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Abstract

Mathematical models are at the core of modern science and technol-
ogy. An accurate description of behaviors, systems and processes often
requires the use of complex models which are difficult to analyze and
control. To facilitate analysis of and design for complex systems, model
reduction theory and tools allow determining “simpler” models which
preserve some of the features of the underlying complex description. A
large variety of techniques, which can be distinguished depending on
the features which are preserved in the reduction process, has been pro-
posed to achieve this goal. One such a method is the moment matching
approach.

This monograph focuses on the problem of model reduction by mo-
ment matching for nonlinear systems. The central idea of the method is
the preservation, for a prescribed class of inputs and under some tech-
nical assumptions, of the steady-state output response of the system
to be reduced. We present the moment matching approach from this
vantage point, covering the problems of model reduction for nonlinear
systems, nonlinear time-delay systems, data-driven model reduction
for nonlinear systems and model reduction for “discontinuous” input
signals. Throughout the monograph linear systems, with their simple
structure and strong properties, are used as a paradigm to facilitate
understanding of the theory and provide foundation of the terminol-
ogy and notation. The text is enriched by several numerical examples,
physically motivated examples and with connections to well-established
notions and tools, such as the phasor transform.
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1
Introduction

The availability of mathematical models is essential for the analysis,
control and design of modern technological devices. As the computa-
tional power has advanced, the complexity of these mathematical de-
scriptions has increased. This has maintained the computational needs
at the top or above the available possibilities. A solution to this problem
is represented by the use of reduced order models, which are exploited
in the prediction, analysis and control of a wide class of behaviors. For
instance, reduced order models are used to simulate weather forecast
models and design very large scale integrated circuits and networked
dynamical systems. The model reduction problem can be informally
formulated as the problem of finding a simplified description of a dy-
namical system in specific operating conditions, preserving at the same
time specific properties, e.g. stability. For linear systems, the problem
has been addressed from several perspectives which can be divided
into two main groups: singular value decomposition (SVD) approxi-
mation methods and Krylov approximation methods. The theory of
balanced realizations, the use of Hankel operators and of proper or-
thogonal decomposition (POD) belong to the first group, whereas the
use of interpolation theory belongs to the latter.
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The additional difficulties of the reduction of nonlinear systems
carry the need to develop different or “enhanced” techniques. Several
methods which extend balancing and proper orthogonal decomposition
to nonlinear systems have been proposed. Reduction of special classes
of nonlinear systems and local reduction (for instance around a limit
cycle) represent another approach. Although many results and efforts
have been made, at present there is no complete theory of model reduc-
tion for nonlinear systems or, at least, not as complete as the theory
developed for linear systems.

In this chapter we briefly recall the main model reduction meth-
ods which have been presented in the literature. We then establish the
objective of this monograph and summarize its contribution and con-
tent. The chapter continues with a section in which the notation used
throughout the monograph is gathered and is concluded with some
bibliographical remarks on the methods described in this introduction.

1.1 Main Methods of Model Reduction for Linear Systems

Since the order of a dynamical system is usually defined as the number
of states that the system has, model reduction methods require the
elimination of some state variables. If we want that the reduced order
model preserves some sort of “likeness” to the system to be reduced,
then the elimination of the states cannot be arbitrary. To render precise
this problem formulation two questions need to be answered.

Q1. What are the characteristics and properties that the reduction
method aims to preserve?

Q2. What is lost in the reduction process and how can we quan-
tify/alleviate this loss?

Depending on how these two questions are answered we obtain a mul-
titude of different reduction techniques. It is important to stress from
the onset that there is no “perfect” or “best” reduction method. In
fact, the problem of model reduction epitomizes typical engineering
problems in which there exists a trade off between the accuracy or
performance achieved and the cost required to achieve it. In the fol-
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lowing we briefly recall the main ideas behind the most common model
reduction methods.

