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Nonlinear Model Reduction Strategies
for Rapid Thermal Processing Systems

Suman Banerjee, J. Vernon Cole, and Klavs F. Jensen

Abstract—We present a systematic method for developing low
order nonlinear models from physically based, large scale finite
element models of rapid thermal processing (RTP) systems. These
low order models are extracted from transient results of a detailed
finite element model using the proper orthogonal decomposition
(POD) method. Eigenfunctions obtained from the POD method
are then used as basis functions in spectral Galerkin expansions
of the governing partial differential equations solved by the finite
element model to generate the reduced models. Simulation results
with the reduced order models demonstrate good agreement with
steady state and transient data generated from the finite element
model, with an order of magnitude reduction in execution time.

Index Terms—Eigenfunctions, eigenvalues, Galerkin method,
rapied thermal processing, reduced order systems.

I. INTRODUCTION

PROCESSES used to manufacture semiconductor devices
are becoming increasingly complex, while competition

demands that these devices be brought to market more quickly
and manufactured more reliably. This calls for reduction
in the large number of cut-and-try iterations in developing
processes, process equipment, or process control software. In
order to speed up this development process, one needs to
understand the complicated physical rate processes governing
each fabrication step. Such an understanding is best expressed
in terms of a detailed, physically based, mathematical model.
However, the solution of such a model is often time consuming
and requires the use of hardware and software resources
beyond those available to typical manufacturing organizations
because of the complex time dependent and three-dimensional
nature of the production equipment. Simulations of these
processes using the existing computational models can take
hours to days to yield results. Therefore, techniques are
required for deriving low-order, physically based models for
semiconductor manufacturing processes. These models could
be used to study on-line process variations or to answer “what-
if” type of questions under a limited range of conditions.
The reduced complexity and smaller computational storage
requirements imply that the reduced models can be simulated
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on desktop computers (such as PC’s), besides workstations.
Hence, process engineers and operators could use these models
for a better understanding of semiconductor manufacturing
processes. A well-designed reduced model could help in
cutting down the number of experiments required in designing
a process recipe and thus reduce the transition time in bringing
a process from the research to the manufacturing stage in a
fabrication line. Another use for such a model would be in
advanced model based control strategies.

In this paper, we have studied a model reduction technique
using a rapid thermal processing (RTP) system as a test
vehicle. RTP is an emerging technology in chip manufacturing
processes and has shown promise in a wide variety of appli-
cations. A typical fabrication process may consist of as many
as 26 different RTP steps of oxidation, annealing, nitridation
and chemical vapor deposition [1]. The demand for submicron
device sizes have placed severe constraints on the thermal
processing of silicon wafers. To minimize solid state diffusion
of dopants, the amount of time spent by the wafer close to
processing temperature needs to be considerably reduced. RTP
provides a viable alternative to existing thermal processing
techniques. RTP systems are, in general, single wafer reactors
[2], [3]. The wafer is heated by tungsten halogen filament
lamps or by water-cooled arc lamps. The primary mode of
heat transfer to the wafer is by radiation from the lamps.
The wafer is typically supported by quartz pins, so that the
wafer temperature may be ramped at very high rates (100
K/s). After processing, the wafer is ramped down quickly
and the process gases are purged from the reactor using inert
gases. The wafer processing time in a RTP reactor is very
short, which minimizes diffusion lengths and preserves already
formed dopant profiles from previous steps. The fast dynamics
and transient nature of a RTP system make it a good choice for
exploring the capabilities of the model reduction procedure.

The emerging nature of RTP technology, drives the need
for models, both reduced and complex, which would lead to
a better understanding of the process. A number of model
based control studies of RTP systems have been developed
[4]–[8], but, further advances in control design would need
accurate models capable of simulating the process in real time
(or faster). In this work we have developed nonlinear low
order models without approximating the physical conservation
equations describing the process, thereby making them more
accurate compared to conventional linear models over a wider
range of conditions. Such models show promise for application
in the development of model based control schemes [9].
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Fig. 1. Schematic representation of the model reduction method.

