the real system. On the other hand, in our work, the com-

plete system dynamics is modeled in a non-cascaded way

and only the limitations on the individual motor thrust forces

and their rates are enforced.

As a matter of fact, the only constraints that play the

major role in the platform dynamics are the maximum

and minimum torques that can be attained by the motors

which drive the propellers. Such limits cause a maximum

speed (mainly due to air drag), a minimum speed (mainly

due to electronic reactions), a maximum acceleration
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(mainly due to motor/propeller inertia), and a maximum

deceleration (mainly due to nonlinear active breaking).

Any simplification which replaces such real constraints

with fictitious constraints in the configuration/state of

the platform results, unavoidably, in a reduced control

performance w.r.t. the real dynamic potential of the robot.

In support for the need for a “whole system” control,

a few recent works, e.g., [10–12, 17, 21], avoid cascaded

configuration as well. However, such works either do not

include any realistic model of the actuator dynamics and

constraints in the control design, or they do not demonstrate

the capability of the proposed methods to perform online

control of the robot in challenging real experiments.

Furthermore, they do not offer a generic framework for the

seamless control of both under-actuated and fully-actuated

MRAVs with generic designs. On the other hand, the

simultaneous accomplishment of all these three objectives

constitute the main contribution of this paper.

Another common source of performance limitation is the

use of linear/linearized models, see e.g., in [5–10, 12, 23].

Such models have the advantage of typically requiring less

computation, in relation to the online resolution of the OCP,

but at the detriment of maximum attainable performance.

On the other hand, the MPC scheme for local planning and

tracking presented in this paper uses a full-order nonlinear

model which includes an innovative data-driven description

of the actuator dynamics. To effectively limit the increased

computational burden, the control algorithm is implemented

using a state-of-the-art RTI scheme with partial sensitivity

update method, as further explained in the paper.

Therefore, despite the field of MPC-based control for

MRAVs is already deeply studied, we believe there is still

a considerable margin for interesting research investigation,

in particular in relation to the employment of more

precise models which take into account more representative

constraints for the actuators, can be applied to arbitrarily-de-

signed MRAVs, and are validated through real experiments

with online computation, as demonstrated by the novel and

unique results in this regard presented in this paper.

To summarize, the contributions of this paper are

threefold. First, the take advantage of a novel actuator model

that allows to consider as control inputs the derivatives

of the forces generated by the multi-rotor vehicle and to

leverage the vehicle dynamic capabilities in a better way.

Second, the development of a control framework suitable

to seamlessly deal with UDT and MDT MRAVs. Third, an

extensive and comprehensive validation of the controller by

means of real-time simulations and experiments performed

with heterogeneous MRAVs, i.e., both with under-actua-

ted and fully-actuated aerial robots, and both with fixed

and orientable propellers. To the best of our knowledge,

this is the first time that a framework with all such

relevant characteristics is successfully tested online to

control non-specific aerial vehicles with arbitrary propeller

arrangements. Following the discussion above, Table 1

provides a summary of the contribution of this paper

compared to the main works in the literature.

This paper is structured as follows. First, the mathemat-

ical model of a MDT MRAV is described in details, with

focus on the novel actuator model development and identifi-

cation. Then, we describe the MPC implementation details.

Finally, we present an extensive and thorough validation

campaign, conducted with four heterogeneous robot plat-

forms. The results of both realistic simulations and real

experiments for the control of an under-actuated, a fully-

actuated, and a convertible MRAV are presented, compared,

and discussed. Furthermore, the stabilization of a fully-

actuated platform subject to a rotor failure is also targeted.

A few summarizing considerations and hints on future work

conclude the article.

Notation. In this paper, we denote (column) vectors

and matrices in bold font, with lower and upper cases,

respectively. The transpose operator is indicated with the

superscript •⊤. Letter superscripts of vectors represent the

reference frame w.r.t which these vectors are expressed.

1i,j denotes the matrix with i rows and j columns with

all the elements equal to 1. A ⊗ B denotes the Kronecker

product between the matrices A and B. For the reader’s ease,

we collected in Table 2 the main symbols related to the

modeling used in the paper.

2Modeling of MRAVs with generic design

2.1 Model of a multi-rotor platform

Multi-rotor platforms are modeled as rigid bodies having

mass m, actuated by n ∈ N \ {0} spinning motors coupled

with propellers, i.e., n = 4 and n = 6 in the particular

quadrotor and hexarotor models, respectively. Keeping n

generic allows to express the model in a non-specific form.

With reference to Fig. 1, we denote with FW =
OW , {xW , yW , zW } and FB = OB , {xB , yB , zB} the world

inertial frame and the body frame attached to the MRAV,

respectively. The origin of FB , i.e., OB , is chosen coincident

with the Center of Mass (CoM) of the aerial platform and its

position w.r.t. OW , in FW , is denoted with pW
B ∈ R

3, shortly

indicated with p in the following. The orientation of FB

w.r.t. FW is represented by the rotation matrix RW
B ∈ R

3×3,

denoted with R for ease of notation. We also define with

FAi
= OAi

, {xAi
, yAi

, zAi
} the reference frame related

to the i-th actuator, i ∈ {1, . . . , n}, with OAi
attached to

the thrust generation point and zAi
aligned with the thrust

direction. Thanks to this convention, the actuator force

expressed in its frame is f
Ai

i = fie3, where ei, i=1, 2, 3

represents the i-th vector of the canonical basis of R3. The
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Table 2 Overview of the main symbols used in this paper

Definition Symbol

World Inertial Frame FW

Multi-rotor Body Frame FB

Actuator frame (i-th) FAi

Position, velocity, acceleration of OB in FW p, ṗ, p̈

Rotation matrix representing FB w.r.t. FW R

Angular velocity of FB w.r.t. FW , expressed in FB ω

Angular acceleration of FB w.r.t. FW , expressed in FB ω̇

Position of OAi
in FB pB

Ai

Rotation matrix representing FAi
w.r.t. FB RB

Ai

Mass of the vehicle m

Vehicle’s inertia matrix w.r.t. to OB , expressed in FB J

Gravity acceleration g

Total force acting on the CoM fB

Total moment acting on the CoM τB

position of OAi
w.r.t OB , in FB , is indicated with pB

Ai
, while

the orientation of FAi
w.r.t. FB is represented with RB

Ai
. The

positive definite matrix J ∈ R
3×3 denotes the vehicle inertia

matrix w.r.t. OB , expressed in FB . The angular velocity of

FB w.r.t. FW , expressed in FB , is indicated with ωB
B ∈ R

3

and compactly denoted as ω in the following. The vehicle

orientation kinematics, accounting for the evolution of the

rotation matrix R, is described by the well-known equation

Ṙ = R [ω]× (1)

where [•]× ∈ so(3) represents, in general, the skew

symmetric matrix associated to any vector • ∈ R
3.

Using the Newton-Euler formalism, we can derive the

dynamics of the aerial platform in order to relate the motion

of its CoM, in particular its linear and angular accelerations

(p̈ and ω̇, respectively), to the sum of the forces fB and

the torques τB acting on this particular point of the rigid

Fig. 1 Schematic representation of a MDT MRAV with its reference

frames
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body. As traditionally done, we express the translational

dynamics in world frame, while keeping the rotational one

in body frame. This allows to slightly simplify the form

of the equations. Combining them in a compact form, we

obtain
[

mI3 03

03 J

][

p̈

ω̇

]

=
[

−mge3

−ω × Jω

]

+
[

R 03

03 I3

][

fBB

τB
B

]

(2)

where g is the gravitational acceleration and I3 ∈ R
3×3

is the identity matrix of order 3. In order to expand Eq. 2,

one must explicit the dependence of the body wrench on the

forces generated by actuators. The vector fBB is the sum of

the actuator forces, properly rotated in body frame, i.e.,

fBB =
n
∑

i=1

fBi =
n
∑

i=1

RB
Ai

f
Ai

i =
n
∑

i=1

RB
Ai

e3fi . (3)

On the other hand, the body torque is the result of

the moments τfi
created by the actuator forces due to

their leverage arms and the drag torques τdi
which are a

byproduct of the counteracting reaction of the air to the

propeller rotation.

τB
B =

n∑

i=1

τB
fi

+ τB
di

=
n∑

i=1

pB
Ai

× fBi + cic
τ
f fBi

=
n∑

i=1

(

[pB
Ai

]× + cic
τ
f I3

)

RB
Ai

e3fi . (4)

The constant parameter cτ
f > 0 is characteristic of

the type of propeller and is defined as the intensity ratio

between the thrust produced by the propeller rotation and

the generated drag torque. Furthermore, ci is a variable

whose value is equal to −1 (respectively, +1) in the

case the direction of the induced drag torque is opposite

(respectively, the same) w.r.t. the generated thrust force,

that is the case for a propeller spinning counter-clockwise

(respectively, clockwise) w.r.t. its thrust direction. Such

coefficient models the fact that the drag torque is always

opposed w.r.t. the rotor velocity. In particular, the model

used in this paper assumes that the sense of rotation of

each rotor is fixed and cannot be reversed. Furthermore,

the collective pitch of the propeller blades is modeled as

constant. As a consequence, the generated thrust cannot be

flipped. Thus, swash-plate designs are out of the scope of

this work. Finally, fi is the intensity of the produced force,

which is related to the controllable spinning rate wi of motor

i by means of the quadratic relation

fi = cf w2
i (5)

where cf > 0 is another propeller-dependent constant

parameter to be experimentally identified. Note that Eq. 5

is a well-established model in the literature, that has been

validated experimentally, e.g., in [33].

We underline that one goal of this paper is to define and

guarantee the compliance of the system with meaningful

bounds for the actuators, and not to accurately model the

physics of the thrust generation. To this purpose, the interest

reader is addressed to [34]. Leaving the dependence of the

model equations on fi , see Eqs. 3–4, allows the proposed

MPC framework to be seamlessly adaptable to the particular

thrust generation model specified by the user. Therefore,

also different and more accurate thrust models, such as,

e.g., [35] can be easily integrated in our framework.

From Eqs. 3 and 4, the body wrench can be expressed

as a linear combination of the forces produced by the n

actuators. Once defined γ =
[

f1 · · · fn

]⊤
, we can write

[

fBB

τB
B

]

=
[

G1

G2

]

γ = Gγ (6)

where G ∈ R
6×n is the allocation matrix. In particular,

its sub-blocks G1 and G2 map the actuator forces to the

body forces and moments, respectively. Moreover, the j -th

column of G, j ∈ {1, . . . , n}, refers to the contribution of

the j -th actuator force to the total body wrench, being

G(:, j) =

⎡

⎣
RB

Aj
e3

(

[pB
Aj

]× + cj c
τ
f I3

)

RAj
e3

⎤

⎦ . (7)

The matrix G maps the vector of actuator force intensi-

ties, that belongs to a subset1 of an n-dimensional space,

to body wrenches laying in a subset of a 6-dimensional

space. Remark the fact that in the case of a fully-actuated

MRAV, the allocation matrix has full-rank, while for an

under-actuated vehicle it has a number of rank deficien-

cies equal to its under-actuation degree. In the particular

case of a UDT platform, we have that rank(G) = 4, with

rank(G2) = 3 and rank(G1) = 1. This reflects the vehicle

capability to exert a body torque in all the directions, disre-

garding the actuator limits, but a body force along only one

direction, i.e., the one of the zB axis. A detailed analysis

of the allocation matrix rank has been presented in [36], in

the particular configuration of a hexarotor with synchro-

nized dual-tilting propellers. The theoretical problem of

designing an omni-directional (OD) aerial vehicle, that is

a fully-actuated MRAV that can produce any body force

inside a spherical shell independently from the body torque,

has instead been investigated in [37–39].

The model defined by the Eqs. 2–4 describes the dynam-

ics of a MRAV with arbitrarily positioned and rotated

actuators. Nevertheless, it contains, like all models, a certain

degree of simplification w.r.t. the real system. In the par-

ticular case, it neglects the contributions of the gyroscopic

1Such subset is the Cartesian product of the scalar subsets Fi ⊂ R
+

which contain the feasible force values that each actuator can exert.
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effect induced by the conservation of the angular momen-

tum of the propellers, the blade flapping and the rotor

induced drag reactions. As far as the gyroscopic effect is

concerned, its contribution could be taken into account by

adding to the right-side part of the rotational dynamics

in Eq. 2 a modified version of (3) in [7] that takes into

account the fact that the actuators may have different ori-

entations w.r.t. FB . As one can easily figure out, each term

in such equation is scaled with JAi
, that is the inertia ten-

sor of the rotating part of the i-th actuator (composed of

the propeller and the rotor). For MRAVs with actuators of

small-medium size, that are the ones on which this work

focuses its attention, the entries of this matrix are typi-

cally 2-3 orders of magnitude smaller than the ones of J.