1.1.1 Singular value decomposition methods

Balancing and balanced approximations

With the objective of economizing on the order of the system, we won-
der which states should be eliminated. It seems reasonable that unob-
servable and uncontrollable states should be the first candidates in the
elimination process since they do not contribute to the input-output
behavior of the system. This implies that if our objective is to econ-
omize on the order of the systems, these modes should be eliminated
by a sensible method. The information on the degree of controllability
and observability of a state is given by the controllability Gramian and
observability Gramian, respectively. In particular, a difficult to control
state is a state which requires high control energy to be steered to zero.
However, a problem arises when we have mixed situations, such as a
state which may be difficult to control but easy to observe. To be able
to rank all the states with respect to a common criterion, it is fun-
damental to introduce the concept of balancing. From a mathematical
viewpoint, balancing methods consist in the simultaneous diagonaliza-
tion, by means of a singular value decomposition, of the reachability
and observability Gramians. In this way we can identify the states that
are simultaneously the least controllable and least observable. Then
the reduction simply consists in eliminating these states. Moreover,
balanced truncation methods preserve stability and naturally provide
an upper bound on the approximation error in terms of the H∞-norm.
This quantifies what is lost in the reduction process. Finally, note that
since the Gramians are related to the solutions of Riccati equations,
variations of the balanced truncation method can be obtained using
variations of the Riccati equations. Among these variations we mention
stochastic balancing, bounded real balancing and positive real balanc-
ing. All these methods share the same answer to question Q1, namely
the characteristics on which we base the reduction are the observability
and the controllability Gramians, however, they differ in the answer to
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question Q2, namely in the properties and the type of approximation
error of the reduced order model.

Hankel-norm approximation

While balanced truncation provides a bound on the approximation
error, the reduced order model obtained is not optimal with respect
to any given norm. An alternative method, still based on a singular
value decomposition, is represented by the optimal approximation in
the Hankel-norm. With this method, an optimal reduced order model is
sought with respect to a 2-induced norm of the Hankel operator of the
system. Similarly to balancing, the Hankel-norm approximation yields
a stable reduced order model and an upper bound on the H∞ norm
which depends on the neglected Hankel singular values. However, the
main characteristic of the method is that the model obtained is op-
timal with respect to an optimality criterion, i.e. with respect to the
Hankel-norm. Note that the optimal model in the Hankel-norm is not
optimal in the H∞ norm. As a consequence, with respect to this last
norm, balancing may offers a better approximation.

Proper orthogonal decomposition

Proper orthogonal decomposition is a method which is widely applied
in practice since it does not necessarily require a high order model to
begin with. In the proper orthogonal decomposition method a cloud of
state measurements is obtained at several instants of time. These mea-
surements are collected in data matrices, known as time-snapshots,
which are then decomposed along orthonormal directions in a linear
fashion. A reduced order model is obtained truncating the number of
orthonormal directions used with respect to some optimality criterion
(often a 2-induced norm). Proper orthogonal decomposition is strictly
linked to other singular value decomposition methods, such as balanc-
ing, however, POD has the important advantage with respect to other
SVD methods of operating on data clouds instead of on the matrices
of the systems. As a consequence the method can be attempted also
on systems which are not described by linear differential equations.
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1.1.2 Model reduction using Krylov methods

Model reduction using Krylov methods, also known as moment match-
ing methods, or interpolation methods, belongs to a different category
of reduction techniques with respect to the SVD methods. The interpo-
lation theory relies on the notion of moment. Note that a linear differ-
ential system which is observable and controllable is fully described by
its transfer function. Given a set of complex interpolation points (which
have to be selected with respect to some criterion), we determine the
coefficients of the Laurent series expansion of the transfer function at
these interpolation points. These coefficients are called moments. The
moment matching method consists in determining a lower order model
which has a transfer function that, at the same interpolation points,
possesses the same coefficients of the Laurent expansion (up to a certain
order). In other words, in moment matching a reduced order model is
such that its transfer function (and derivatives of this) takes the same
values of the transfer function (and derivatives of this) of the system
to be reduced at the same interpolation points. This is graphically rep-
resented in Fig. 1.1 in which the magnitude (top) and phase (bottom)
of the transfer function of a reduced order model (dashed/red line)
matches the respective quantities of a given system (solid/blue line) at
30 rad/s.