II. M ODEL REDUCTION APPROACH

The model reduction strategy is shown schematically
in Fig. 1. A detailed, physical model of a generic two-
dimensional (2D) RTP system [10], [11] with features relevant
to the next generation of RTP systems serves as the base case
for the model reduction study. The modeling strategy used
to generate this detailed model is similar to that used in
previous simulations of RTP systems [10], [11]. It is based
on a finite element (FEM) solution of the general equations
representing conservation of mass, momentum and energy.
The boundary condition of the energy equation describes the
radiation heat transfer, which separates the thermal radiation
into multiple wavelength bands and includes the effect of
multiple reflections. In the present case studies the velocity
field is assumed to be constant through the RTP cycle, fixed
at a steady state solution at the process hold conditions,
a reasonable approximation at low pressures [10], [11]. At
higher pressures transient flow effects must be included, but
the general model reduction strategy will remain the same.

The modeling equations are solved by the Galerkin finite
element method [10], [11]. In this method the unknown flow
and temperature fields are approximated by expansions in
piecewise, low order polynomials. This approach has the
advantage of being general and flexible, but the large num-
ber of coefficients required leads to large nonlinear matrix
problems. The numerical solution of this problem therefore
requires workstations and special computational algorithms.
The number of coefficients involved in representing the tem-
perature fields could, in principle, be reduced if the approxi-
mating functions were similar in form to the actual solution.
One approach for obtaining better approximating functions
is the proper orthogonal decomposition (POD) method [12],
[13] (also known as the Karhunen–Loève procedure). This
method was first suggested by Lumley [14] as a rational
procedure for the extraction ofcoherent structures[12]. In
this method, empirical eigenfunctions can be extracted from
either experimental observation or detailed model predictions
of temperature fields (“snapshots”) for the entire reactor at
discrete time intervals. The method of eigenfunction extraction

starts with a matrix of transient temperature fields generated
by the finite element model at discrete time intervals:

(1)

(2)

where is the transient temperature field extracted at time
and is the steady state temperature field. For generating

these temperature fields, the transient FEM model of the RTP
reactor is run with a set of lamp powers till the wafer attains
a steady temperature, After the wafer has attained a steady
state, the lamp powers are individually perturbed to generate
variations in the wafer temperature. The temperature fields
obtained from these lamp power perturbations are then stored
in the matrix A temporal correlation matrix is subsequently
constructed from the snapshots as follows:

(3)

where is the inner product in the norm. The eigenfunc-
tions are obtained from a singular value decomposition of
the temporal correlation matrix,

(4)

(5)

where is a matrix whose columns are the left singular
vectors of and is a diagonal matrix with the singular
values of on the diagonal. Therefore the eigenfunctions
are admixtures of the snapshots [15], [16]. The number of
eigenfunctions determined from this technique is equal to the
dimension of the square temporal matrix, These eigen-
functions form an optimal basis set for the given series
of snapshots [18]. The remaining eigenfunctions, for the
series of snapshots, are not uniquely determined. The only
requirement on them is that they be orthogonal to the already
determined set, and hence orthogonal to the snapshots
The empirical eigenfunction set generated by this technique
can be used to regenerate a series of temperature fields by



268 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 11, NO. 2, MAY 1998

Fig. 2. Comparison of a typical temperature snapshot obtained from the FEM
model with the dominant eigenfunction extracted by the POD procedure.

projecting a suitable set of temporal coefficients, on the
eigenfunction basis set as

(6)

In order to solve for this set of temporal coefficients,
we have to integrate an initial value problem for a group of
ordinary differential equations (ODE’s). This set of ODE’s,
which is the low order reduced model, is obtained by the
procedure discussed in the following section.

