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Abstract— Battery Electric Vehicles are becoming a promis-
ing technology for road transportation. However, the main
disadvantage is the limited cruising range they can travel on
a single battery charge. This paper presents a novel extended
ecological cruise control system to increase the autonomy of
an electric vehicle by using energy-efficient driving techniques.
Driven velocity, acceleration profile, geometric and traffic
characteristics of roads largely affect the energy consumption.
An energy-efficient velocity profile should be derived based on
anticipated optimal actions for future events by considering
the electric vehicle dynamics, its energy consumption relations,
traffic and road geometric information. A nonlinear model
predictive control method with a fast numerical algorithm is
adapted to determine proper velocity profile. In addition, a
novel model to describe the energy consumption of a series-
production electric vehicle is introduced. The hyperfunctions
concept is used to model traffic and road geometry data in
a new way. The proposed system is simulated on a test track
scenario and obtained results reveal that the extended ecological
cruise control can significantly reduce the energy consumption
of an electric vehicle.

I. INTRODUCTION

An Electric Vehicle (EV) has considerable advantages

compare to the Internal Combustion Engine Vehicle (ICEV),

such as higher efficiency, minor emissions, etc. Energy for

the electric machine in Battery Electric Vehicle (BEV) is

provided by an on-board chemical battery pack. Neverthe-

less, the BEV has a limited battery capacity which restricts

cruising range. One of the universal methods which do not

require any hardware technology improvement is to identify

an energy-efficient profile. This method generally concerns

to realise an optimised efficient profile either by training and

giving hints to the driver or automating the velocity control.

The Ecological Cruise Control (Eco-CC) system with

main objectives to reduce fuel consumption and air pol-

lution have been extensively studied for ICEVs. An Eco-

CC system considering up-down road slopes with an ICEV

fuel consumption model presented in [1]. This system de-

rive an optimal vehicle control input by utilising a fast

nonlinear model predictive control method. However, the

traction boundaries of the vehicle which is a state dependent

physical limit of the propulsion was not considered, although
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a symmetric input constraint was considered. A predictive

optimal velocity-planning algorithm that uses probabilistic

traffic-signal phase and timing information to increase a

vehicle’s energy efficiency introduced in [2]. Nonetheless,

dynamics of the vehicle was oversimplified which might not

be able to represent realistic events. A broad review of recent

research on factors affecting fuel consumption, Eco-Driving

policy and the current state of art reviewed in [3], [4], [5].

On the other hand, little research to date has focused

on the Eco-ADAS systems for BEVs. An optimal motion

control problem with respect to BEV dynamics and its energy

consumption formulated in [6]. However, road geometric

information was not considered in this work. Closely related

works are presented in [7], [8] which intend to minimize the

energy consumption of a BEV considering with road and

traffic information. However these are formulated in a sim-

plified piecewise linear quadratic optimal control problem. In

most of the presented literatures, the introduced systems were

not capable of adapting the velocity to the road and traffic

variations and the driver should take the velocity control back

during different situations.

In this paper, a sophisticated Extended Eco-CC (Ext-Eco-

CC) system for BEVs is proposed in order to enhance the

Advanced Driver Assistance System (ADAS). This system

is capable of optimally control the velocity in road slopes,

curves, and traffic speed limit variations without intervention

of the driver. The main contributions of this paper are the

following. First, a novel energy consumption model for a

BEV is formulated and verified by measurements. Next, road

geometry data including slope and curvature in addition with

traffic speed limits are modelled by employing mathematical

hyperfunctions. Finally, a finite nonlinear horizon optimal

control problem is formulated and solved by adapting a

real-time algorithm. Performance of the proposed system in

terms of velocity profile, control input, comfort and safety

index, and energy consumption on a test track is evaluated

and analysed to appraise its capabilities for the ADAS

framework.