The advantage of moment matching over the SVD methods is that
the numerical implementation is much more efficient. Since only matrix-
vector multiplications are used, i.e. no matrix factorizations or inver-
sions are needed, the number of operations required to compute a re-
duced order model of order ν given a system of order n >> ν is O(νn2).
This is to be compared with a O(n3) computational complexity of bal-
ancing and Hankel-norm approximations. On the other hand, among
the drawbacks of moment matching methods there are the difficulty in
preserving important properties of the original system, such as stability,
and the lack of a bound on the estimation error.

Note, finally, that model reduction of linear systems is an active
area of research in various domains of engineering and mathematics,
and many variations and improvements have been proposed for all of
these methods. For instance, mixed singular value decomposition and
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Figure 1.1: Diagrammatic illustration of the interpolation approach. Magnitude
(top graph) and phase (bottom graph) plots of a given system (solid/blue line)
and of a reduced order model (dashed/red line). The green circle represents the
interpolation point.

Krylov methods are capable of yielding reduced order models that si-
multaneously maintain some of the properties of the system to be re-
duced and are determined in a computationally efficient manner.

1.2 Contents of the Monograph

The goal of this monograph is to present, in a uniform and complete
way, moment matching techniques for nonlinear systems. The focus
is on the so-called “steady-state” notion of moment. The moment is
defined using the steady-state output response of the system intercon-
nected with an interpolating signal generator. While the theory and the
techniques are developed from a pure nonlinear perspective, throughout
the monograph we point out several connections with the interpolation
theory and the classical “interpolation-based” notion of moment. This
justifies the terminology used and improves the understanding of the
nonlinear theory. The chapters are enriched with examples and con-
clude with bibliographical notes. The monograph comprises:
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Chapter 2 begins with a very general formulation of the problem that
we call “model reduction by moment matching”. The problem is formu-
lated from a “general-system perspective” and not from a linear system
point of view. We then specialize the problem to nonlinear differential
systems and we introduce the notions of steady-state and of moment
for this class of systems, clarifying the nature of the relation between
these two objects. We also relate the introduced notions with classi-
cal interpolation theory. We then present families of nonlinear reduced
order models and we study the possibility of achieving specific prop-
erties, such as assigning prescribed zero dynamics. We specialize these
results to linear systems, proposing families of linear reduced order
models which preserve specific properties (properties which are usually
difficult to maintain in the interpolation-based approach). We conclude
the chapter with a selection of additional topics regarding systems in
special form.

Chapter 3 deals with the problem of model reduction for nonlinear
time-delay systems. The center manifold theory for time-delay systems
is used to extend the definition of moment to nonlinear time-delay sys-
tems and a family of systems achieving moment matching for nonlinear
time-delay systems is given. The possibility of interpolating multiple
moments increasing the number of delays but maintaining the number
of equations is investigated and the problem of obtaining a reduced or-
der model of an unstable system is discussed. Similarly to the previous
chapter, the results are also specialized to linear time-delay systems.
Several examples illustrate the theory.

Chapter 4 presents a theoretical framework and a collection of tech-
niques to obtain reduced order models by moment matching from in-
put/output data for nonlinear, possibly time-delay, systems. We begin
providing algorithms for the determination of an approximation of the
moment which converges asymptotically to the actual moment of the
nonlinear system. The computational complexity is discussed and the
results are also specialized to linear systems. Several examples illustrate
the theory.
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Chapter 5 investigates the limitations of the characterization of mo-
ment based on a signal generator described by differential equations.
With the final aim of solving the model reduction problem for a class
of input signals generated by exogenous systems which do not have
an implicit (differential) form, a time-varying parametrization of the
steady-state of the system is used to extend, exploiting an integral ma-
trix equation, the definition of moment to this class of input signals.
The equivalence of the new definition and the classical interpolation-
based notion of moment is proved under specific conditions. Special
attention is given to periodic signals due to the wide range of prac-
tical applications where these are encountered. Reduced order models
matching the steady-state response to explicit signal generators are
given for linear systems and several connections with the classical re-
duced order models are drawn.