III. M ETHOD OF GENERATING

NONLINEAR REDUCED-ORDER MODELS

Fig. 2 compares a typical temperature snapshot obtained
from the transient FEM model to the dominant eigenfunction
extracted from the snapshots by the POD method discussed
above. The dominant eigenfunction, i.e., the eigenfunction
corresponding to the largest singular value, has most of the
qualitative information about the temperature field. This can
be seen from the figure where the contours of the temperature
field closely match those of the dominant eigenfunction.
Therefore, the empirical eigenfunctions, whether determined
from computation or experiments, may be viewed as ideal
fitting functions to be used in a pseudospectral [17] Galerkin
procedure [18].

In general, for a set of differential equations on one variable,
expressed as

(7)

the pseudospectral Galerkin procedure is given by

(8)

where is the inner product, represents the eigenfunc-
tions, and is the number of eigenfunctions used in the
pseudospectral Galerkin procedure. This procedure, using em-
pirical eigenfunctions, has been applied to modeling turbulence
and large-scale problems in fluid mechanics [16], [19]–[22].

The general method of expressing the FEM model in a form
amenable to model reduction is given below. The important
idea is to separate the terms linear and nonlinear in temperature
so that they can be handled separately. The conservation of
energy equation in the FEM model takes the following form:

(9)

where

density;
specific heat;
velocity vector;
temperature;
fluid thermal conductivity.

The density and specific heat of the gas phase are modeled
as temperature dependent properties in the FEM model. The
solid thermal properties, except for the thermal conductivity
of the silicon wafer, are constant in the model. The boundary
condition for (9) takes the following form [10], [11]

(10)

The left-hand side represents the conduction into the solid.
This is balanced on the right hand side by conduction in the
gas, energy input from the lamps, and energy transfer with
other surfaces in the system. In (10), is the solid thermal
conductivity, is the absorptance of the solid surface,is
the radiation intensity of lamp is the Stefan–Boltzmann
constant, is the percentage of radiation, in band
leaving surface which is absorbed by surface (by direct
viewing and all intervening reflections). The exchange factors,

are assumed to be temperature independent based on the
high temperature opaque silicon properties [10], [11]. This
has been shown to be a reasonable approximation for RTP
processes [10], [11].

The gas in the lamphouse and in the region between the
showerhead and the quartz window is treated as stagnant.
Therefore the gradients in temperature in these regions are
determined by gas phase conduction. There are additional
boundary conditions at the fluid–solid interfaces on the exterior
walls of the reactor which represent heat transfer to the sur-
rounding ambient. Using the Galerkin finite element method,
(9) is transformed to a set of algebraic equations as follows:

(11)
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where are the piecewise continuous basis functions used
in the finite element method, represents the volume of the
domain and is the boundary of the domain [10], [11]. The
boundary condition shown in (10) is evaluated as part of the
boundary integral in (11).

In order to make the conservation of energy equation (9)
amenable to the model reduction technique, the terms in
the finite element expansion (11) are lumped together and
expressed in the following matrix form

(12)

where is the nonlinear radiation heat transfer contri-
bution to the reduced model and can be written as

(13)

is obtained by lumping all the dynamic contribution
from the energy conservation equation and is obtained
by lumping all the convection and conduction terms from the
energy conservation equation.

This separates the nearly linear conduction and convection
terms in the matrix from the highly nonlinear radiation
terms in the matrix Thus, the temperature dependence
of material properties, such as the gas phase thermal conductiv-
ity, gas phase specific heat, etc., can be linearized and
included in the matrices and In the actual FEM
model, these material properties are expressed as power law
fits which are weakly nonlinear compared to the terms in the
radiation heat exchange. Since the reduced model is extracted
using deviation eigenfunctions, the models extracted would be
exact around the given steady state and would differ from the
FEM model around other operating conditions depending on
the nonlinear effects of the material properties.