The rest of this paper is organized as follows: The concept

of an Ext-Eco-CC system, the BEV dynamics including

its energy consumption model, road geometry as well as

traffic model, and the nonlinear receding horizon control are

introduced in Section II. Evaluation of the proposed system

and its numerical simulation results are presented in Section

III. Interpreted results and related discussion are given in

Section IV. Conclusions and future work are given in Section

V.



II. DEFINITIONS AND PROBLEM FORMULATION

A. Extended Ecological Cruise Control

The concept of the proposed Ext-Eco-CC system for a

BEV on a hilly road with road curves, and traffic speed

limits is shown in Fig. 1. In this system, the driver set the fix

reference velocity to drive and the traction input of a BEV

is subjected to optimal control according to the longitudinal

motion dynamics, energy consumption model, road geometry

and traffic information. The Ext-Eco-CC system should gen-

erate a suitable velocity profile autonomously for the entire

trip without requiring driver interventions. The approximate

energy consumption of the vehicle can be calculated by a

mathematical model. In addition, information of upcoming

road slope, road curvature, and speed limit places can be

modelled by position based functions. The control input is

achieved based on the predicted driving state and relevant

performance index which lead to a traction force input

provides proper throttle and brake pedals manipulation.

B. Electric Vehicle and Energy Consumption Dynamics

The nonlinear longitudinal motion of a vehicle at time t

can generally be governed by the state equation

ẋ(t) = f(x(t),u(t)), (1)

where x(t) = [s(t),v(t),e(t)]T ∈ R
3 denotes the state vector

of travelled distance, velocity, and energy consumption or

recovery of the vehicle correspondingly, and u(t) ∈ R is the

control input. The vehicle is assumed to be a point mass at

the center of gravity, and hence its acceleration along the

longitudinal direction expressed by Newton’s second law of

motion

dv(t)/dt = (Ftrac(t)−Fres(t))/M, (2)

where M, Ftrac(t), and Fres(t) are the equivalent mass of

the vehicle, the traction force, and the total motion resistive

forces, respectively. Due to the property of the electric

machine being able to cover a wide range of operating ve-

locity, a single-gear transmission generally fulfils the vehicle

performance requirement [9]. In a passenger vehicle, due to

the rotational parts of the vehicle, an equivalent mass can be

calculated by an empirical relation as M = m(1+δ1 +δ2i2g),
where m is the kerb mass of the vehicle, δ1 represents the

total angular inertial moment of the wheels, δ2 serves as the
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Fig. 1: Extended Ecological Cruise Control concept

effect of the power-plant-associated rotating parts, and ig is

the single transmission ratio [9].

The traction force depends on the equivalent mass and

control input as Ftrac(t)=Mu(t). A mechanical friction brake

system accompanying regenerative brake is required to fulfil

the brake performance which leads to a hybrid brake system.

The total resistive aerodynamic drag, gradient, and rolling

resistance forces can be represented by

Fres =
1

2
ρA fCDv2 +Mgsin( fsl p(θ(s)))

+Crr(v)Mgcos( fsl p(θ(s))), (3)

where ρ , A f , CD, g, θ(s), and Crr(v), are the air density, the

vehicle frontal area, the aerodynamic drag coefficient, the

gravitational acceleration, the road slope angle as a function

of position (for more details, see [1]), and the velocity depen-

dent rolling resistance coefficient, subsequently. The rolling

resistance coefficient for passenger vehicles on a concrete

road can be approximated as Crr(v) = 0.01(1+ v/576) (for

more details, see [9]).

Different approaches to model energy consumption of

BEVs have been proposed (see e.g, [6]). Furthermore, the

velocity and traction force have significant influence on

the energy consumption. The energy consumption during

cruising at constant speed is equitable to the resistive powers.

This can be approximated through the curve-fit process

with measurement data by a polynomial of velocity as

fcruise = b3v3 + b2v2 + b1v + b0. It is noteworthy that the

fcruise formulation is adapted from [1]. The acceleration and

deceleration, a, considering only the regenerative energy

zone in the hybrid brake system can be approximated by

a similar curve-fit process with measurement data using a

polynomial of the control input as fa = a2u2 + a1u + a0.