Therefore, the contribution of the gyroscopic effect can be

safely neglected in Eq. 2. Regarding the blade flapping and

the rotor induced drag effects, they are mainly associated

with the flexibility and the rigidity of the rotors, respec-

tively [40], and are generated by the interaction of the air

with the translating propellers. The results of these aerody-

namic effects can be typically observed in UDT platforms

as exogenous lateral forces in the x-y plane of the rotors. In

the scope of MDT MRAVs, this analysis would be complex

to be precisely evaluated and would require to measure the

relative speed of the vehicle w.r.t. the wind and to model the

possible interactions between the air-flows of different pro-

pellers, which is outside the scope of this paper. Moreover,

it should be remarked that the behavior of small-medium

size rotor-crafts is much more dominated by their thruster

characteristics than to aerodynamic forces, cf. [34].

For these reasons, in the line of [13, 19] and many other

relevant works, further motivated by the results presented

in [33], we decided to neglect the first-order contribution

of these two reactions and all other second-order effects

arising at very high speed and highly dynamic MRAV

maneuvers.

The model developed so far is known in the literature

and has been presented for completeness and self-consisten-

cy. The true contribution brought by this work regarding

the modeling of a MRAV is described in the following

paragraph, where we detail a methodology aimed to take

into account the dynamics and the limitations of the

actuators in a simple and effective way.

2.2 State-dependent actuator bounds

In our previous work [31], we already showed the impor-

tance of keeping into account the rotor velocity constraints

in the MRAV control strategy in order to preserve the

system stability. As also claimed in [41], further improve-

ments in the control of MRAVs could be attained by

extending the nonlinear model in order to include the

motor/blade dynamics and treating the motor voltages as the

commanded inputs. However, this would require to accu-

rately model the significant nonlinearities introduced by the

active braking, to control the system a high rate (≥ 1 KHz)

and at low latency (≤ 1 ms), and the availability of fur-

ther measurements (e.g., the motor currents and spinning

velocities).

In [11] a trade-off solution is proposed, considering the

rotor accelerations as control input. This strategy allows

to put constraints on both the motor velocities and their

derivatives. Doing so, the simplistic hypothesis that the

spinning velocities of the rotors (and the generated forces,

by consequence) can be changed instantaneously, implicitly

done by other works in the literature, is abandoned.

Constraints on the rotor accelerations are enforced in the

OCP resolution, assuming the lower and upper bounds as

constant.

However, as corroborated by experimental data, the

capability of the rotors to accelerate depends on the motor

currents, the blade dynamics, and on other nonlinear effects

hidden in the electrical level that could additionally induce

an asymmetry between the acceleration and the deceleration

constraints, which will in turn indirectly depend on the rotor

velocity. For these reasons, we believe that the extended

MRAV model should rely on a methodology that can assess

the actuators dynamics and constraints in a more accurate

way. Since the presence of strong nonlinearities in the

closed-loop dynamics of the actuators prevents the use of

Bode plots analysis or other linear methods, we propose to

derive the model from available data in an alternative way.

More specifically, first we experimentally assess how

the spinning rate wi and the acceleration ẇi of the rotors,

each of which is regulated by an independent embedded

Electronic Speed Controller (ESC), should be properly con-

strained in order to prevent the risk of damaging the motors

and to guarantee an accurate force tracking. Secondly, we

derive proper constraints for the actuator forces and their

derivatives, used by the MPC, in relation to the partic-

ular model used to describe the thrust generation. This

confers generality to our approach, making it compatible

with any other thrust generation model that one wants to

adopt.

2.2.1 Experimental assessment of the limitations

on the spinning rate w and the acceleration ẇ of the rotors

In this paragraph, we present a procedure to experimentally

identify appropriate rotor acceleration limits as function of

the velocity set-points to the ESCs, allowing to account for

the aforementioned nonlinearities in a simple yet effective

way. To do this, we use a simple testbed composed of a

single Brush-Less Direct-Current BL-DC electric motor that

is fixed on a mechanical structure, endowed with a propeller

and controlled by a dedicated ESC. The latter is connected
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to a computer via a serial cable. Using a suitable application,

the user should be able to specify the desired rotor velocity

wd , read the measurement w, and measure or estimate the

current in input to the motor.

As far as the lower and upper bounds for the rotor

velocities are concerned, they can be experimentally

identified by producing velocity commands that cause the

currents to be at the safety limits, with a certain security

margin. This information is available from the motors data-

sheets. Such velocity limits should be combined with the

ones imposed by the low-level speed controllers, if any.

In order to identify the constraints on the rotor

accelerations, i.e., ẇ and ẇ, the actuator should be

provided with increasing acceleration commands, centered

at different velocity set-points in order to appreciate the

dependence of the constraints on the rotor velocity.

The profile of the desired rotor velocity trajectory,

depicted in Fig. 2, is a sequence of ramps (highlighted with

yellow rectangles) centered at given set-points w∗
h, h ∈

N \ {0}, that are chosen in order to equally span the feasible

set [w, w]. The ramp segments are designed with increasing

slopes (both positive and negative) over time and separated

by rest-intervals where ẇd = 0, needed to avoid overheating

the motor.

At this point, the tracking error ef of the generated force

f , mapped from the measured rotor velocity via the thrust

generation model, w.r.t. a given desired value fd can be used

as the metric to define the acceleration bounds. Using Eq. 5,

we have

ef (ew, wd) = fd − f = cf (2wdew − ew
2) (8)

where ew = wd − w is the velocity error. After a standard

post processing of the data, mostly consisting in a low-

pass filtering of the measured velocity in order to reduce

high-frequency noise, by visual inspection of the force

error associated with the acceleration intervals centered at

each w∗
h, the user can determine the velocity-dependent

acceleration limits in relation to the force tracking accuracy

(s)he is willing to achieve, i.e., those that guarantee an

average force inaccuracy below a chosen threshold ǫf .

Connecting these values using a linear interpolation, it is

possible to have an approximation of ẇ and ẇ as a function

of w.

2.2.2 Definition of the constraints on f and ḟ

First of all, the values w and w can be translated into the

force constraints f and f by using the force generation

model Eq. 5. Secondly, once the functions ẇ(w) and ẇ(w)

are available, in order to convert them into constraints on

force derivatives, one can easily compute the time-derivative

of Eq. 5, obtaining

ḟ = ∂f

∂w

∂w

∂t
= 2cf wẇ. (9)

The expression of the state dependent input constraints

ḟ (f ) and ḟ (f ) are finally obtained from Eqs. 5 and 9. We

stress the fact that another model for the thrust generation

might be used. In that case Eq. 5, and consequently Eqs. 8

and 9, should be changed according to the new thrust model.

As a final remark, it should be noted that the proposed

procedure does not require a force/torque sensor.

2.2.3 Application of the identification procedure

to hardware setup

In the following, we describe how we concretely apply the

previously-described procedure to two different hardware

setups. The first one, shortly named setup I, is composed
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Fig. 2 Trajectory for the identification of the input limits at w∗ = 70

Hz (that is the average spinning rotor velocities while the platform

hovers) for the hexarotor setup. A series of ramps with increasing

slope, which corresponds to growing acceleration commands, is sent

to one actuator. The top and bottom sub-plots outline intervals where

the tracking of the velocity command is good and bad, respectively.

In particular, remark on the green ellipse that once the motor is

activated, it has a minimum spinning velocity w = 16 Hz below

which it can’t physically rotate. This has to be kept into account by

the MPC
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of a MikroKopter2 electric motor MK3638 coupled with a

12X4.5’ propeller and controlled by a BL-Ctrl V2.0 ESC.

The low-level control of the rotor velocity is performed in

closed-loop employing the Adaptive Bias Adaptive Gain

(ABAG) algorithm, whose details can be found in [42].

In this setup, being the one of our (custom-made)

fully-actuated hexarotors, the constraints on the minimum

and maximum velocities are related to the properties of

the closed-loop rotor velocity controller. Specifically, the

actual rotor velocity is estimated by the low-level controller

without any additional sensor and the quality of such

estimation is proportional to the rotor speed. This causes

the velocity to have a lower bound, in order to be properly

estimated by the controller with a certain precision. On the

other hand, the limited arithmetic capabilities of the ESC

micro-controller (which allows only 8-bit additions and has

no floating point unit) translates into a velocity upper bound,

cf. [42]. In this case, we identified w = 16 Hz and w =
102 Hz. In particular, the upper limit satisfies the maximum

current limitation of 20 A reported in the motor data-sheet.

Finally, using Eq. 5 we obtained the limits f ≈ 0.25 N and

f ≈ 10.3 N used to constrain the OCP resolution in the

MPC algorithm.

As far as the identification of the acceleration limits is

concerned, we generated a set of increasing ẇ spanning the

range ±[20, 300] Hz/s with a step of 10 Hz/s, centered at a

given average velocity level w∗
h. Each ramp fragment takes

values in the set [w∗
h − δh, w∗

h + δh], with δh = 10Hz.

With reference to Fig. 2, for each ramp we select the 30%

of the total samples which are centered in the middle of

the interval (highlighted with orange rectangles in Fig. 2)

and compute the correspondent force error using Eq. 8. The

operation is repeated at different set-points w∗
h in the set

[30, 90] Hz with a step of 10 Hz, in order to span the set of

admissible velocities previously estimated.

The plots of the force error trends related to setup I are

shown in Fig. 4. In each subplot, notice that the number

of samples related to increasing values of |ẇ| is gradually

decreasing. This happens because an increase in the ramp

slopes is associated with a decrease in the time duration

associated with the segments.

Remark three facts:

(i) At the same velocity set-points, increasing force

errors are associated with increasing acceleration val-

ues, on average. This suggests that high acceleration

references (of both signs) are difficult to be tracked

and fosters the idea to constrain them with lower and

upper bounds.

(ii) For different set-point velocities, the profile of the

force error at corresponding acceleration intervals

is different. This confirms the claim that the limits

2http://www.mikrokopter.de/en/home

are velocity-dependent. In particular, we observe that

while increasing values of set-points seem to cause

increasing force error for positive accelerations, such

trend is not pursued by negative accelerations. A

reasonable explanation for such effect could be the

fact that the active braking, which intervenes only for

negative accelerations, is not behaving in the same

way for different velocity levels.

(iii) At the same velocity set-points, the force error ef asso-

ciated with negative accelerations is larger, on aver-

age, w.r.t. the one associated with positive accelera-

tions. This reveals that, despite the use of the active-

braking, the deceleration of a rotor produces a worse

force tracking than the corresponding acceleration.

In order to identify the acceleration limits ẇ and ẇ,

we defined ǫf ≈ 0.2 N as the force error threshold,

admitting slightly bigger values (≈ 0.3 N) at high velocity

set-points. As we will see in the experimental validation

plots, such value generates conservative limits that preserve

the platform stability also during agile trajectory tracking.

As a general rule, such threshold value shall depend on

the particular robot task. The identified acceleration limits

related to setup I are collected in Table 3, where velocity

data are expressed in Hz, while acceleration ones in

Hz/s. Interpolating these values with linear functions and

using Eqs. 5 and 9, allowed us to obtain the force derivative

constraints as function of the instantaneous thrust forces.

A second hardware setup (setup II) is analyzed, i.e.,

that one of the available under-actuated quadrotor, which

combines a MK2832/35 motor with a 10X4.5’ propeller

from MikroKopter, controlled by the same ESC and closed-

loop algorithm of setup I. The profile of the constraints

for the actuator forces and their derivatives, related to the

two setups, are depicted with different colors in the plot of

Fig. 3, where the admissible set of values for both cases

are represented with the yellow area. Consistently with the

previous results, the limits on positive and negative thrust

derivatives are not perfectly symmetric (Fig. 4).