The method of extracting nonlinear reduced order models
is implemented in deviation variables, i.e., the steady state
temperature field is subtracted from the transient temperature
fields and the eigenfunctions are extracted from the deviation
fields. This eliminates any steady-state offset completely, if
one generates the reduced model from small perturbations
about a given steady state. The nonlinearity in the radiation
heat exchange term prevents a linearization of the model
equations from being valid over a broad range of conditions.
Therefore, this contribution to the reduced model has to be
evaluated by reconstructing the temperature fields, generating
the term explicitly in absolute temperatures, and then
evaluating the radiation contribution to the reduced model at
every time step.

The empirical eigenfunctions obtained from the POD
method are used in a pseudospectral Galerkin expansion of
(12). The resulting low order system of ordinary
differential equations takes the form

(16)

where is the nonlinear radiation exchange term. The non-
linearities which arise from the temperature dependence of the
emissivity, thermal conductivity, density and heat capacity are
not explicitly accounted for at each time instant. Instead these
properties are evaluated at the given steady state resulting in
the matrices and The matrix arises from the
steady state contribution of the heat transfer to the ambient
boundary conditions and the steady state part of the radiation
term

Equation (16) can be reformulated in matrix notation as

(17)

where is the matrix of eigenfunctions, is the temporal
coefficient vector, and is the lamp power transformation
matrix. This set of ordinary differential equations is then
integrated using an initial value solver. In order to calculate
the contribution, the term, is calculated at each
time instant using (6).

IV. STEADY-STATE PERFORMANCE OFREDUCED MODELS

The method outlined above was used to obtain reduced
models with ten unknowns from the FEM model with 5060 un-
knowns. The reduced models showed excellent agreement with
the FEM model at steady state operating conditions and for lo-
cal perturbations around those operating conditions. The FEM
model uses a two-band approximation for the partial trans-
mission by quartz in different wavelength ranges. The quartz
is treated as transparent for wavelengths shorter then 4m
and opaque for wavelengths longer than 4m [10], [11]. The
principal source of deviation between the reduced and FEM
models proved to be the nonlinear function which decides the
fraction of radiation in each of the two wavelength bands.

In order to arrive at this conclusion, a reduced model
was extracted using lumped band radiation properties. In this
reduced model, referred to elsewhere in this paper as the
“lumped band reduced model,” there is a single matrix
in (17)] which accounts for the total radiation contribution.
In the other type of reduced model, the explicit two-band
formulation from the FEM model is retained. In this type of
reduced model, referred to as the “explicit two-band reduced
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Fig. 3. Comparison of the wafer center temperature of FEM and reduced
models. (a) Lumped radiation model. (b) Explicit two band radiation model.

model,” there are two matrices and which separately
account for the radiation contributions in the two wavelength
bands. The fraction of the radiation contribution in each of the
two bands is read dynamically from a look up table indexed to
temperature. In the lumped band reduced model the fractions
are the same as those at the steady state at which the reduced
model is extracted. The wafer center temperatures predicted
by the lumped band reduced model and the explicit two-
band reduced model are compared to those predicted by the
FEM transient model in Fig. 3. Both the reduced models were
extracted at a steady state where the wafer temperature was
at 1300 K, so that the properties in the matrices and

in (16) were for that steady state. Both the reduced
models predict the temperature perturbations at 1300 K steady
state operating conditions with reasonable accuracy. As can be
seen from the figure, the temperature difference between the
reduced and FEM models is within 2 K. The explicit two-band
reduced model predicts the wafer center temperature more
accurately at other steady state operating conditions, when
compared to the lumped band reduced model. Hence, in the
rest of the study, the explicit two-band reduced model was
used and is referred to as the “reduced model.”