Therefore, combining fcruise and fa, may lead to a model

of the power consumption p(t) in the BEV. At any given

velocity and control input, a linear relation of the traction

power-to-mass ratio (ptrac/M) can be modelled as

ė = p(t) = fa (ptrac/M)+ fcruise. (4)

This novel model is capable of representing the regenerative

braking effect when u(t)< 0 for the full-range velocity and

control input limits. This way, the power consumption of

any BEV can be estimated by modelling traction-velocity

characteristics map of the electric machine.

To conclude, the state equation (1) can be rewritten as
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v

u− 1
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.

(5)

Note that, the fsl p(θ(s)) is a function of road slope profile

from the start position to the end of the trip.

C. Road Geometry and Traffic Models

Knowledge of the road and traffic conditions ahead are

beneficial for the ADAS safety and energy management

applications. One way of representing the road geometric



data is to define data points along the road centerline with

specified intervals corresponding to the desired road profile

accuracy level. There are several interpolation methods to

construct new data points (see, e.g, [10], [11], [12]). How-

ever, the interval determination of data points can lead to

either overestimated or underestimated accuracy levels for

different road segments. Those approaches impose a trade-

off between accuracy level and response time of the models

which may not be desirable for a real-time Eco-ADAS

applications.

In this work, the road slopes, road curvatures, and traffic

speed limits data are modelled as continuous and differen-

tiable functions. These functions represent the data points

in each segment of the road. The hyperfunction concept

as a kind of generalized functions is used to interconnect

the estimated segments of the road to each other at the

boundaries. The road slope profile is proposed to be the

sum of quadratic functions of position representing each road

segments slope data. The modelling concept is shown in Fig.

2.

Based on the stated context, the road slope profile can be

defined as

fsl p(θ(s)) :=
Nsgm

∑
i=1

Hi(s− si−1)(ais
2 +bis+ ci)Hi(s− si), (6)

where Nsgm is the number of road segments, the Hi(s− si−1)
and Hi(s−si) are the hyperfunctions of the ith road segment.

These hyperfunctions may be represented by the approximate

Heaviside’s functions at the boundary position values, si−1

and si, as follows

Hi(s− si−1) =
1

2
(1+ tanh(ki+(s− si−1))), (7)

Hi(s− si) =
1

2
(1− tanh(ki−(s− si))). (8)

The road curvature and traffic speed limits profiles can be

modelled in a similar way. The horizontal road curves may

be parabolic or circular, which can be classified as simple,

compound, reverse, and deviation curves. A simple curve

has the same radius around a single arc of circle. Similar to

the geometry of the Euler spiral, the simple curve is used

to express the total absolute curvature profile in this work,

which may be defined as

fcrv(δ (s)) :=
Ncrv

∑
i=1

Hi(s− sent)

∣

∣

∣

∣

1

Rcrvi
(s)

∣

∣

∣

∣

Hi(s− sext), (9)
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Fig. 2: Proposed road slope model at segment i

where Ncrv is the number of road curves, and Rcrvi
is the

radius of a circle valid for the curve’s arc length with two

position points, sent and sext , at the respective entrance and

exit position of the curve i. The Rcrvi
for a straight road

segment can be considered as a large numerical number. The

traffic speed limit places can be modelled as

flmt(s) :=
Nlmt

∑
i=1

Hi(s− sstr)(vlmt − vmax)Hi(s− send)+ vmax,

(10)

where Nlmt is the number of speed limit zones, and vlmt is the

specified speed limit value at positions starts from sstr upto

the end of the zone send . The vmax is the maximum capable

speed value of the vehicle. It should be noted that, the related

ki± for the road slope, road curvature, and traffic speed limit

models determine the smoothness of the transitions between

segments and can be identified through curve-fit process.