2.3 State-spacemodel for discrete-time control

Let us define the state vector x and the input vector u as

x :=
[

p⊤ ṗ⊤ η⊤ ω⊤ γ ⊤]⊤ (10)

u := γ̇ (11)

Table 3 Identified acceleration limits for setup I

w[Hz] 30 40 50 60 70 80 90

ẇ [Hz/s] −120 −160 −200 −140 −160 −160 −140

ẇ [Hz/s] 200 200 200 160 180 180 180
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Fig. 3 State and input

constraints given to the NMPC

in relation to the two hardware

setups used in the experiments.

Darker and lighter colored lines

are referred to setup I and setup

II, respectively

0 1 2 3 4 5 6 7 8 9 10 11 12

-40

-30

-20

-10

0

10

20

30

40

with η ∈ R
nη being the vector used for concisely

representing the platform orientation. Specifically, for the

experimental validation we chose a minimum representation

with three angles (see the section related to the experimental

validation for a detailed discussion about pros and cons of

minimal representations). With reference to Eq. 10, it is

worth to remark the fact that the actuator forces γ , which

in other works were either discarded from the model or

assumed as the input, are considered here as part of the

state. In particular, all the quantities which compose the

state are assumed to be measurable (cf. Sec. 4.1 for a

discussion of the employed sensors). In view of this, the

control scheme will be implemented without resorting to a

dedicated state-observer.

The expression of the map f(•) relating ẋ to x and u, i.e.,

ẋ(t) = f(x(t), u(t)), (12)

can be obtained from Eqs. 1–4, according to the previous

definition of x and u.

For digital control purposes, the continuous-time model

in Eq. 12 is discretized (in the particualr case using a fixed

step 4th order explicit Runge-Kutta integrator) yielding the

following discrete-time model

xk+1 = φ(xk, uk), k = 0, 1, . . . , N − 1 (13)

where, for ease of notation, xk = x(kT ) being T the MPC

sampling time and u(t) = uk for t ∈ [kT , (k + 1)T ).

3 NMPC for MRAVs with generic design

The goal of this section is to devise an MPC controller

able to simultaneously address the problem of local

reference trajectory planning and that of stabilizing the

vehicle dynamics. Specifically, we aim to track a reference

trajectory denoted (pr(t), ηr(t)) given by a generic global

planner. We assume (pr(t), ηr(t)) to be twice continuously

differentiable. In order to guarantee smoothness properties

of the generated trajectory, we force our algorithm to be able

to drive also the derivatives of the state variables toward the

corresponding ones of the reference trajectory. Therefore,

we introduce the following enlarged reference signal

yr(t) =
[

p⊤
r (t) ṗ⊤

r (t) p̈⊤
r (t) η⊤

r (t) ω⊤
r (t) ω̇⊤

r (t)
]⊤

(14)

and, accordingly, we define the output map as

y(t) = h (x(t), u(t)) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

p(t)

ṗ(t)

p̈ (x(t), u(t))

η(t)

ω(t)

ω̇ (x(t), u(t))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (15)

For clarity observe that p(t), ṗ(t), η(t), ω(t) are mea-

sured sub-vectors of the state, while p̈, ω̇ are functions of

x(t), u(t), and, in particular, sub-components of the map f

in Eq. 12.

Finally, we define yr,k , yk as the discretized version of

yr(t) and y(t), respectively, i.e., yr,k = yr(kT ), yk =
y(kT ).

The OCP to be solved at time kT , given the current state

xk , is formulated as

min
x̂0, . . . , x̂N

û0, . . . , ûN−1

∑N−1
h=0

{

‖ŷh − yr,k+h‖2
Qh

+ ‖ûh‖2
Rh

}

+‖ŷN − yr,k+N‖2
QN

(16)

s.t . x̂0 = xk (17)

x̂h+1 = φ(x̂h, ûh), h=0,1,...,N−1, (18)

ŷh = h(x̂h, ûh), h=0,1,...,N, (19)

γ ≤ Mx̂h ≤ γ , h=0,1,...,N, (20)

γ̇
k+h

≤ ûh ≤ γ̇ k+h, h=0,1,...,N−1, (21)

where Qh, Rh are semidefinite positive matrices and matrix

M is defined in order to select only the n elements of the

state x corresponding to the actuator forces, that is,

M =
[

0n×(9+nη) In

]

. (22)
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Fig. 4 Plots of the force error trends, associated to the acceleration intervals at different set-point velocities w∗
h, related to setup I. Positive and

negative acc. are depicted on the left and right column, respectively. The acceleration-dependent errors are represented with different color shades
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The bounds γ , γ , depend on the quantities f , f characterized

in the previous section and, compactly, they are defined as

γ = 16×1 ⊗ f (23)

γ = 16×1 ⊗ f . (24)

Furthermore, the bounds γ̇
k+h

, γ̇ k+h, h = 0, 1, . . . , N −
1, depend on the time-varying and state dependent quantities

ḟ (f ), ḟ (f ) and, precisely, they should be defined as

γ̇ k+h =
[

ḟ (f1,k+h), . . . , ḟ (fn,k+h)
]⊤

(25)

γ̇
k+h

=
[

ḟ (f1,k+h), . . . , ḟ (fn,k+h)
]⊤

(26)

Observe that constraints in Eq. 21, with γ̇ k+h and γ̇
k+h

defined as above are highly non-linear. In order to retain

linearity of these constraints in the OCP, we consider the

following alternative definition for γ̇ k+h and γ̇
k+h

γ̇ k+h =
[

ḟ (f̃1,k+h), . . . , ḟ (f̃n,k+h)
]⊤

(27)

γ̇
k+h

=
[

ḟ (f̃1,k+h), . . . , ḟ (f̃n,k+h)
]⊤

(28)

where f̃i,k+h are independent of the decision variables of

the OCP at time t = kT . Different choices can be taken, for

example keeping the constraints constant along the horizon

f̃i,k+h = fi,k, h = 0, . . . , N − 1.

Alternatively, f̃i,k+h can be selected in a time-varying

fashion based on the solution of the previous OCP obtained

at instant t = (k − 1)T .

The solution to the OCP, at a given time step k consists

of the optimal values x̂0|k , . . ., x̂N |k , û0|k , . . ., ûN−1|k .

According to the receding horizon principle [43], the input

value uk = û0|k is applied, and the procedure is repeated at

the subsequent time step k + 1.

Some remarks are due at this point, concerning

the problem formulation. Regarding the stability-related

properties of our scheme, first of all note that the problem

addressed here consists of tracking a trajectory generated,

possibly without any regard of the vehicle model, by a

generic global planner. In particular, we avoid on purpose

any feasibility assumptions of the reference trajectory

w.r.t. the robot, in order to test the NMPC framework

capability to locally re-generate and track a trajectory

which is compatible with the system dynamics and with

the actuator constraints. This motivates the claim that the

proposed algorithm can seamlessly deal with arbitrarily-

designed MRAVs, without the need for a preliminary

analysis on the system dynamics. For example, if the system

is under-actuated and differentially flat, our framework will

automatically recognize such property and exploit it, thus

considerably simplifying the reference trajectory generation

problem.

Under this general assumption, stability (in a strict sense)

of the reference trajectory cannot be guaranteed, since

the guarantee to track the given set-point is ensured only

provided that the trajectory is generated compatibly with the

system dynamics and the actuator constraints. For particular

implementations of nonlinear MPC, in case of feasible set-

points or reference trajectories, the stability of the closed-

loop system can be conferred, for example, by designing

particular terminal constraints and appropriate terminal

penalties on the state. A compelling work reviewing the

main essential principles that ensures stability has been

presented in the survey [43]. However, the difficulty in

explicitly computing the terminal set and the terminal

cost function for general nonlinear systems remains quite

dissuasive in real-life applications [44].

On the other hand, it has been shown that under

the assumption that the reference trajectory is consistent

with the vehicle dynamics (e.g., as in [45]), stability

guarantees could be provided by selecting a sufficiently

large prediction horizon length N relying on [46, 47].

Such approach has been applied for path following in a

robotic scenario, e.g., in [48]. In line with many other works

dealing with NMPC applied to aerial vehicles, we preferred

to heuristically follow this methodology. To determine the

minimum length of the horizon, which directly affects the

dimension of the optimization problem, we have performed

preliminary simulations with different trajectories, robot

models, and prediction horizon lengths, carrying out a

trade-off between stability performance and computational

burden. Considering that a formal proof of the controller

stability is out of the scope of this paper, we leave the

analytic study of the optimal prediction horizon length

as well as a formal discussion of the closed-loop system

stability for future work. Practically, throughout all the

experimental tests, the NMPC algorithm was always able

to stabilize the robot along a re-computed trajectory, even

in case the reference one is (on purpose) not feasible with

respect to the robot dynamics and actuator constraints.

In relation to the stability problem, it is worth to briefly

discuss the controllability and observability of the systems

to be controlled. Regarding the former property, which is

related to the capability of the input to affect the evolution

of the system state, we leveraged previous theoretical results

to assess the existence of feasible input trajectories capable

to steer the state of the system towards the tested reference

trajectories. Whenever the specific motion was not feasible

for the particular dynamic constraints of the platform at

hand, we allowed the local re-generation of a feasible

trajectory. In this way, we ensure the system controllability

to “the closest” feasible trajectory in relation to the original

reference. In particular, while fully-actuated systems can

track a full-pose decoupled trajectory provided that the

actuator constraints are not violated [31], we know from
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previous theoretical results that the trajectory of under-

actuated vehicles has to satisfy the flatness-property [49].

Moreover, results on the reduced controllability of particular

fully-actuated MRAVs after a propeller failure are available

from [50, 51]. Ultimately, we also tested the controllability

of all the presented MRAV systems in relation to the target

trajectories in a preliminary phase of extensive simulations.

As far as the observability is concerned, which describes

the possibility of inferring the internal state of a system

from knowledge of its external outputs, we do not have any

concern in this sense as the full state of the aerial vehicle,

cf. Eq. 10, is assumed measurable from the available

sensors. Considering that we do not make use of any state

estimator in this work, a formal analysis of the system

observability is not needed, in this case. Details on the

design of a fault-tolerance NMPC scheme for systems with

sensor faults, which falls outside the scope of this paper, can

be found in [52].

Another important feature of MPC-based algorithms is

recursive feasibility, i.e., the guarantee that the OCP always

admits a solution. In our practical implementation we have

adopted the widespread solution of guaranteeing it by

enforcing the (slightly tightened) constraints in a soft way

using slack variables. Practically, alongside our extensive

experimental campaign, the algorithm was always able to

find a solution.

To conclude the extensive presentation of the proposed

NMC scheme, the implementation details related to the

resolution of the OCP are discussed in the following.

3.1 Implementation details for the OCP resolution

The control algorithm is implemented using the state-of-the-

art Real Time Iteration (RTI) scheme, see [53], embedding

the multiple shooting method, cf. [54].

The RTI scheme performs a single sequential quadratic

Programming (SQP) iteration to solve the OCP. To do

this, a linearization of the system constraints Eqs. 18

and 19 is performed to obtain a quadratic programming

(QP) problem, to be solved at each sampling time.

To reduce the computational time, in [55] a procedure

called partial sensitivity update is proposed, where the

constraint linearization is updated only if the dynamics

around the generated trajectory exhibits a certain degree

of nonlinearity. To reduce the computational complexity,

the QP problem is condensed using the algorithms

discussed in [56]. The required linear algebra routines are

implemented using OpenBLAS 3. The resulting dense QP

is solved by qpOASES, see [57], which employs on-line

active-set method with warm-start strategy.

3https://github.com/xianyi/OpenBLAS

According to the common practice, the sampling time

must be selected to be as small as possible, to make

the control system sufficiently reactive. On the other

hand, it must also be sufficiently larger than the average

computational time. However note that, despite this, there is

no guarantee that a solution to the OCP is always available

in due time at each time step. If, at a given instant (say at step

k), the time required to compute the solution is occasionally

larger than a given threshold, a back-up solution must be

taken to guarantee reliability of the control system. In this

paper, this solution consists of taking the possibly sub-

optimal but admissible value uk = û1|k−1, computed as part

of the solution to the OCP at time k − 1.