The most nonlinear term in the conservation of energy
equation, other than the radiation boundary condition, is the
inverse of temperature appearing in the gas density. In an
attempt to further improve the accuracy of the explicit two-
band reduced model, this term was linearized about the steady
state. However, this change gave no improvement in the
agreement of the reduced and FEM models because the wafer,
quartzware, and walls provide the majority of the system
mass, and these solids have a constant density in both the
formulations. This leads to the conclusion that the deviation of
the reduced model temperature trajectory from that predicted
by the FEM model for other steady state operating conditions
is due to the nonlinear variation of gas phase properties such
as thermal conductivity and specific heat.

Fig. 4. Variation of rms error of wafer temperature with increasing number
of eigenfunctions.

V. VARIATION OF RMS ERROR

WITH INCREASING MODEL ORDER

An important issue in extracting reduced models is deciding
upon the number of eigenfunctions to be used in generating
the reduced model. The fewer the number of eigenfunctions,
the less accurate the reduced model is going to be when
compared to the FEM model. On the other hand, a larger
number of eigenfunctions would increase the complexity of
the reduced model to an extent that it might be too slow to
be used in real time process control or other applications. To
study this problem, the lamp power was perturbed around a
given steady state operating condition, giving rise to local
temperature perturbations similar to those shown in Fig. 3.
The rms error of the wafer temperature between the reduced
and FEM model was calculated as follows:

Error (18)

where denotes the number of points on the wafer surface
over which the rms error is evaluated. The rms error was
found over 15 points distributed over the wafer surface, and the
results were plotted against the number of eigenfunctions as
shown in Fig. 4. The error falls steeply till the introduction
of the fifth eigenfunction. Following this, there are minor
variations in the rms error till the introduction of the tenth
eigenufnction. The rms error then settles down at approxi-
mately 1.1 after the tenth eigenfunction. The results show
that a fifth order reduced model would be good enough for
the model reduction strategy, however we chose a tenth order
reduced model to perform a rigorous analysis of the technique.

VI. TRANSIENT RESPONSESUSING REDUCED-ORDERMODELS

After having studied the response of the reduced models
at steady-state operating conditions, the next issue addressed
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Fig. 5. Behavior of wafer center temperature of FEM and reduced models,
during transient ramp up and hold phases.

was the performance of the reduced model in replicating the
transient RTP cycle as generated by the FEM model. For this
study, a suitable lamp power profile was designed so that
the wafer temperature was ramped from 300 to 1300 K at
approximately 10 C/s After an initial stabilization of the
numerical simulations for 250 s, the lamps are turned on and
the wafer temperature is ramped from 300 to 1300 K in 150
s and then held constant at 1300 K for 800 s. All the reduced
models used to study the transient ramp response were explicit
two-band reduced models. A typical RTP cycle is much shorter
in duration than the present case study, but the larger cycle
was chosen to explore the effect of any drifts which might be
present in the reduced model, as they would be amplified over
a length of time.

Fig. 5 shows the comparison of the ramp response as shown
by the FEM transient model and the reduced model extracted
at a wafer steady state of 1300 K. The reduced model attains
a different steady state from that given by the FEM model
when the lamps are kept at zero power. This is because the
fluid properties in the reduced model are linear extrapolations
from the 1300-K values instead of the nonlinear power law fits
employed in the FEM model. As the lamp powers are ramped,
the reduced model shows good agreement with the FEM model
and finally attains the same steady state as the FEM model.

In order to further understand the performance of the
reduced order modeling scheme, a model was extracted at a
wafer steady state of 300 K. This reduced model was then
used to study the ramp response. The results are also shown in
Fig. 5. As seen from the figure, the initial steady state attained
by the reduced model and the FEM model are the same. This
is to be expected as the reduced model extracted at 300 K has
the same set of properties as the FEM model at 300 K. This
reduced model shows good agreement with the FEM model
for the lower portion of the ramp, but deviates as the FEM
model nears 1300 K. Finally at the higher steady state the
reduced model attains a different steady state from the one
attained by the FEM model because the linearization of the
fluid properties is inadequate at this temperature.