To conclude, the proposed method to model the road slope,

road curvature, and speed limit profiles can be represented as

continuous and differentiable functions which can be coupled

with the vehicle dynamics and desired performance index.

D. Nonlinear Model Predictive Control

The traction input has limited traction power to accelerate

or decelerate the vehicle at different velocity values. Exact

equations also describing the boundaries of acceleration

and hybrid braking systems are too complex containing

unknown parameters (for more details, see [9]). Instead,

the limits of the control input can be estimated by the

vehicle’s velocity-traction characteristics map. Hence, the

control input is directly subject to these min-max inequality

constraints (umin(v) ≤ u(t) ≤ umax(v)). Due to the com-

plexity of optimality conditions known as Karush-Kuhn-

Tucker (KKT) conditions, it is necessary to convert the

inequality constraints into equality constraints by a penalty

function method. The control input equality constraint can

be expressed as

C(x,u) = (u−uavr(v))
2
− (umax(v)−uavr(v))

2 +u2
slk (11)

where uslk is a slack variable, and uavr(v) =
1
2
(umax(v) +

umin(v)) is the average velocity depended of min-max control

input boundaries.

In nonlinear model predictive control, for the given sys-

tem dynamics (5), and the given input constraint (11), the

following performance index with a finite horizon control

problem should minimize the control input at each time, t.

This can be expressed by

minimize
u

J = ϕ(x∗(T, t))+
∫ T

0
L(x∗(τ, t),u∗(τ, t))dτ (12)

where x∗(τ, t) defines the state vector trajectory along the

τ-axis starting from x(t) as the initial state at τ = 0 over

the prediction horizon T . The actuated control input is given

by u(t) = u∗(0, t) which is a state feedback control law. For

more details about the nonlinear receding horizon control,

see [13].



In this work, the terminal-cost function, ϕ is chosen as

ϕ =
1

2
q f (e− ere f )

2 (13)

where ere f is reference energy consumption, and q f is the

corresponding weight. The energy consumption, e, is only

evaluated at the end of the prediction horizon. This helps

to choose more flexible control actions independent of the

integral-cost function, L, which can be defined as

L =
1

2
qv(v− vre f )

2 +
1

2
(ru(u−ure f )

2
−qslkuslk)

+ exp(qcrv(alat−alat.max))v2 + exp(qlmt (v− flmt (s)))v, (14)

where ure f is the reference input, and qv, ru are relative

weightings. A small slack penalty, qslk, is added to avoid

a singularity at sslk = 0 and keep the control input away

from the boundary of feasible set. In order to achieve a safe

and comfortable ride during the road geometry variations,

the lateral acceleration of the vehicle is defined as alat =
v2 fcrv(δ (s)) and penalised in the cost function. An exponen-

tial function of the maximum allowable lateral acceleration,

alat.max, with the related weight, qcrv is used for the lateral

acceleration control. In addition, if the reference speed set

by the driver is above the speed limit value, the velocity is

penalised exponentially with the weight qlmt .

For the optimal control problem composed of (5), (11),

and (12), H denotes the Hamiltonian defined as

H(x,λ ,u,µ) := L(x,u)+λ T f(x,u)+µTC(x,u), (15)

where λ ∈R
n stands for the costate, and µ ∈R

mc expresses

the Lagrange multiplier related to the equality constraint.

This can be solved efficiently by the Continuation and Gener-

alized Minimal RESidual (C/GMRES) method introduced in

[13]. This method is less computationally expensive and can

be implemented in a real-time manner for the proposed Ext-

Eco-CC system. The solution of the optimization problem

is determined using the set of control inputs as initial

guess solution with the measurements of the states. The

first element of the set of control inputs is realised in the

vehicle at each sampling time. Repeating this procedure

keeps reproducing and updating the control input and lead

to a close-loop nonlinear optimal control method, which is

known as NMPC.