4 Experimental validation

In this section we show and thoroughly discuss the experi-

mental results obtained from the application of the proposed

NMPC algorithm to the aerial robot prototypes built, and in

some cases conceived, in the laboratory facility of LAAS-

CNRS - the interested reader is as well referred to the

attached multimedia file. First of all, we present the exper-

imental setup, with a focus on the description of both

the hardware and the software components, and on the

implementation details of the NMPC strategy. Then, we

analyze the outcomes of the experiments achieved with two

different kinds of MRAVs, i.e., an under-actuated UDT

quadrotor and a MDT (in particular, also fully-actuated)

hexarotor with tilted propellers. The goal of this inves-

tigation is to demonstrate the precision of our approach

and, above all, its potential applicability to any arbitrarily-

designed MRAV. The robots are required to perform track-

ing experiments: the reference trajectories are designed both

to test the re-generation capability of the algorithm, to high-

light the different behaviors of UDT and MDT platforms,

and to assess the solution compliance with the constraints

previously identified in the case of fast maneuvers.

In order to better appreciate the results achieved in

the experimental validation with the proposed NMPC

framework, we point the reader to the attached video.

4.1 Experimental setup

The experimental setup architecture, whose block diagram

is portrayed in Fig. 5, can be conceptually divided into three

main components: the NMPC controller, which periodically

computes the input of the actuator controllers (the ESCs),

the physical aerial robot to be controlled, and the sensors,

used to retrieve the information about the MRAV state that

is employed as feedback in the closed-loop control strategy.

Each block exchanges information with the others thanks to

a properly-designed software architecture.
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Fig. 5 Block diagram of the

experimental setup architecture.

The main components are

highlighted with different colors

The predictive controller is implemented using MAT-

MPC, a recently-developed MATLAB-based nonlinear

MPC toolbox, see [58]. Its algorithmic routines are written

using MATLAB C API and available as MEX functions.

The tool supports fixed step Runge-Kutta (RK) integrator

for multiple shooting and obtains the derivatives that are

needed to perform the optimization from the toolbox

CasADi4. The OCP described by Eqs. 16–21 is solved

by the external solver qpOASES5 by [57], integrating the

RTI algorithm. Such an implementation has been chosen

mainly due to the particular ease of test and development

of MATLAB/Simulink® compared to pure C/C++. The

presented NMPC algorithm is executed on a ground-station

PC equipped with an Intel® 2.60GHz CoreTM i7-6700HQ

CPU (x8) and 32 GB RAM which runs the Linux Ubuntu

16.04 LTS operating system. As it can be observed from

Fig. 5, the control input u, which provides the actuators’

force derivatives references, is integrated and then converted

into a rotor velocity command w, thanks to the inversion

of the force generation model. The resulting velocity set-

points are finally transferred to the module of the low-level

controllers on-board the aerial platform, by means of a serial

cable.

As far as the aerial robots are concerned, we tested

our control algorithm with the two heterogeneous MRAVs

depicted in Fig. 6. The first one, shown on the left, is

an under-actuated UDT platform, a quadrotor, with four

collinear rotors. Apart from some custom-made features

realized in-house with 3D printed components, like the

battery support, most of the platform is built by assembling

off-the-shelf parts from MikroKopter. The second robot,

illustrated on the right of the Fig. 6, is a fully-actuated MDT

platform with six non-collinear tilted rotors, from which

it inherits the name ‘Tilt-Hex’. In this case, the prototype

has been completely designed and manufactured in our

laboratory, and has already been presented in some of our

previous contributions [2, 31]. The values of the physical

parameters used in the MRAVs models are summarized in

Tables 4 and 5. In particular, α and β are defined as the

actuator rotation angles around xAi
and yAi

, respectively, as

shown in Fig. 1.

4https://github.com/casadi/casadi/wiki
5https://projects.coin-or.org/qpOASES/wiki

The main sensors integrated in our experimental frame-

work are the onboard gyroscope, the Motion Capture sys-

tem, and speedometers of each propeller rotational speed:

• the Gyroscope measures the rotational velocity of the

vehicle around each of the body frame axis;

• the Motion Capture (MoCap) system provides the

information regarding the robot position and orientation

w.r.t. the inertial reference frame, whose origin is fixed

in a particular point of the robots workspace. The

platform linear velocity is numerically computed online

from the position measurements, using multi-sample

least squares model fitting;

• the rotor spinning velocities are measured by the low-

level ESC controller by computing the time elapsed

between two phase switches (which depends on the

motor number of poles) and reducing the measurement

noise with an exponential moving average filter.

Ultimately, the rotor velocities are converted into the

actuator forces, thanks to the force generation model,

and used to complete the information of the measured

full-state x̂ of the MRAV.

Note that the accelerometers have been disregarded from

the sensor fusion since we assessed that the noise in their

measurements was causing an offset in the estimation of the

linear velocity, which motivated the numerical computation

of the latter. In general, the effect of such velocity offset on

the tracking performance is quite more evident on predictive

controllers w.r.t. reactive ones, given the fact that a wrong

state estimation generates an erroneous evolution of the

model internally simulated and, in turn, a misleading control

input that finally produces an inaccurate trajectory tracking.

In order to design the software architecture, we rely on

the GenoM36 abstraction level, which allows to encapsulate

software functions inside independent components. More

in detail, it is used as a wrapper for the robot low-

level controller and the sensors. This allows to obtain

high flexibility in the development and in the use of

the components. With reference to our architecture, the

software in MATLAB /Simulink® communicates with the

GenoM3 modules using the Robot Operating System (ROS)

middleware, which is compliant with the soft real-time

constraints required for our experiments, i.e., a control

bandwidth larger than 200Hz and a latency smaller than

6https://git.openrobots.org/projects/genom3/wiki
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Fig. 6 Photos of the quadrotor

(left) and the Tilt-Hex (right)

10ms. Since MATLAB/Simulink® is not meant for a hard

real-time execution, the hardware is commanded via the

GenoM3 components, which essentially behave like drivers.

4.1.1 Implementation details

For all the experiments presented in this paper, we chose a

prediction horizon of tH = 1s, sampled at N + 1 = 11

shooting points. Therefore, the discretization time of the

nonlinear MPC algorithm, being the length of one of the

N intervals, results T = 0.1s. Even though the internal

MPC prediction is performed at 10Hz, the controller runs

at a frequency always larger than 200Hz. Such technique,

employed by many state-of-the-art contributions, e.g., [14],

allows the predictive algorithm to simulate the model along

a wider prediction horizon with less computational effort.

Indeed, as observed by [59], the number of discretization

nodes roughly increases the computational time tsolv by O(

N2). Basically, one should guarantees a control sample time

Tctrl at least equal to time tsolv needed for the algorithm to

solve the OCP. On the other hand, the prediction horizon

should be long enough to cover at least the time of one

controller iteration. In mathematical terms, this translates in

the following chain of inequalities

tsolv ≤ Tctrl ≤ T ≤ tH (29)

Table 4 Physical parameters of the quadrotor

Parameter Value Unit

m 1.042 Kg

J(:,1) [0.015 0 0]⊤ Kg m2

J(:,2) [0 0.015 0]⊤ Kg m2

J(:,3) [0 0 0.015]⊤ Kg m2

ci (−1)i−1 [ ]

cτ
f 1.69e-2 m

cf 5.95e-4 N/Hz2

RB
Ai

Rz

(

(i − 1) π
2
)
)

Rx(α)Ry(β) [ ]

pB
Ai

Rz

(

(i − 1) π
2
)
)

[l 0 0]⊤ [ ]

α 0 deg

β 0 deg

l 0.23 m

As far as the representation of the robot orientation is

concerned, for the particular experiments presented in this

paper we decided to use a minimal parametrization with

three angles, in particular the 3−2−1 one (yaw-pitch-roll),

i.e.,

η =
[

φ θ ψ
]⊤

(30)

With reference to this ordered sequence, we have that

R = Rz(ψ)Ry(θ)Rx(φ)

=

⎡

⎣

cθcψ sφsθcψ − cφsψ sφsψ + cφsθcψ

cθ sψ cφcψ + sφsθ sψ cφsθ sψ − sφcψ

−sθ sφcθ cφcθ

⎤

⎦
(31)

where R•(α) denotes a rotation around one of the

main body frame axes {x, y, z}B of an angle α, while

sα , cα indicate sin(α) and cos(α), respectively. Using this

convention, we can express the body frame angular velocity

as a function of the vector η̇, that contains the so-called

Euler rates

ω = Tη̇ (32)

Table 5 Physical parameters of the Tilt-Hex

Parameter Value Unit

m 1.86 Kg

J(:,1) [0.11 0 0]⊤ Kg m2

J(:,2) [0 0.11 0]⊤ Kg m2

J(:,3) [0 0 0.19]⊤ Kg m2

ci (−1)i−1 [ ]

cτ
f 1.9e-2 m

cf 9.9e-4 N/Hz2

RB
Ai

Rz

(

(i − 1) π
3
)
)

Rx(αi)Ry(β) [ ]

pB
Ai

Rz

(

(i − 1) π
3
)
)

[ℓ 0 0]⊤ [ ]

αi (−1)i35 deg

β -25 deg

ℓ 0.368 m
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In particular, with reference to the specific parametriza-

tion of Eq. 31, we have

T =

⎡

⎣

1 0 −sθ
0 cφ sφcθ

0 −sφ cφcθ

⎤

⎦ . (33)

Inverting Eq. 32 allows to write explicitly the Euler rates

as a function of the body angular velocity (expressed in body

frame) in the NMPC model dynamics. This representation,

like all the minimal parametrizations given by three angles,

has a singularity, which in the specific case occurs when

θ = π/2. In general, all these conventions should be

avoided if the robot orientation is supposed to evolve in

the complete SO(3) manifold. However, in the particular

case of the trajectories that we have tested, we safely

used this representation by explicitly avoiding singular

configurations for the platform pose. We chose to not use the

re-arranged elements of R or a unit quaternion for a simple

matter of convenience. Indeed, in such cases a larger state

vector would have been needed. Furthermore, additional

constraints, e.g., the orthogonality of the rotation matrix or

the unitary-norm for the quaternion, should have been added

in the resolution of the OCP, thus increasing the solver

computational time and, by consequence, slowing down the

available bandwidth of the controller. This can easily be

dealt with, of course, by using a more powerful computation

unit. It should be underlined that the proposed framework

does not depend on the particular orientation representation

and easily adapts to the others without the need to deal with

additional theoretical issues.

The cost function weights in Eq. 16 are specified at

the beginning of the description of each experiment and

simulation. In general, they have been chosen on a case-

dependent basis taking into account heuristic considerations

and often following a trial-and-error procedure. The

automatic tuning of such weights is an important topic

which is left for future work. Throughout all experiments

and simulations presented in the paper, the input terms

in the cost function have not been considered, i.e., the

entries of the weights Rh related to the input are equal

to zero. This has been done with the goal to exploit the

MRAVs potentialities until their limits by taking advantage

of the actuator dynamics up to their bounds. Therefore, we

decided to test our NMPC algorithm by discarding these

regularization terms. In all the performed tests, including

the most agile ones, we never encountered problems in

the regularity of the input evolution. Furthermore, despite

the strong accelerations of some of the reference state

trajectories to the NMPC algorithm, we never triggered the

activation of the slack variables.

Finally, regarding the choice of the input bounds along

the prediction horizon, we selected

f̃i,k+h = fi,k, h = 0, . . . , N − 1 (34)

i.e., the limits are kept constant along the future

window. This choice has been motivated by a matter

of simplicity of implementation. A more rigorous choice

could be to select the time-varying f̃i,k+h in relation to

the predicted state evolution at the previous control step

for t = (k − 1)T . The comparison within the results

produced by these two configurations is also left as future

investigation.

4.2 Experiments with the quadrotor

According to the choices we made for the state and input

vectors, defined by Eqs. 10–11, and for the orientation

description associated to Eq. 30, in the case of the

quadrotor model we have x ∈ R
16 and u ∈ R

4.

With this configuration, the average NMPC solver time

is tsolv = 3.5ms. In the following, we present the

tracking results obtained by the quadrotor with two different

trajectories. The first one combines a sinusoidal chirp

motion along one component of the position with a steadily

horizontal and constant-heading desired orientation. Such

dynamic and decoupled motion, which was designed on

purpose to be dynamically unfeasible for this vehicle

(see previous discussion), is also given as reference to

the Tilt-Hex in order to compare the performances of

the two platforms and, in particular, to highlight the

different behaviors of UDT and MDT aerial robots. For

a numerical comparison of the results, we refer the

reader to Table 8. On the other hand, we designed the

second reference motion in order to test the controller

compliance with the actuator bounds, when dealing with a

discontinuous trajectory. In particular, these tests highlight

the importance of the control compliance with the input

constraints for the preservation of the system stability. Also

in this case, comparative numerical results are outlined in

Table 8.