Fig. 6. Temperature flood plots of FEM and reduced models during hold
phase.

The temperature fields throughout the reactor at the higher
temperature steady state, at 800 s into the cycle, are compared
in Fig. 6. The reduced model generated at 1300 K shows
excellent agreement with the full FEM model, as expected.
In the 300-K reduced model, the walls, showerhead, and the
quartz window are cooler than both the 1300-K reduced model
and the FEM model. This is because the thermal conductivity
of the gas phase is over predicted by the 300-K reduced model.
This effect is much more predominant in the lamphouse and
in the region between the quartz window and the showerhead
because the fluid is treated as stagnant in these regions.
As a result, the temperature gradients in these regions are
determined by radiation and gas phase conduction. In other
parts of the reactor this effect is not so evident due to the
forced convection in the gas.

These results show that at least two reduced order models
need to be combined in order to replicate the FEM ramp
response over the entire trajectory. The strategy devised in this
regard was to start integrating with the reduced order model
extracted at 300 K, then switch to the reduced model extracted
at 1300 K when the wafer center temperature is at 1000 K.
The switching temperature of 1000 K was chosen because
this was the temperature at which the trajectories of both
the reduced models intersected the FEM trajectory. Switching
models forces the time integrator to restart, and initial values
for the 1300-K reduced model coefficients are needed at
the switching time. To obtain the coefficients, the transient
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Fig. 7. Behavior of wafer center temperature of FEM and combined reduced
models, during transient ramp up and hold phases of the RTP cycle.

temperature field at 1000 K was extracted and the inverse
problem was solved in the lower dimensional eigenfunction
space. This was done by using the QR-Transform method [23]
to determine a least squares solution of (6) for the temporal
coefficients.

The results of this strategy are shown in Fig. 7. As can be
seen from the figure, the trajectories obtained from the reduced
models and the FEM model coincide almost exactly. There is
a deviation between the two trajectories immediately after the
switch-over, because the integrator has to be reinitialized at
the switch-over temperature. As a consequence, the integrator
has to start with a new set of coefficients and lacks information
about the time derivatives of the coefficients. Also, the least
squares solution is not the exact initial state for the given
temperature field, when the integrator switches between the
two sets of eigenfunctions.

The difference between the FEM and the reduced model
temperature trajectories are plotted in Fig. 8. Other than at
the switch-over temperature, there is good agreement between
the two trajectories. If we ignore the region of the switch-
over between the reduced models, the temperature difference
is within 10 C for the center and within 15 C for the
edge.

The reduced models extracted at wafer steady state tem-
peratures of 1300 K and 300 K were then used to study the
cool down phase of the RTP cycle. As seen from Fig. 9, the
1300-K reduced model reaches a higher steady state on cool
down compared to the FEM transient model and the 300-K
reduced model reaches a lower steady state. Therefore unlike
in the ramp up phase, the cool down part of the RTP cycle
cannot be replicated by switching between the two models. In
order to understand the cool down behavior better, temperature
snapshots obtained from the reduced models at the end of
the cool down phase (1600 s) are compared to the snapshot
obtained at the same time instant from the FEM model in
Fig. 10. The 1300-K model shows a much hotter reactor
compared to the FEM model. Whereas the 300-K model shows

Fig. 8. Difference in wafer temperatures between FEM and combined re-
duced models during ramp up and hold phases of the RTP cycle.