1.3 Notation

Standard notation has been adopted, most of which is defined in this
section and used throughout the remainder of the monograph. When
additional notation (not included in this section) is introduced, this is
defined in the relevant parts of the monograph.

The symbol R≥0 (R>0) denotes the set of non-negative (positive)
real numbers; C<0 denotes the set of complex numbers with strictly
negative real part; C0 denotes the set of complex numbers with zero real
part and D<1 the set of complex numbers with modulo less than one.

The symbol I denotes the identity matrix and σ(A) denotes the
spectrum of the matrix A ∈ Rn×n. The symbol ⊗ indicates the Kro-
necker product and ||A|| indicates the induced Euclidean matrix norm.
Given a list of n elements ai, diag(ai) indicates a diagonal matrix
with diagonal elements equal to the ai’s. The vectorization of a ma-
trix A ∈ Rn×m, denoted by vec(A), is the nm × 1 vector obtained by
stacking the columns of the matrix A one on top of the other, namely
vec(A) = [a>1 , a>2 , . . . , a>m]>, where ai ∈ Rn are the columns of A and
the superscript > denotes the transposition operator. The superscript
∗ indicates the conjugate transpose operator. The symbol adj(A) de-
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notes the adjugate (known also as classical adjoint or adjunct) of A,
namely the transpose of its cofactor matrix.

The symbol <[z] indicates the real part of the complex number z,
=[z] denotes its imaginary part and ι denotes the imaginary unit. The
symbol εk indicates a vector with the k-th element equal to 1 and with
all the other elements equal to 0. Given a function f , F represents its
phasor at ω, whereas <f(t)> indicates its time average.

Given a set of delays {τj}, the symbol Rn
T = Rn

T ([−T, 0],Rn), with
T = maxj{τj}, indicates the set of continuous functions mapping the
interval [−T, 0] into Rn with the topology of uniform convergence. The
subscripts “τj” and “χj” denote the translation operator, e.g. xτj (t) =
x(t− τj).

Let s̄ ∈ C and A(s) ∈ Cn×n. Then s̄ /∈ σ(A(s)) means that det(s̄I−
A(s̄)) 6= 0. σ(A(s)) ⊂ C<0 means that for all s̄ such that det(s̄I −
A(s̄)) = 0, s̄ ∈ C<0.

The symbol L(f(t)) denotes the Laplace transform of the function
f (provided that f is Laplace transformable) and L−1{F (s)} denotes
the inverse Laplace transform of F (s) (provided it exists). With some
abuse of notation, σ(L(f(t))) denotes the set of poles of L(f(t)). The
symbol δ0(t) denotes the Dirac δ-function.

Given two functions, f : Y → Z and g : X → Y , with f ◦ g : X → Z

we denote the composite function (f ◦ g)(x) = f(g(x)) which maps all
x ∈ X to f(g(x)) ∈ Z. Lfh(x) denotes the Lie derivative of the smooth
function h along the smooth vector field f , i.e. Lfh(·) = ∂h

∂xf(x). Given
a function y : R → R the symbol y(k) denotes the k-th order time
derivative of y (provided it exists). Given a scalar function V : Rn →
R : x 7→ V (x), the symbols Vx and Vxx denote, respectively, the gradient
and the Hessian matrix of the function V , provided they exist.

1.4 Bibliographical Notes

To report all the developments and results on model reduction and to
give credit to all the researchers who have contributed to the field would
be a titanic effort (if at all possible) considering the enormous research
activity which has contributed to this field. The following references
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should not be considered at all exhaustive but should be seen as a
possible starting point for the interested reader.

1.4.1 Model reduction for linear systems

Several survey papers have been written on the topic of model reduction
for linear systems. Here we list a few examples known to the authors.
For a survey paper on balanced truncation see, e.g. Gugercin and An-
toulas [2004]. For survey papers on model reduction based on Krylov
subspaces see, e.g. Bai [2002] and Freund [2003]. Other survey papers
on model reduction of linear systems are, for instance, Fortuna et al.
[1992], Antoulas et al. [2001] and Baur et al. [2014]. For further detail
and an extensive list of references on the problem of model reduction
for linear systems see the monograph Antoulas [2005].