4.2.1 Position chirp trajectory

In the first experiment, the quadrotor is required to track

a position reference pr = [c(t) 0 0]⊤, where the chirp

signal c(t) is a sine with varying frequency, with amplitude

ν = 1.2 m, and a triangular frequency that linearly increases

from ξ0 = 0 rad/s to ξt̄ = 1.12 rad/s with a slope ξ = 0.025

rad/s2 in the interval [0, t̄[, t̄ = 44.84 s, and then decreases
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Table 6 Parameters used in the quadrotor experiments

Parameter Value Unit

ν 1.2 m

ξ 0.025 rad

s2

t̄ 44.84 s

ǫp [−0.5 0.2 0.2]⊤ m

ρ 0.125:0.125:1.75 [ ]

Qp(j, j)|j=1,2,3 500,300,300 [ ]

Qṗ(j, j)|j=1,2,3 1.9,1.9,1.9 [ ]

Qη(j, j)|j=1,2,3 0.1,0.1,40 [ ]

Qω(j, j)|j=1,2,3 0.15,0.15,0.15 [ ]

Qp̈(j, j)|j=1,2,3 0,0,0 [ ]

Qω̇(j, j)|j=1,2,3 0,0,0 [ ]

Rh(j, j)|j=1,...,4 0,0,0,0 [ ]

with a slope −ξ in the interval [t̄ , 2t̄[. In mathematical

terms, this translates into

c(t)=ν sin
(

ξ(t) t
)

, ξ(t)=
{

ξ t if t ∈ [0, t̄[
ξ(t̄ − t) if t ∈ [t̄ , 2t̄[

(35)

On the other hand, the attitude reference is constantly

ηr = [0 0 0]⊤. Moreover, the desired position derivatives

ṗr , p̈r and the rotational derivatives ωr , ω̇r are consistent

with the definitions of pr and ηr , respectively. Regarding

the form of the diagonal matrices employed to weight

the different error terms inside the cost function, we used

Qk = diag(Qp, Qṗ, Qη, Qω, Qp̈, Qω̇), ∀k ∈ {0, . . . , N}.
The values of the trajectory parameters and the diagonal

sub-blocks Q• chosen for the quadrotor experiments are

displayed in Table 6. The latter ones are the result of a trial-

and-error procedure that we performed, in compliance with

some heuristic guidelines, in order to obtain satisfactory

tracking performance. In particular, the weights associated

with the orientation error have been selected much smaller

than the ones related to the position error, given the

impossibility for the particular platform to track the roll and

pitch references. On the other hand, the yaw error has a

larger impact w.r.t. the other two angular components, as the

authority around this axis is still present despite the under-

actuation. Finally, the feed-forward terms related to p̈d and

ω̇d turned out to be not very relevant in these experiments.

This explains why their entries are weighted with null gains.

With reference to the desired trajectory, the platform is

required (if possible) to keep a flat orientation while moving

laterally along the x-axis. This motion is unfeasible for a

UDT aerial vehicle, since the only way it has to steer the

thrust force is by re-orienting its body chassis, with no

possibility to keep it horizontal. We provided an unfeasible

rotational profile on purpose with the intent of showing that

the proposed NMPC scheme can manage the re-generation

and tracking of a generic trajectory, subject to the limitations

imposed by the particular MRAV under analysis, without

the need to resort, e.g., to differential flatness. In this way,

the user does not need to explicitly compute the particular

platform-dependent feasible trajectory, but can delegate this

task to the predictive controller, which automatically adapts

the reference profile according to the robot constraints. Of

course, position errors are made even smaller if a feasible

reference trajectory is available and is provided to the

controller. However, this was not the major point to be

shown in the experiments.

The plots related to the trajectory tracking are depicted

in Fig. 7. As it is visible from the first one, related to the

position tracking, the trajectory is symmetric w.r.t. the time

instant t = t̄ . While the position and the linear velocity

are globally well tracked, the second components of the

orientation and the angular velocity deviate consistently

from their reference signals. This is a natural consequence

of the platform inability to produce any lateral force in body

frame, which causes its under-actuation. More in detail, the

peaks in the measured robot pitch θ in the third plot are

synchronized with the ones of the position px in the first

plot. Indeed, the edge points on the sine corresponds to

the moments of maximum lateral acceleration, which can

be attained only by a re-orientation of the platform frame.

With regard to the position error, illustrated in the fifth

plot from the top, it is possible to observe that the negative

peaks are more pronounced w.r.t. the positive ones. This

asymmetry is caused by the lateral force disturbance acting

on the platform due to the presence of the serial data cable,

which pulls the robot in a more severe way towards the

positive direction of the x-axis. The very same outcome can

be consistently recognized also in the corresponding plot of

Fig. 12, since the cable configuration remains unchanged

throughout the experiments. Apart from the contribution

of the external disturbance, the inexact position tracking is

also a side effect of the unfeasible flat orientation given as

reference to the predictive controller.

The velocities of the MRAV rotors, whose plot is

illustrated in the bottom of Fig. 7, are centered on the

mean value needed to compensate the gravity force while

the aerial vehicle is hovering. The small offset between the

velocity of rotors 1-3 and 2-4 suggests that the serial cable

also generates a small clockwise torque around the z-axis,

which is balanced in order to keep the platform aligned with

the yaw reference.

In particular remark the fact that, even if the trajectory

is rapidly-varying (with a linear acceleration peak of

5.85m/s2), the rotor velocities (equivalently their produced

forces, presented in the first of plot of Fig. 8) take

values close to the hovering set-point, without the need

to span a large set of values. This happens because the

body torque needed to re-orient the aerial vehicle requires
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Fig. 7 Plots of the quadrotor performing a chirp trajectory on the x-

axis. From top to bottom, the position, linear velocity, orientation and

angular velocity tracking, the position and orientation errors, and the

actuator spinning velocities
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Fig. 8 Plots of the quadrotor performing a chirp trajectory on the x-

axis. From top to bottom, the actuator forces and their derivatives. In

particular, all the signals remain inside the feasible region delimited

by the identified constraints. Notably, the noisy references ui are

overlapped by their filtered profiles

just small differences between the rotor spinning rates.

As a consequence, in this experiment the actuator force

derivatives do not need to assume large values. This

intuition is confirmed by the plots 2-5 of Fig. 8, which show

that the input components ui , represented in blue, remain

distinctively far from their lower and upper bounds, drawn

in black and red, respectively. This evidence suggests that

in the case of UDT-MRAVs, the limits on the input and on

the state components related to the actuator forces can be
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reached only with rapidly-varying trajectories, designed in

order to produce sudden changes in the rotor commands.

This motivated the next experiment.

4.2.2 Discontinuous trajectory

Since in the chirp experiment the input limits were far from

being approached, we designed a discontinuous trajectory

to test the controller stability and its compliance to the

actuator constraints in a critical case. For this purpose,

we generated as position reference signal a sequence of

steps from an initial position p1 to a final one p2 =
p1 + ǫp, with ǫp = [−0.5 0.2 0.2]⊤ m. On the other

hand, all the other reference profiles were set to zero. In

this way, the vehicle was always required to reach the

next hovering configuration, with an horizontal attitude

and zero translational and rotational velocities, in a short

time. Moreover, in order to make the experiment even

more challenging, we limited on purpose the predictive

capability of the controller, i.e., the NMPC algorithm was

made aware about the transitions in the position reference

only at the time in which such changes effectively occurred.

This strategy emulated an unforeseen event against which

the algorithm had to promptly and safely react. In this way,

the instantaneous appearance of a consistent error in the

controller easily pushed the actuator commands towards

their limitations. Throughout this experiment, the identified

input constraints on the actuator force derivative were re-

scaled with gains ρ, taking values in [0.125, 1.75], spanning

from very conservative - obtained with ρ = 0.125 - to larger

than the identified ones - obtained with ρ = 1.75. The

input limits in the controller were manually increased, after

each discontinuous motions of the robot, by the operator by

means of a joystick connected to the ground station. This

allowed us to empirically assess the validity of the bounds

resulting from our identification.

The tracking results related to the trajectory of this

specific experiment are shown in Fig. 9, where the yellow

region highlights the time interval in which the enforced

limits correspond exactly to the ones previously identified.

The position tracking, depicted in the first plot from the

top, shows that very conservative bounds for the actuators,

i.e., ρ ∈ [ 1
8

1
4
], cause step responses with a remarkable

settling time and extended oscillations. Furthermore, the

reduced capability to produce a change in the actuator

forces seems to affect the tracking of the yaw, that has

a non-negligible error for low values of ρ. As already

ascertained in the previous experiment, this disturbance is

induced by the communication cable. On the other hand,

the oscillations in the step responses result much more

restrained as soon as the control saturations approach the

identified ones. Nevertheless, an additional increase in the

control bounds imply growing overshoots, especially on
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Fig. 9 Plots of the quadrotor tracking a discontinuous trajectory with

steps in the position, while the controller limits are increased (the

yellow region highlights the use of the identified ones). From top to

bottom, the position, linear velocity, orientation and angular velocity

tracking, the position and orientation errors, and the actuator spinning

velocities
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the z-axis. Ultimately, the instability is reached at t ≈
84s, when ρ = 7

4
. In this moment, the associated limits

become almost the double of the identified ones and they

induce the platform to reach a configuration from which it

was not able to recover. This is confirmed by the plot of

the orientation error, where the pitch error reaches almost

eθ = 60 deg. The MRAV instability, which causes the

experiment to abort, can be particularly well appreciated

from the multimedia attachment. Regarding this point, it is

worthwhile to make some considerations. First, the tracking

results suggest the identified limits to be suitable to ensure

the platform stability, also in such a critical experiment.

Moreover, this is true within some robustness margin, which

was sought in order to avoid an excessive stress for the

motor currents. Finally, the plots of Fig. 10 deserve a

particular attention. With reference to the first one, we can

observe that the aerial vehicle becomes unstable even if

the actuator forces never reach their limitations, even when

instability finally happens. On the other hand, we see from

the other plots that their derivatives closely approach the

lower and upper bounds. This fact suggests that, neglecting

the constraints on the force derivatives, as done in other

works, may jeopardize, not only the system performances,

but also its stability properties.

4.3 Experiments with the Tilt-Hex

Compared to the quadrotor model, the one of the Tilt-Hex

is characterized by two more state and input components

to describe the dynamics related to the presence of the

additional actuators. As a matter of fact, x ∈ R
18 and

u ∈ R
6. With this configuration, the average NMPC solver

time is tsolv = 4.1ms. In the validation campaign, we

made the Tilt-Hex track both the trajectories presented in

the previous experiments. The values for the cost function

diagonal matrices used in this experiment are reported in

Table 7.

4.3.1 Position chirp trajectory

Thanks to the tilting of its actuators, the Tilt-Hex can

exert a 3D set of forces which is not anymore restrained

to the body-frame z-axis. In particular, the polytope of

forces with zero moment, computed in compliance with

all the admissible actuator forces, can be appreciated

from the left side of Fig. 3 in our previous work [31].

Thanks to this feature, the vehicle can track decoupled

references in position and orientation. However, despite

this additional capability, the Tilt-Hex cannot track any

decoupled trajectory, due to the unavoidable limitations still

present in the actuators.