Fig. 9. Behavior of wafer center temperature of FEM and reduced models
during ramp up, hold, and cool down phases of the RTP cycle.

a reactor which has reached a nearly uniform temperature of
300 K throughout the reactor. The hottest temperature zone in
the 1300-K model is in the lamphouse and the region between
the quartz window and the showerhead. These effects are again
due to the linearization of the gas phase properties in the
reduced models. The 1300-K reduced model underestimates
the thermal conductivity, so there is less conductive cooling
from the cold walls and the wafer region is warmer than the
FEM. This effect is predominant in the lamphouse and in
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Fig. 10. Temperature flood plots of FEM and reduced models during cool down phase of the RTP cycle.

the region between the quartz window and the showerhead
because the gas is treated as stagnant in these regions, leading
to the temperature gradients in this region being determined
by radiation and gas phase conduction. This leads to the
occurrence of the hot-zones in these regions in the 1300-K
reduced model. The 300-K model overpredicts the thermal
conductivity at elevated temperatures. As a result, there is
too much conduction coupling between the wafer and walls,
leading to a cooler reactor. In both cases, the most dramatic
difference between the FEM and the reduced models are in
the lamphouse and in the region between the showerhead and
window. In other regions of the reactor, the forced convection
of the gas helps in removing some of these effects.

There are several ways of approximating the cool down
dynamics using reduced models. One of them would be to
use some kind of arithmetic average of the responses of
the two reduced models (300- and 1300-K reduced models)
to yield a cool down trajectory similar to the FEM model.
Hence the strategy to replicate the cool down trajectory was
to integrate both the reduced models simultaneously over the
entire RTP cycle. For the ramp up phase, a linear interpolating
function of wafer temperature was used to determine the
contribution of each of the reduced models to the temperature
trajectory. At the initial part of the ramp up phase, the
temperature predicted by the 300-K reduced model is taken,
and at temperatures close to the hold phase, the temperature
predicted by the 1300-K reduced model is taken as the
overall response of the combined reduced models. In between
these two extremes, the interpolating function determines the
contribution of the two reduced models in determining the
overall temperature trajectory. In the cool down phase, an
average of the predictions of the reduced models gives the
overall response. The results of this strategy are shown in
Fig. 11.

Another strategy to replicate the cool down dynamics would
be to extract a reduced model at an intermediate wafer steady

Fig. 11. Transient ramp up, hold, and cool down response of FEM and
combined reduced models. (a) Combination of reduced models extracted at
1300 and 300 K with arithmetic averaging. (b) Combination of reduced models
extracted at 1300, 1130, and 300 K with switch over.

state, viz. 1130 K, and switch over to this reduced model
during the cool down phase. After studying the cool down
temperature trajectories predicted by reduced models extracted
at different wafer steady states, the reduced model extracted
around a wafer steady state of 1130 K was found to have the
best agreement with the cool down temperature trajectory as
predicted by the FEM model. Therefore, in this strategy we
start integrating using the 300-K reduced model and switch
to the 1300-K reduced model at 1000 K during the ramp
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Fig. 12. Replication of RTP ramp cycle using FEM and reduced models.

up phase. The response of the 1300-K model is taken as the
overall response of the reduced models during the hold phase.
At the end of the hold phase (1200 s), we switch over to the
1130-K reduced model and use it to predict the response for
the entire cool down phase. The results are shown in Fig. 11.
Both the strategies show reasonable agreement with the FEM
model, but the latter strategy is marginally better.

Finally, the reduced models were used to replicate an actual
RTP cycle. In this cycle, the lamp powers were ramped from
their initial switched-off state to the values corresponding to
the wafer steady state of 1300 K in 20 s. The lamp powers
were then held at the steady state values for 30 s and then
ramped down to the switched-off state in 20 s. The effect of
this power protocol on the wafer center temperature for both
the FEM and reduced models are shown in Fig. 12. For the
reduced model strategy, the 300-K reduced model was used to
replicate the initial wafer steady state. At the start of the ramp
up, the integrator was switched over to the 1300-K reduced
model and this was used to replicate the entire trajectory from
then on. The figure shows good agreement between the FEM
and reduced model responses and further validates the efficacy
of the reduced model strategy in replicating RTP transients.