Balanced approximations and Hankel-norm approximations

Balanced truncation has been originally introduced by Moore [1981],
which recognizes that the idea is closely related to the “principal axis re-
alization” proposed by Mullis and Roberts [1976]. Almost immediately
it has been shown that the method possesses the property of preserv-
ing the stability of the system, see Pernebo and Silverman [1982], and
provides a computable error bound, see Enns [1984] and Glover [1984].
Modifications of the standard method to achieve preservation of pas-
sivity have been proposed in e.g. Phillips et al. [2003], Saraswat et al.
[2005], Yan et al. [2007] and Reis and Stykel [2010]. An efficient and nu-
merically robust implementation of balanced truncation is the square-
root method, see Laub et al. [1987] and Tombs and Postlethwaite [1987],
which is based on the Cholesky factorizations of the Gramians. The
Schur method proposed by Safonov and Chiang [1989] enhances some of
the robustness properties of the square-root method. The balancing-free
square-root method proposed in Varga [1992] combines the square-root
method and the Schur method. Another class of methods based on the
Gramians is the family of Cross-Gramian methods given in Fernando
and Nicholson [1983, 1984], Aldhaheri [1991], Antoulas et al. [2001],
Sorensen and Antoulas [2002] and Baur and Benner [2008], which have
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properties similar to balanced truncation (preservation of stability and
computable error bound). Numerical efficient implementations of the
balanced truncation methods have been proposed in Rabiei and Pedram
[1999], Van Dooren [2000], Benner et al. [2000, 2003], Benner [2004],
Gugercin and Li [2005] and Baur and Benner [2008]. Other numerically
efficient methods related to balanced truncation are the singular per-
turbation approximation, see Liu and Anderson [1986], Varga [1992]
and Benner et al. [2000], frequency weighted balanced truncation, see
Enns [1984], Gawronski and Juang [1990] and Gugercin and Antoulas
[2004], fractional balanced reduction, see Meyer [1990], and balanced
stochastic truncation, see Benner et al. [2001]. The numerical stability
of the balanced truncation methods often relies upon the stability of the
system. Generalizations of the method to unstable systems have been
proposed in Zhou et al. [1999]. Extensions to time-varying systems have
been given in Lall and Beck [2003], Sandberg and Rantzer [2004] and
Sandberg [2006]. Several approximated versions of the balanced trun-
cation method have been presented. Willcox and Peraire [2002] have
proposed a method which they interpreted as frequency-domain POD,
and that later has been called Poor Man’s Truncated Balanced Re-
duction method in Phillips and Silveira [2005]. The dominant subspace
projection method is another heuristic balanced-free method which ap-
proximates, in a certain sense, balanced truncation. see Penzl [2006]
(see also Li and White [2001] for another version). Finally, some results
on model reduction for linear systems based on the notion of Hankel
operators are given in Adamjan et al. [1971], Glover [1984], Safonov
et al. [1990], Kavranoğlu and Bettayeb [1993] and Benner et al. [2004].