It should be appreciated that the previously defined chirp

trajectory was generated with the goal to be unfeasible also
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Fig. 10 Plots of the quadrotor tracking a discontinuous trajectory with

steps in the position, while the controller limits are increased (the

yellow region highlights the use of the identified ones). From top to

bottom, the actuator forces and their derivatives. In particular, all the

signals remain inside the feasible region delimited by the constraints

w.r.t. the Tilt-Hex actuation capabilities. In fact, by plugging

the desired trajectory and the physical parameters in Eq. 2

and isolating the vector [f⊤B τ⊤
B ]⊤, we obtain the analytic

expression of the wrench needed to ideally follow the 6D

reference profile. At this point, inverting Eq. 6 – which

is possible in this case since G is square and full-rank –

provides the ideal (no noise or disturbance were involved

in this computation) evolution of the actuator forces. As

shown in Fig. 11, the desired actuator force trajectories,

1231J Intell Robot Syst (2020) 100:1213–1247



Table 7 Parameters used in the Tilt-Hex experiment

Parameter Value Unit

ν 1.2 m

ξ 0.025 rad

s2

t̄ 44.84 s

ǫp [−0.4 0.3 0.2]⊤ m

ρ 0.125:0.125:1.75 [ ]

Qp(j, j)|j=1,2,3 500,200,200 [ ]

Qṗ(j, j)|j=1,2,3 25,20,20 [ ]

Qη(j, j)|j=1,2,3 10,6,10 [ ]

Qω(j, j)|j=1,2,3 0.5,0.5,0.5 [ ]

Qp̈(j, j)|j=1,2,3 0.01,0.01,0.01 [ ]

Qω̇(j, j)|j=1,2,3 0,0,0 [ ]

Rh(j, j)|j=1,...,6 0,0,0,0,0,0 [ ]

obtained via such dynamic inversion, are not compliant

with the lower and upper bounds. This means that, also in

this case, a new feasible trajectory has to be re-computed

by the NMPC strategy. Nevertheless, we expect to obtain

improved tracking performances compared to the quadrotor

experiment.

The plots related to the trajectory tracking for this

experiment are shown in Fig. 12. As shown on the two top

sub-figures, the translational references are followed in a

more precise way compared to Fig. 7. In particular, this is

true also around the central peaks, which correspond to the

most rapidly-varying part of the trajectory, i.e., where the

lateral acceleration takes the largest values. From the third

and the fourth plots it can be observed that the deviations

from the orientation and the angular velocity references

are significantly reduced w.r.t. the ones produced by the

quadrotor with the very same trajectory. Such remarkable

improvement is a direct consequence of the benefits induced

by the multi-directionality of the thrust. On the other

hand, also the position error is consistently reduced, with

a maximum peak of 6.4cm (in absolute value) against the

14.5cm of the quadrotor experiment. This suggests that the

full actuation also helps improving the position tracking,
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Fig. 11 Desired profile for the actuators forces obtained by inverting

the model dynamics. This chirp trajectory results unfeasible also with

respect to the Tilt-Hex limitations

-3

-2

-1

0

1

2

-5

-4

-3

-2

-1

0

1

2

3

-25

-20

-15

-10

-5

0

5

10

15

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-15

-10

-5

0

5

10

15

0 20 40 60 80
-20

0

20

40

60

80

100

120

Fig. 12 Plots of the Tilt-Hex performing a chirp trajectory on the x-

axis. From top to bottom, the position, linear velocity, orientation and

angular velocity tracking, the position and orientation errors, and the

actuator velocities
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as already observed in our previous work. With reference

to the fifth plot, the systematic small asymmetry in the

position error is caused again by the cable disturbance. To

ease the reader’s analysis of the experimental results, we

translated the graphical comparison offered by the plots

into a quantitative analysis of the data, which we present in

Table 8.

As far as the actuator data are concerned, consider the

last plot of Fig. 7 and the bottom one in Fig. 12. The rotor

velocities in the second case span the feasible set in a wider

way. While in the quadrotor experiment the rotor speed

constraints are not even approached, in the Tilt-Hex case

they become frequently active. The same applies for the

generated thrust forces, as shown in the first plots of Figs. 8

and 13. In the specific case, the fact that the lower bounds

are reached more often than the upper ones is simply due

to the platform mass. Indeed, from the first plot of Fig. 13

we can see that the mean hovering value per actuator is

approximately 4N , which is closer to the lower saturation

level. On the other hand, the velocities of a more massive

vehicle would have approached more easily the upper part

of the plot. Finally, from the other plots of Fig. 13 it should

be appreciated how the Tilt-Hex force derivatives related

to actuators {2, 3, 5, 6} and their state-dependent limitations

oscillate in a much more dynamic way compared to the ones

of the quadrotor, depicted in Fig. 8. This is due to the larger

span of the feasible force set required by the controller

to these actuators, as a consequence of their geometric

arrangement, for the tracking of the same trajectory.

We now shortly compare the results achieved by this

NMPC algorithm with the ones obtained by the reactive

static-feedback controller designed in our previous work

[31]. In particular, Fig. 5 of [31] presents the tracking

results related to the same trajectory and the same MRAV.

To provide a better mean for the reader to appreciate the

experimental results, we report a quantitative comparison

of the data obtained with the two controllers in Table 9.

Regarding the position error, we achieved a reduced

root mean square position (RMS) error with the NMPC

regulator, in particular in the two lateral tails of the

trajectory, where the error is always bounded within 4cm).

Furthermore, while the error profile obtained with the

reactive controller was more or less uniformly distributed

along the trajectory, in the present case its trend seems to

be proportional to the chirp frequency, which also has a

triangular envelope. This effect could be explained by the

predictive nature of the algorithm discussed in this paper.

Indeed, while the reactive regulator always acts in relation

to the instantaneous value of the desired trajectory, the

NMPC response is affected by the future evolution of the

former, which depends on the chirp frequency. As far as the

orientation tracking is concerned, a relevant improvement is

achieved. As a matter of fact, the maximum pitch error is

reduced from 23 deg to 13 deg, i.e., a decrease of more than

43%. Furthermore, analyzing the plot of the rotor velocities

we see that now they evolve in a larger range, meaning that

the NMPC regulator is exploiting the actuator capabilities in

a more efficient way. This is a consequence of the fact that

the previous controller deals with a less precise – and more

conservative – model of the platform.

4.3.2 Discontinuous trajectory

To assess the effectiveness of our procedure in identifying

meaningful actuator limitations for a non-specific hardware

setup, we replicated the experiment described in 4.2.2 using

the Tilt-Hex robot. The plots related to this test are depicted

in Fig. 14 and in Fig. 15. For this experiment, the limits to

the NMPC were scaled by the user after two consecutive

jumps of the MRAV, while ǫp = [−0.5 0.3 0.2]⊤ m.

The experiment outcomes show that the best step

responses are achieved when the actuator limits are closer to

Table 8 Numerical comparison

of the NMPC performance

achieved in the experimental

validation with different

MRAVs

Parameter [•] Quadrotor Tilt-Hex

Chirp trajectory

ep,MAX [m] [0.146, 0.036, 0.076]⊤ [0.064, 0.025, 0.018]⊤

ep,RMS [m] [0.054, 0.010, 0.014]⊤ [0.015, 0.006, 0.007]⊤

eη,MAX [deg] [6.7, 30.4, 4.3]⊤ [5.1, 13.3, 7.3]⊤

eη,RMS [deg] [1.2, 10.0, 1.6]⊤ [1.2, 3.9, 1.4]⊤

fi,MIN, fi,MAX [N] 1.495, 3.876 0.231, 10.251

ḟi,MIN, ḟi,MAX [N/s] -15.264, 13.998 −25.320, 28.321

Step trajectory with identified input limits (ρ = 1)

eη,MAX [deg] [12.6, 30.1, 6.9]⊤ [4.0, 5.1, 2.0]⊤

eη,RMS [deg] [3.4, 7.9, 2.6]⊤ [1.1, 1.1, 1.2]⊤

fi,MIN, fi,MAX [N] 1.031, 4.396 0.972, 8.054

ḟi,MIN, ḟi,MAX [N/s] -15.162, 15.204 −25.348, 28.103
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Fig. 13 Plots of the Tilt-Hex performing a chirp trajectory on the x-

axis. From top to bottom, the actuator forces and their derivatives. In

particular, all the signals remain inside the feasible region delimited by

the constraints

the identified ones. This confirms again the validity of

our approach. Furthermore, also in this case, the instability

is reached when ρ = 7
4
, i.e., when the force derivative

bounds are almost the double of the identified ones,

which shows an adequate margin of conservativeness for

the chosen limits. Also for this experiment, a numerical

comparison of the most interesting results obtained with

the two aforementioned aerial vehicles driven with the

identified limits (ρ = 1), is provided in Table 8. Given

the discontinuous nature of the reference position trajectory,

it is not very meaningful to analyze the maximum or the

RMS position error, in this case. On the other hand, it is

much more interesting to compare the orientation tracking

in the two cases. While the UDT platform has to consistently

deviate from the reference flat-hovering orientation in order

to generate the needed lateral force to track the position step,

the MDT robot almost does not need any re-orientation of its

chassis. Such remarkable effect can be visually appreciated

in the attached multimedia content, where the motion of

the two MRAVs have been juxtaposed. To conclude, we

highlight that also in this case a bigger span of the feasible

rotor velocities is obtained with the MDT MRAV.

5 Validation with real-time simulations

In order to support the claim that our framework can

deal with a generic MRAV design, we provide additional

numerical validations with two other different vehicle

models, shown in Fig. 16. The first one, depicted on

the left, is called FAST-Hex, i.e., Fully-Actuated by

Synchronized Tilting propellers hexarotor. This original

MRAV, introduced in our previous work [60], has the

capability of synchronously modifying the orientation of

its actuators, thanks to a single additional servo-motor.

Exploiting this further degree of freedom, the FAST-Hex

can actively regulate the angle α, c.f. Fig. 1, allowing

the robot to pass from an UDT configuration to an MDT

one, and conversely. Moreover, the value of α can be

automatically regulated, i.e., without the need of an external

planner. The physical parameters of the FAST-Hex are

condensed in Table 10.

The second vehicle, shown on the right of Fig. 16, is a

pentarotor (a multi-rotor with five propellers) obtained as a

failed Tilt-Hex MRAV, i.e., the platform already described

in the experimental validation, but after a rotor failure. In

particular the 6 − th rotor is not allowed to spin, due to,

e.g., a technical problem, and cannot exert a thrust force

and generate a drag torque. For this reason, from a control

point of view, we consider that such actuator is not present.

The rotor failure essentially modifies the available set of

body forces and torques. As already pointed out in previous

contributions, in case α = β = 0 it is not possible with
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Table 9 Numerical comparison

of the performance achieved in

the experimental validation

with the NMPC presented in

this paper and the

static-feedback reactive

controller in [31]

Parameter [•] Tiltex (CTRL [31]) Tilt-Hex (NMPC)

Chirp trajectory

ep,MAX [m] [0.076, 0.032, 0.041]⊤ [0.064, 0.025, 0.018]⊤

ep,RMS [m] [0.020, 0.009, 0.013]⊤ [0.015, 0.006, 0.007]⊤

eη,MAX [deg] [2.2, 23.2, 1.7]⊤ [5.1, 13.3, 7.3]⊤

eη,RMS [deg] [0.8, 6.0, 0.6]⊤ [1.2, 3.9, 1.4]⊤

fi,MIN, fi,MAX [N] 1.803, 6.836 0.231, 10.251

five uni-directional actuators to generate torques in pitch

and roll without generating a residual disturbing torque in

the yaw axis, cf. [61, 62]. In the more general case in

which (α, β) �= (0, 0), however, the platform maintains

the ability to hover, see [62]. Nevertheless, the hovering

orientation can not be flat any more, and depends of the

actuator tilting angles, cf. [51]. We show that the NMPC

controller can satisfactorily deal with the problem of static

hovering, without the need to a-priori compute the steady-

state orientation.

5.1 Simulations with the FAST-Hex

In order to take into account the evolution of the angle α and

to let the NMPC algorithm manage its automatic regulation,

we expanded the state and the input vector, defined in Eq. 10

and in Eq. 11, in the following way

x :=
[

p⊤ ṗ⊤ η⊤ ω⊤ γ ⊤, α
]⊤

(36)

u :=
[

γ̇ ⊤, α̇
]⊤

(37)

The angle α is now a component of the state vector,

while α̇ is regarded as an additional control input to be

optimized at each control iteration. This allows to constrain

the synchronous tilting angle and its derivative within their

feasible sets, computed accordingly to the data of the real

MRAV prototype designed in [60]. According to this choice,

for the FAST-Hex model we have x ∈ R
19 and u ∈ R

7.