VII. REDUCTION IN COMPUTATION TIME

The primary motivation for developing the technique of
reduced order model extraction is to obtain reduced models
with good predictive capabilities which have significantly less
computation times compared to the FEM model. Therefore,
timing runs were carried out both during steady state operating
conditions and during transient ramp up to determine the
reduction in computation time. For 200 s of real process
time at the steady-state operating temperature of 1300 K, the
following were the computation times for the FEM model
and the reduced model extracted at 1300 K to perform local
temperature perturbations of the kind shown in Fig. 3. The
FEM model and the reduced model were simulated on a
HP-735 workstation.

TABLE I

Models Computation Time
FEM Transient Model 45 min

1300 K Reduced Model 0.75 min

TABLE II

Models Computation Time
FEM Transient Model 22.17 min

Reduced Model with switch-over 1.8 min
Combined Reduced Models 3.73 min

As shown in Table I, the time required for execution of the
reduced model is nearly two orders of magnitude less than the
FEM model. Timing runs were also carried out to compare the
reduction in computation time between the combined reduced
models used for the cool down study, the reduced model with
switch over used to study the ramp up phase and the FEM
transient model. For a real processing time of 150 s for the
ramp up between 300 and 1300 K the computation times on
a HP-735 workstation are shown in Table II.

Both the reduced models show nearly an order of magnitude
decrease in computation time when compared to the FEM
model. The computation time doubles in the case of the
combined reduced models, as two reduced models, and hence
two sets of differential equations, have to be integrated simul-
taneously. The computation time for this combined model can
be decreased by choosing lesser number of eigenfunctions in
each of the reduced models, hence leading to a smaller number
of differential equations in each of the two sets. The reduced
model with switch-over integrates faster than real time and
shows promise of being useful in model based control.

The main overhead in terms of computation time comes
in the reduced model extraction stage. A typical snapshot
generation and eigenfunction extraction run can take hours.
In our case, generation of 220 temperature snapshots and
eigenfunction extraction from the transient FEM model took

h on a HP-735 workstation. Hence reduced models are
good for applications in which the models have to be exe-
cuted repetitively, as in model based controllers, or to study
process changes under small perturbations. This would involve
extracting a few reduced models at predetermined steady
state operating conditions once, and then using them for the
desired applications repetitively, thereby cutting down on the
overhead.

VIII. C ONCLUSION

A strategy for extracting lower dimensional physically based
reduced-order models from complex finite element models has
been developed. RTP was used as a test vehicle because of its
dynamic nature, but the reduced model extraction procedure
can be applied to any other process which can be described
by similar fluid-thermal conservation equations. The reduced
models (ten unknowns) showed very good agreement with
the FEM model (5060 unknowns) not only around the steady
state operating conditions from which they were extracted,
but also at other steady operating conditions. This technique
is superior to other strategies, such as lumping of nodes
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within the FEM framework or assuming certain variables
constant, because it does not simplify any of the physical
conservation equations and the eigenfunction sets used to
expand the equations carry qualitative information about the
solution fields. A single reduced model can, therefore, be
used for process optimization studies and answering “what
if” type of process questions spanning a large window in
process space (100 C). We have shown how the entire
RTP cycle (ramp up, hold and cool down) can be simulated
using combinations of a few reduced models in real time
on workstations. The reduced models have computation times
which are an order of magnitude less than the FEM model. The
reduced model strategy can be used in a combined feedforward
and feedback control application. In such a strategy, the
reduced models described in this paper would be used to
provide the feedforward trajectory and a simple PID controller
would be used to implement feedback control around this
predicted trajectory. Due to the linearization of the gas phase
thermal properties, the temperature response of the reduced
models would tend to become more and more inaccurate
as the range of operation is stretched beyond the conditions
around which the linearization is done. Therefore, by explicitly
accounting for these nonlinearities, the response of the reduced
models can be improved. However, this would introduce
further complexities in the reduced model and increase their
computation time. Intelligent “model switching” could provide
a viable alternative to circumvent this tradeoff problem.
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