III. SYSTEM EVALUATION

A. Numerical Simulation Configurations

A Smart Electric Drive third generation which is available

for experiments, is chosen here to model the dynamics of

a BEV and its energy consumption. The parameters of the

Smart ED dynamics model are derived from data sheets and

real measurements as m = 975 kg, δ1 = 0.04, δ2 = 0.0025,

ig = 9.922 : 1, ρ = 1.2041 kg/m3, A f = 2.05 m2, CD = 0.37,

and g = 9.81 m/s2. The main specifications of the Smart ED

are summarised in [8] and [7].

In order to have a proper system identification of the

Smart ED, dynamometer tests have been conducted (Fig.

3.) at Delphi Automotive Systems Luxembourg S.A. in

Fig. 3: Smart ED at the 4-wheel dynamometer test bench

Bascharage, Luxembourg [14]. The traction force, pedal po-

sitions, voltage and current of the battery at different velocity

operating points are measured on a two-axles dynamometer

and by reading the On-Board-Diagnosis (OBD) interface of

the vehicle throughout the tests. These measurements help

to model the overall dynamics and energy characteristics

including electrical and mechanical characteristics of the

vehicle. The proposed model for the energy consumption,

(4), is identified as a2 = 0.01622, a1 = 0.244, a0 = 1.129,

b3 = 0, b3 = 0, b2 = 0.02925, b1 = 0.257, and b0 = 1.821

with 98.46% coefficient of determination (R-squared). The

limit umax(v) can also be identified as the following relation

umax(v) = c1 − c2tanh(c3(v− c4)), (16)

where the constants are identified as c1 = 1.523, c2 = 1.491,

c3 = 0.08751, and c4 = 15.6 with 99.74% coefficient of

determination. The maximum hybrid brake system control

input is chosen to be constant (d1 = 0), umin(v) = −5+d1v

(N/Kg), which is limited to a stable slip ratio region to avoid

the wheels from locking up. Fig. 4. shows the experimentally

identified power consumption map of the Smart ED with

respect to the full-range control input and velocity. Each

contour line represents the related power consumption (in

kW ). At higher control input and velocity, the positive energy

with higher rate is consumed. In contrast, at regenerative

braking zone in different velocity, a limited amount of energy

can be recovered.
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Conducteurs S.A. Colmar-Berg, Luxembourg, is chosen to

model the road geometry with assumed traffic information

(Fig. 5.). The test track has a total length of 1.255 km

and includes different turns and slopes. The altitude of the

different points of the road is measured through the Global

Positioning System (GPS) sensor with a resolution of 1 m.

The slope profile, fsl p(θ(s)), is fitted within nine segments

with 98.93% coefficient of determination. This track has

four main curves with 20 m, 25 m, 15 m, and 27 m radius.

The straight road segments are considered to have a nearly

infinite radius. In addition, a speed limit vlmt = 13.89 m/s

zone is assumed between positions 500 ≤ s ≤ 700. Fig. 6.

shows the measured data with the proposed slope model, road

curvature, and assumed speed limit profile formulated using

(6), (9), and (10). A suitable prediction horizon T = 15 s

is chosen to cover upcoming road and traffic events. This

prediction horizon is discretized into N = 30 steps of size

∆t = 0.5 s based on the approximate vehicle’s actuators

maximum delay time. The total-cost function is set as ere f =
0, q f = 0.25, vre f = 25, qv = 1, ure f = Fres −Mgsin( fsl p(s)),
ru = 20, qslk = 20, qcrv = 1.2, alat.max = 3.7, and qlmt = 0.1.

The maximum speed of the Smart ED is vmax = 28 m/s with-

out activating the boost switch available in the vehicle. The

weighting parameters are tuned manually by observing the

performance in tracking the reference states considering the

road and traffic information, safety and energy consumption

in simulations.

B. Simulation Results

For the sake of a fair comparison, the proposed ”Ext-Eco-

CC” system with the same initial conditions is compared to

the proposed ”Ext-CC” system without energy consumption
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model (q f = 0). The conventional Eco-CC and CC are

not considering road curvature variations ans speed limit

zones and therefore, these conventional systems may not be

comparable with the proposed system.