As it can be appreciated from Fig. 3 in [60], the

larger the angle α, the larger the set of body-frame

lateral forces. This translates also into the possibility of

decoupling the control of the body force and moment in a

larger extent, which becomes particularly useful in many

realistic scenarios, ranging from 6D trajectory tracking,

see [31], to aerial physical interaction tasks, see [2, 3], and

disturbance rejection in general. On the other hand, the

increase of the tilting angle implies also an increment in

the energy consumption. In fact, the progressive decrease

in the projection of the thrust vector along zW must be

compensated by an increase in the thrust intensity. In view

of these considerations, it might be beneficial to regulate the

angle α w.r.t. the particular task to be accomplished, while

trying to minimize the energy consumption. In order to

fulfill this requirement, we expanded also the output vector

as follows

y(t) = h (x(t), u(t)) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p(t)

ṗ(t)

p̈ (x(t), u(t))

η(t)

ω(t)

ω̇ (x(t), u(t))

ce (x(t), u(t))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(38)

where the cost related to power consumption is taken into

account using the following additional cost

ce (x(t), u(t)) =
n
∑

i=1

f 2
i (39)

which is integrated along the prediction horizon. Such

model has been chosen mainly due to its simple dependency

on the state components fi , but other models can be

employed.

In this context, we target the classical problem of

trajectory regulation to a certain 6D configuration, i.e., the

flat hovering, adding the effect of an external unknown

disturbance from the environment, which emulates, in a

simplified but meaningful way, the scenario of a physical

interaction task or an external wind. In the first simulation,

we exploit the possibility of regulating α. In this way we

show how our NMPC algorithm can automatically and

actively manipulate the additional control input α̇, thus

improving our previous work [60]. Furthermore, in order

to demonstrate the usefulness of this supplementary degree

of freedom, we present the results of the same simulation,

where the tilting angle α is forced to assume different fixed

values and cannot be regulated.

In order to make the simulations more realistic, we

added to the measured state a noise, obtained by filtering

a zero-mean white Gaussian noise with a first-order causal

low-pass filter having a cut-off frequency �filt, whose value

has been estimated analyzing real experimental data. The

noise standard deviation values σ• are collected in Table 11,
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Fig. 14 Plots of the Tilt-Hex tracking a discontinuous trajectory with

steps in the position, while the controller limits are increased (the

yellow region highlights the use of the identified ones). From top to

bottom, the position, linear velocity, orientation and angular velocity

tracking, the position and orientation errors, and the actuator spinning

velocities
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Fig. 15 Plots of the Tilt-Hex tracking a discontinuous trajectory with

steps in the position, while the controller limits are increased (the

yellow region highlights the use of the identified ones). From top to

bottom, the actuator forces and their derivatives. In particular, all the

signals remain inside the feasible region delimited by the constraints
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Fig. 16 Photos of the FAST-Hex

(left) and the rotor failed

Tilt-Hex (right)

together with the other trajectory parameters, state/input

bounds and cost function weights. In particular, the values

of σ• are related to very unfavorable conditions compared

to the use of typical sensors such as MoCap and gyros.

5.1.1 Hovering trajectory with unknown lateral force

disturbance

Alongside the presented simulations, the FAST-Hex is

required to hover maintaining a flat orientation, i.e.,

pr = [0.6 0.6 0.75]⊤, ṗr = p̈r = [0 0 0]⊤

ηr = ωr = ω̇r = [0 0 0]⊤ (40)

under the effect of a lateral force disturbance fdist with a

triangular profile. Such force, unknown to the controller, has

a triangular shape from t1 to t1 + t2, with a peak in module

of 3 N at t2, while it is fdist = 0 N elsewhere. As the steady-

state orientation is not known a priori, the reference of the

energetic term ce,r is constantly equal to the one needed for

hovering horizontally with α = 0, i.e., ce,r =
∑n

i=1(
mg
6

)2.

As long as the disturbance is not active, the NMPC

algorithm should try to maintain α small, ideally equal to

zero. This claim is motivated by the fact that this trajectory

does not need the MDT capability in order to be tracked.

On the other hand, as soon as the lateral force is activated,

Table 10 Physical parameters of the FAST-Hex

Parameter Value Unit

FAST-Hex

m 2.4 Kg

J(:,1) [0.042 0 0]⊤ Kg m2

J(:,2) [0 0.042 0]⊤ Kg m2

J(:,3) [0 0 0.083]⊤ Kg m2

ci (−1)i [ ]

cτ
f 1.9e-2 m

cf 9.9e-4 N/Hz2

RB
Ai

Rz

(

(i − 1) π
3
)
)

Rx(αi)Ry(β) [ ]

pB
Ai

Rz

(

(i − 1) π
3
)
)

[ℓ 0 0]⊤ [ ]

αi (−1)i−1 |α| deg

β 0 deg

ℓ 0.315 m

the platform can react to it either tilting its actuators or re-

orienting its chassis. In this choice, the relative values of the

cost function weights play a fundamental role. Intuitively, if

the energy cost is weighted consistently (w.r.t. the tracking

error terms on the states), the control algorithm should try

to produce an input with low energy consumption, giving

less priority to the trajectory tracking. In particular, the

task of maintaining a flat orientation should be somehow

discouraged by the controller, since the generation of a

lateral force in this configuration would require a consistent

increase of some of the actuator forces, thus raising up the

energy consumption. Conversely, if the weight related to the

energy cost is small, the controller would always privilege

the trajectory tracking, acting on input α.

In the first simulation, related to the case in which

α is actively regulated, we try to achieve a good trade-

off between the two tasks. In the other simulations,

corresponding to different fixed configurations for α, all the

parameters are left untouched, in order to fairly compare the

Table 11 Parameters used in the FAST-Hex simulation

Parameter Value Unit

σp [
√

0.005
√

0.005
√

0.005]⊤ m

σṗ [
√

0.02
√

0.02
√

0.02]⊤ m/s

ση [
√

1
√

1
√

1]⊤ deg

σω [
√

0.15
√

0.15
√

0.05]⊤ deg/s

�filt 25 rad/s

t1 10 s

t2 20 s

fdist(t2) 3 [cos( π
3
) sin( π

3
) 0]⊤ N

α , α -35 , 35 deg

α̇ , α̇ -8.75 , 8.75 deg/s

Qp(j, j)|j=1,2,3 50,50,50 [ ]

Qṗ(j, j)|j=1,2,3 0.5,0.5,0.5 [ ]

Qη(j, j)|j=1,2,3 15,15,15 [ ]

Qω(j, j)|j=1,2,3 0.01,0.01,0.01 [ ]

Qp̈(j, j)|j=1,2,3 0.0001,0.0001,0.0001 [ ]

Qω̇(j, j)|j=1,2,3 0,0,0 [ ]

Rh(j, j)|j=1,...,7 0,0,0,0,0,0,0 [ ]

Qec 0.0005 [ ]
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resulting performance, in terms of the overall cost function,

w.r.t. the variable case.

The plots related to the trajectory tracking in the

variable case are depicted in Fig. 17. The first four plots,

exhibiting the trajectory tracking of the state components,

outline the good performance of the controller. Indeed, the

measured linear velocity, orientation, and angular velocity

tracking keep very close to their reference profile, which

are constantly equal to zero on all components. On the

other hand, the measured position visibly deviates from

the reference one when the disturbance is acting on the

robot. Nevertheless, the position error keeps bounded, with

a peak of less than 9 cm on its second component, which

corresponds to the direction mostly affected by the lateral

force, as shown in the last plot of Fig 19. This error

could be considerably reduced by increasing the relative

weights inside the NMPC algorithm cost function: this is

confirmed by the sixth plot of Fig. 17, where the MRAV

maintains the orientation error below 1 deg. We were able

to achieve such result by properly weighting the attitude

term in relation to the others, in particular in relation to

the energy cost. Moreover, the last plot of the same figure

shows that the external disturbance can be counteracted

without an excessive effort of the rotors, since their spinning

velocities (and so the generated forces) safely remain with

the bounds. The plots related to the force derivatives, which

are presented in Fig. 18, confirm that a static trajectory,

combined with a slowly-varying disturbance, does not

produce large values for the inputs.

Consider the first plot of Fig. 19, which depicts the

trajectory of α. During the middle phase, the tilting angle is

increased up to ≈ 21 deg in order to counteract the lateral

force and to keep the platform flat at the same time. On

the other hand, the reason why α is regulated to a constant

value of ≈ 7 deg and not exactly to zero, is due to the noise

introduced in the simulation, in particular to the one related

to the translational part of the state [px py ṗx ṗy]⊤. Indeed,

the control algorithm is informed about a non-zero error in

these components, and continuously tries to annihilate it by

selecting a small tilting angle, in order to be able to exert a

lateral force and stay horizontal at the same time.

In order to demonstrate the benefit of the active regu-

lation of the tilting angle, we additionally performed other

three simulations (with the same parameters) imposing α =
0, 10, 20 deg, respectively. The comparison of the over-

all NMPC cost functions for the different fixed cases and

the variable one is displayed in the second plot of Fig. 19.

As it can be appreciated, the regulated case, denoted with

αvar, gives the best trade-off between tracking performance

and consumed energy. In the unperturbed hovering phases

(lateral parts of the plots), α is regulated to a small value

in order to avoid unnecessary energy waste, while in the

middle phase, when the disturbance force is activated, α
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Fig. 17 Plots of the FAST-Hex (with variable α regulated from the

MPC algorithm) while hovering. The robot is disturbed with an

external lateral force with a triangular profile. From top to bottom, the

position, linear velocity, orientation and angular velocity tracking, the

position and orientation errors, and the actuator spinning velocities
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Fig. 18 Plots of the FAST-Hex (with variable α regulated from the

MPC algorithm) while hovering. The robot is disturbed with an

external lateral force with a triangular profile. From top to bottom,

the actuator forces and their derivatives. In particular, all the signals

remain inside the feasible region delimited by the constraints
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Fig. 19 Plots of the FAST-Hex while hovering. In the first two plots,

the evolution of α in the variable case and the comparison of the

total cost function for different cases of constant α and the variable

α (regulated from the MPC algorithm). Then, the comparison of the

partial costs related to the tracking and the energy terms. Finally, the

profile of the external force disturbance (in World Frame)

is increased in order to improve the trajectory tracking, in

particular the one related to the orientation. The third and

the fourth plots of the same figure outline the partial costs

related to the tracking errors and the energy cost. Among

the fixed configurations, the one with the largest tilting

angle, i.e. α = 20 deg, generates the smallest tracking

cost along all the simulation. This confirms that the MDT
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capability drastically improves the MRAV tracking perfor-

mance. However, it unavoidably causes a larger energy cost

as the angle takes larger values. This is why the additional

degree of freedom on α might be very convenient in many

applications.

5.2 Simulations of the Tilt-Hex with rotor failure

The problem of the robustness of a MRAV in case of a

rotor failure is not new in the literature. Indeed, the analysis

and the design of a tilted-rotor hexarotor for fault tolerance

has been considered in [62], while formal definitions as

well as the design of an analytic controller based on

the identification of a direction in the force space, along

which the intensity of the control force can be assigned

independently from the torque, can be found in [50, 51].

Given the importance of such topic in the aerial robotics

panorama, we decided to target this problem, showing that

our NMPC algorithm can deal with this problem in a very

efficient and general way.

The failure of one rotor in the Tilt-Hex is modeled

removing one state and one input, i.e., those related to the

6 − th actuator. As a matter of fact, x ∈ R
17 and u ∈

R
5 in this case. In the following, we present the hovering

performance in two different configurations of the angle

β, c.f. Fig. 1, in order to highlight the importance of such

angle in relation to the fault tolerance capabilities, c.f. [51].

The parameters related to these simulations are reported in

Table 12.

As already pointed out in [50], given the particular

arrangement of the Tilt-Hex actuators, which are symmet-

rically disposed in a star-configuration with alternated α

Table 12 Parameters used in the rotor-failed Tilt-Hex simulation

Parameter Value Unit

σp [
√

0.005
√

0.005
√

0.005]⊤ m

σṗ [
√

0.02
√

0.02
√

0.02]⊤ m/s

ση [
√

1
√

1
√

1]⊤ deg

σω [
√

0.15
√

0.15
√

0.05]⊤ deg/s

�filt 25 rad/s

t1 5 s

τdist
1

250
[0.68 0.39 0.62]⊤ Nm

Qp(j, j)|j=1,2,3 10,10,10 [ ]

Qṗ(j, j)|j=1,2,3 0.5,0.5,0.5 [ ]

Qη(j, j)|j=1,2,3 1.5,1.5,1.5 [ ]

Qω(j, j)|j=1,2,3 0.0005,0.0005,0.0005 [ ]

Qp̈(j, j)|j=1,2,3 0,0,0 [ ]

Qω̇(j, j)|j=1,2,3 0,0,0 [ ]

Rh(j, j)|j=1,...,5 0,0,0,0,0 [ ]

and equal β angles, it is convenient to switch off the actu-

ator located in the mirrored position w.r.t. the broken one,

when the failure is detected. In this case, this corresponds

to the 3 − rd one. This choice represents the best solution

in order to balance the control effort, c.f. [50], Fig. 3. In

the following simulations, this behavior is emulated by set-

ting f = 0N , i.e., letting the controller the possibility to

completely switch off the actuators.