Krylov methods

The origin of this approach can be traced back to the related problems
of Nevanlinna-Pick interpolation and of partial realization of covariance
sequences, see Georgiou [1983], Kimura [1983, 1986], Antoulas et al.
[1990], Byrnes et al. [1995], Georgiou [1999] and Byrnes et al. [2001]. An
early result based on Krylov methods is the asymptotic waveform evalu-
ation method proposed in Pillage and Rohrer [1990]. This method com-
putes the moments explicitly and, consequently, is numerically unstable
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and inefficient. The problem of numerical instability has been tackled
in several works, starting with the Lanczos Padé method proposed in
Gallivan et al. [1994] and Feldmann and Freund [1995], and the “pas-
sive reduced-order interconnect macromodeling algorithm” presented
in Odabasioglu et al. [1998]. Techniques to double the number of in-
terpolated points have been firstly proposed in Grimme [1997] and are
referred to as dual rational Arnoldi and Lanczos methods. In general
Krylov methods do not preserve stability and passivity. Stability of the
reduced order model can be enforced using the restarting techniques
given in Grimme et al. [1995] or the restarted dual Arnoldi method
proposed by Jaimoukha and Kasenally [1997]. Other techniques to pre-
serve these and other structural properties are presented in, e.g. Bai and
Freund [2001], Freund [2004], Li and Bai [2005], Beattie and Gugercin
[2008], Polyuga and Van der Schaft [2010, 2011, 2012] and Gugercin
et al. [2012]. An important problem for Krylov methods is the selec-
tion of the interpolation points. Early results on this aspect are given
in Chiprout and Nakhla [1995], where the complex frequency hopping,
which is based on a binary search, is proposed. Another approach using
a binary search is given in Achar and Nakhla [2001]. Recent results on
the problem of selecting the interpolation points are given in Chu et al.
[2006] and Gugercin et al. [2008]. In this last paper the iterative rational
Krylov algorithm (IRKA) is prosposed, which is becoming increasingly
popular. While stability is not guaranteed in all instances, the method
is numerical effective and solves first-order necessary conditions of op-
timality with respect to the H2 norm. Several modifications of this
method have been proposed in Gugercin et al. [2008], Van Dooren et al.
[2008] and Bunse-Gerstner et al. [2010] for MIMO systems, and in Flagg
et al. [2013] for the H∞ case. Another adaptive algorithm, more effi-
cient than IRKA, but less precise, has been presented in Druskin and
Simoncini [2011]. An algorithm less efficient than IRKA, but that al-
lows to select the order of the reduced order model adaptively is given
in Panzer et al. [2013a]. A data-driven Krylov approach has been pre-
sented under the name of Loewner framework in Mayo and Antoulas
[2007]. A drawback of the Krylov methods is the lack of an error bound.
This problem is addressed in several works in which results for systems
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in special form are obtained, see e.g. Grimme [1997], Bai et al. [1999],
Bechtold et al. [2004], Panzer et al. [2013b] and Konkel et al. [2014].

1.4.2 Model reduction for nonlinear systems

From the ’90s, considerable research effort has been dedicated to the
problem of model reduction for nonlinear systems. The problem of
model reduction for special classes of systems, such as differential-
algebraic systems, bilinear systems and mechanical/Hamiltonian sys-
tems has been studied in Al-Baiyat et al. [1994], Lall et al. [2003],
Soberg et al. [2007] and Fujimoto [2008]. Several results rely on ap-
proximating the nonlinearity with a polynomial, see e.g. Chen [1999],
Phillips [2000, 2003], Rewienski and White [2003] and Benner [2004],
or the ability of transforming the system into a quadratic bilinear form,
see e.g. Gu [2009, 2011], Benner and Breiten [2015] and Antoulas et al.
[2016]. The first breakthrough on balancing for nonlinear systems has
been made in Scherpen [1993]. This paper originated subsequent re-
sults (sometimes referred to as energy-based methods, see Scherpen
and Gray [2000]) which exploit balancing, see Scherpen and Van der
Schaft [1994] and Gray and Mesko [1997], or the notion of Hankel op-
erator, see Gray and Scherpen [2001], Scherpen and Gray [2002] and
Fujimoto and Scherpen [2005, 2010]. Techniques based on the reduc-
tion around a limit cycle or a manifold have been presented in Verriest
and Gray [1998] and Gray and Verriest [2006]. Model reduction meth-
ods based on proper orthogonal decomposition have been developed
for linear and nonlinear systems, see e.g. Kunisch and Volkwein [1999],
Willcox and Peraire [2002], Hinze and Volkwein [2005], Grepl et al.
[2007], Kunisch and Volkwein [2008] and Astrid et al. [2008]. Finally,
some computational aspects have been investigated in Lall et al. [2002],
Willcox and Peraire [2002], Gray and Verriest [2006] and Fujimoto and
Tsubakino [2008].

Moment matching for nonlinear systems

A fundamental preliminary result for the development of model reduc-
tion by moment matching for nonlinear systems has been to recognize
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