Fig. 7. shows the optimal driving profile generated by the

controller of the Ext-Eco-CC and Ext-CC system. Fig. 7a.

shows the velocity profile at start point with initial standstill

state. The controllers increase the velocity of the vehicle

during straight down hill road segment and later reduce the

velocity optimally as the vehicle approaches to the first and

second curves. Next, the vehicle has to stay below the speed

limit zone and afterwards does not speed up to reach the

reference velocity due to the upcoming sharp third and forth

curves. Comparing to the Ext-CC system, the Ext-Eco-CC

system drives the vehicle much slower in the last segment

of the road due to upcoming hilly road and thus saves a

considerable amount of energy. The next graph, Fig. 7b.

shows the related control input derived from the optimal

control problem. The Ext-Eco-CC controller tries to avoid



unnecessary aggressive control inputs namely strong braking

and accelerations. Fig. 7c. shows the lateral acceleration

of the vehicle in each curve remains below the reference

maximum lateral acceleration value derived from a comfort

and safety index. Note that since the driver controls the

steering, the actual lateral acceleration of the vehicle in real

driving test might be different. Fig. 7d. shows the related

power consumptions profile on the test track and the final

overall energy consumption, etot , for the whole track. The

Ext-Eco-CC takes any advantages of the road profile and

traffic information to save as much energy as possible.

IV. DISCUSSION

Previous studies show that it was more common to limit

the traction input in order to reduce the energy consumption

[1], and considering either none or partial road geometric [6]

and traffic information [2] with simplified model and control

problem formulations [8], [7]. These systems generally may

provide suitable behaviour in some situations, however, the

driver has to take back the velocity control of the vehicle in

any other unforeseen situations. The overall direction of the

obtained results showed that the proposed Ext-Eco-CC could

be helpful to extend the limited cruising range of the BEV.

This was achieved by reducing the driver interventions in

velocity control and extending the autonomy of the vehicle

with respect to road geometric and traffic information. For

the simulation, it is found that the control input can be

updated approximately every 1 ms. Hence, this way of

formulation should be a real-time capable controller for the

proposed system.

It should be emphasized that with an increase of only

13% of travel time, the Ext-Eco-CC can save 27% of energy

compared to the Ext-CC system at the test track. A balanced

trade-off between the energy consumption and travel time

can be achieved based on the driver’s preference. It is found

that the driver’s high reference velocity was not possible

to be achieved with ecological driving style in the test

track. However, these achievements reveal the reliability

of such Ext-Eco-CC system based on upcoming road and

traffic information. The approximate energy consumption,

road slope, road curvature, and speed limit models presented

here are valid for the Smart ED and the test track profile.

The parameters of these models and proper weights of the

performance index can be applied to other electric vehicles

and roads. Although this is a small study, the results can be

generalised to urban and non-urban environments. The above

presented features show that the proposed system might be

useful in the intelligent transportation systems framework in

terms of more semi-autonomous, safe, and energy efficient

driving style.

V. CONCLUSIONS AND FUTURE WORK

A novel development of an advanced driver assistance

system considering ecological driving style for the battery

electric vehicles has been presented in this paper. This system

has predictively determines a suitable velocity profile to

extend the cruising range and the autonomy of the electric

vehicle based on the road geometry and traffic information.

It is shown that the vehicle has been controlled comfortably

and safely confronted with different road and traffic speed

limit situations.

In this paper, the Ext-Eco-CC system is only evaluated

by the numerical simulation, however further real world

experiments with the Smart ED will be carried out in the

future. In addition, it would be desirable to include the

functionalities of Adaptive Cruise Control (ACC) in the

proposed concept. One of the sate-of-the-art challenges of the

optimal control problem for the ACC system are stochastic

phenomena in traffic. Investigating these challenges may

be worthwhile to improve the Ext-Eco-CC system for the

advanced driver assistance systems in the future.
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