5.2.1 Hovering trajectory with unknown torque disturbance

In this case, the reference trajectory is again a static

hovering,

pr = [0 0 0.75]⊤, ṗr = p̈r = [0 0 0]⊤

ηr = ωr = ω̇r = [0 0 0]⊤

In order to make the simulations even more realistic, in

addition to the already introduced measurement noise, we

add a torque disturbance to the platform, whose magnitude

can be compared to typical values that one could experience

in a real experiment due to parameter mismatches and/or

external perturbations. The way this torque τdist is computed

deserves some explanations. In the case β = 0, when

both the 6 − th and the 3 − rd actuators are switched

off, the moments generated by the other four propellers lie

all on a 2-dimensional plane, c.f. [51], Fig. 3. This can

be verified by analyzing the rank of the allocation sub-

matrix 3G6
2 = G2(:, 1, 2, 4, 5), i.e., the sub-part related

to the torque actuation deprived of the columns related to

the actuators which are broken (the 6 − th) and off (the

3 − rd), respectively. At this point, we select the normal to

such plane by finding an orthonormal base {v1 v2} for the

column span of 3G6
2 and operate the cross product v3 =

v1 × v2. This unit vector indicates the direction of the most

unfavorable torque disturbance for the platform when β = 0

and only actuators {1, 2, 4, 5} are effectively working. In

order ensure that such perturbation cannot be compensated

by a MRAV with this tilting configuration, even if the 3−rd

actuator is actively used, we verify that v3 has a positive

projection along the direction of the total torque τB
3 that can

be generated by such actuator. In mathematical terms, we

select v′
3 = sgn(v⊤

3 τB
3 )v3. Finally, we scale down the vector

norm in order to obtain a meaningful order of magnitude

for the disturbance, i.e., τdist = 1
250

v′
3. In the presented

simulations, it is activated at t = t1. The evolution of such

perturbation, constant in body frame, is depicted in the first

plots of Figs. 21 and 23.

The plots of this simulation related to the case β = 0

deg are depicted in Fig. 20 and in Fig. 21, while the ones

obtained with β = −25 deg are portrayed in Fig. 22 and

in Fig. 23. Comparing both the position and the orientation

errors in the two cases, we can see that for β = 0 deg

the platform cannot hover statically, since it periodically
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Fig. 20 Plots of the Tilt-Hex with rotor failure and β = 0 deg while

hovering. The robot is disturbed with a constant external torque. From

top to bottom, the position, linear velocity, orientation and angular

velocity tracking, the position and orientation errors, and the actuator

spinning velocities
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Fig. 21 Plots of the Tilt-Hex with rotor failure and β = 0 deg while

hovering. The robot is disturbed with a constant external torque τdist,

activated at t = t1. From top to bottom, the disturbance torque,

the actuator forces and their derivatives. In particular, all the signals

remain inside the feasible region delimited by the constraints
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Fig. 22 Plots of the Tilt-Hex with rotor failure and β = −25 deg while

hovering. The robot is disturbed with a constant external torque. From

top to bottom, the position, linear velocity, orientation and angular

velocity tracking, the position and orientation errors, and the actuator

spinning velocities
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Fig. 23 Plots of the Tilt-Hex with rotor failure and β = −25 deg

while hovering. The robot is disturbed with a constant external torque

τdist, activated at t = t1. From top to bottom, the disturbance torque,

the actuator forces and their derivatives. In particular, all the signals

remain inside the feasible region delimited by the constraints
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oscillates, with peaks of almost ±2 cm and ±7.5 deg,

around the steady-state configurations. On the other hand,

for β = −25 deg the MRAV can fulfill the challenging

goal of remaining still. This is a consequence of the fact

that, for β �= 0 the span of 3G6
2 is already 3-dimensional

and so the perturbation can be annihilated while being

in static hovering. In both cases, the first part of the

simulation is characterized by consistent oscillations of the

state components, as it is clear from the plots 1-4 of the

two figures. In particular, these transients are caused by the

fact that the initial robot orientation is η0 = [0 0 0]⊤ deg,

which is not attainable in steady-state for the MRAV in both

configurations.

Some final remarks are detailed in order. First of all, the

aforementioned claim that, in this case, the 3 − rd actuator

is almost never used is confirmed by the last plots of

Fig. 20 and Fig. 22. Indeed, the control algorithm regulates

to zero the related force component almost everywhere. In

particular, during the initial transient phase, we see how the

rotor velocities (and so the generated thrust forces) approach

their upper bounds. Regulating the spinning rate of the

3−rd rotor to a value grater than zero, would cause the other

components to saturate, with large chances to destabilize the

platform. Secondly, the platform orientation converges (for

β = −25 deg) to a certain value, as depicted in the third

and in the sixth plots of Fig. 22. Note that such steady-state

orientation value, which depends on α, β and on τdist, is

automatically computed by the NMPC algorithm, in relation

to the state and input limitations, and it is not a-priori given.

This feature guarantees the optimality of the trajectory w.r.t.

the robot dynamic capabilities and relieves the user from

performing any explicit computations. Finally, remark that

the proposed controller can achieve better results compared

to the one designed in [50, 51], since the errors on the state

keep bounded without diverging also in the case β = 0,

despite the addition of a constant challenging disturbance

which remain unknown to the NMPC algorithm. This

fact highlights the potentiality of predictive controllers

compared to reactive static feedback ones.

6 Conclusions

In this paper, we have presented an NMPC framework

tailored to generic multi-directional thrust MRAVs with

arbitrarily positioned and oriented rotors, which considers

a novel and more representative model for the actuators

of such systems compared to the ones often employed by

other works. More in detail, the time derivatives of the

propeller thrust forces are considered as the control inputs

to be optimized by the predictive controller, as they are

directly related to the torques applied to the motors, which

constitute the lowest-level control inputs for multi-rotor sys-

tems. Thanks to the simple but effective model for the

actuator dynamics that we designed by leveraging avail-

able experimental data, it is possible to indirectly take into

account multiple low-level physical effects such as the ones

induced by the rotor inertia, the aerodynamic drag, and

other highly nonlinear hidden electrical phenomena, just

by modeling the maximum force derivatives (equivalently,

the maximum rotor accelerations) as a function, identifiable

thanks to the proposed methodology, of the instantaneous

propeller forces and the user-defined accuracy w.r.t. the

set-point thrust values. During the resolution of the opti-

mal control problem, we constrain only the inputs and the

part of the model state related to the actuators to lie within

the identified feasible set, avoiding the imposition of any

fictitious limits in the robot orientation, angular velocity,

body thrust and moment, or any other non-physical limita-

tions. To improve its computational efficiency, the control

algorithm is implemented using a state-of-the-art real time

iteration scheme with partial sensitivity update method. To

demonstrate its real-time capabilities, the controller has

been validated with four different multi-rotor platforms,

both in experiments and realistic simulations, showing its

versatility and applicability to different challenging scenar-

ios. At the best of our knowledge, this is the first time

that an NMPC framework with all such features is pre-

sented and extensively validated both with under-actuated

and fully-actuated aerial robots, and both with fixed and ori-

entable propellers. Ultimately, we have provided a unified

framework for the predictive control of generic multi-rotor

aerial vehicles which can be particularized for the specific

platform at hand just by applying the proposed identifica-

tion procedure for the actuators limits, which constitutes an

additional contribution of our work.

Future work includes the automatic regulation of the cost

function weights, which are a fundamental part of predictive

controllers, in order to reduce the tuning time and effort for the

user. The use of neural networks could be envisioned. More-

over, we plan to conduct additional validation tests, e.g.,

including perception objectives inside the cost function, and

controlling other different MDT-MRAVs. Ultimately, we

aim to transfer the technology presented in the experimen-

tal validation to an outdoor MoCap-denied scenario where

only on-board computational resources are used. The final

goal is to be able to extend and use the presented framework

to fulfill aerial physical interaction tasks.
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Appendix : Allocationmatrix identification

The nominal values of the entries of the allocation matrix G

can be calculated from the system’s geometrical properties,

consistently with Eq. 7. However, the real physical

parameters of the robot could be quite different from the

ideal ones, due to mechanical inaccuracies unavoidably

associated with the manufacturing and the assembly of the

robot parts. This may dramatically affect the control system

performances. For this reason, in this work the entries of

the allocation matrix are identified from experimental data.

In the following we briefly outline the used identification

method, which is extensively used in the literature and very

well-known from the community, so it is not considered as

a contribution.

First of all, we used the nominal allocation matrix

to design a simple but robust controller, applied on the

platform. Accordingly, the so-obtained control system is

used to track suitable persistently exciting 6D trajectories.

To this purpose chirp signals are used, i.e., sinusoidal

trajectories with increasing frequencies. While doing this,

we collected the measured data p and R thanks to the

MoCap system, used as ground truth. In particular, we

made the assumption to be able to measure the CoM

location. Then, thanks to a properly tuned post-processing

of the data which mainly consisted in a constant frame-

rate signal re-sampling, an anti-causal low-pass filtering

and the computation of numerical derivatives, we were able

to retrieve a precise-enough estimation of p̈, ω, ω̇ defined

in Eq. 2. On the other hand, γ was reconstructed by

collecting the measured spinning rates of the motors wi

and using the thrust model Eq. 5. Finally, m was directly

measured and J estimated by a precise CAD model of the

robot. At this point, we re-wrote Eq. 2 as
[

mR⊤(p̈+ge3)

Jω̇ + ω×Jω

]

︸ ︷︷ ︸

:=y

=
[

f1I3 . . . fnI3 03×3n

03×3n f1I3 . . . fnI3

]

︸ ︷︷ ︸

:=A

β (41)

with A ∈ R
6×6n. In such form, the equation allows to

express the vector of measurable quantities y ∈ R
6×1 as

a linear function of a vector of parameters β ∈ R
6n×1,

obtained re-arranging the entries of G

β :=
[

G1(:, 1)⊤ . . . G1(:, n)⊤ G2(:, 1)⊤ . . . G2(:, n)⊤
]⊤

(42)

Collecting a large number of measurements p >> 6n

and stacking them in vectorial form, we obtained

(ξ = �β) :=

⎛

⎜
⎝

⎡

⎢
⎣

y1

...

yp

⎤

⎥
⎦ =

⎡

⎢
⎣

A1

...

Ap

⎤

⎥
⎦β

⎞

⎟
⎠ (43)

At this point, applying the standard least-squares identifi-

cation method, the vector of parameters which minimizes

the 2-norm of the error ||�β − ξ ||2 is obtained as

β̂ = �†ξ (44)

Finally, re-arranging the element of the vector β̂ using the

convention of Eq. 42, we obtained the identified allocation

matrix Ĝ that we used in the presented experiments.

Comparing the entries of the nominal and the identified

allocation matrices in the hexarotor (Tilt-Hex) case, notice

that the difference between some elements is pretty
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Fig. 24 Box-plots for the position error (above) and the orientation

error (below) of the Tilt-Hex when hovering using the nominal and the

identified allocation matrices. The results for the latter case have been

highlighted with yellow bands. We can appreciate how the error mean

and variance is reduced
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consistent. This confirms that the physical parameters of the

real robot can be very dissimilar from the nominal ones.

eG,% = 100

[
gi,j −ĝi,j

gi,j

]

=

⎡

⎢
⎢
⎢
⎢
⎣

4 21 25 4 80 104

4 6 11 10 5 2

72 31 30 58 25 28

26 24 31 27 29 28

9 15 16 12 14 13

⎤

⎥
⎥
⎥
⎥
⎦

(45)

To conclude, we would like to point out that using the

identified matrix in the controller instead of the nominal

one allowed to consistently reduce both the position and the

orientation errors in all the experiments that we performed.

This happens already in hovering condition, as it is shown

in the box-plots of Fig. 24.
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