
RICE UNIVERSITY

Nonlinear Model Reduction via Discrete Empirical
Interpolation

by

Saifon Chaturantabut

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Approved, Thesis Committee:

Dr. Danny Sorensen, Chair
Noah G. Harding Professor of
Computational and Applied Mathematics

Dr. Matthias Heinkenschloss
Professor of Computational and Applied
Mathematics

Dr. Mark Embree
Professor of Computational and Applied
Mathematics

Dr. Matteo Pasquali
Professor of Chemical and Biomolecular
Engineering and Chemistry

Houston, Texas

May, 2011

Abstract

Nonlinear Model Reduction via Discrete Empirical

Interpolation

by

Saifon Chaturantabut

This thesis proposes a model reduction technique for nonlinear dynamical systems

based upon combining Proper Orthogonal Decomposition (POD) and a new method,

called the Discrete Empirical Interpolation Method (DEIM). The popular method of

Galerkin projection with POD basis reduces dimension in the sense that far fewer

variables are present, but the complexity of evaluating the nonlinear term generally

remains that of the original problem. DEIM, a discrete variant of the approach

from [11], is introduced and shown to effectively overcome this complexity issue.

State space error estimates for POD-DEIM reduced systems are also derived. These

L2 error estimates reflect the POD approximation property through the decay of

certain singular values and explain how the DEIM approximation error involving the

nonlinear term comes into play. An application to the simulation of nonlinear miscible

flow in a 2-D porous medium shows that the dynamics of a complex full-order system

of dimension 15000 can be captured accurately by the POD-DEIM reduced system

of dimension 40 with a factor of O(1000) reduction in computational time.

Acknowledgements

I would like to thank Prof. Dan Sorensen for being my great advisor. I am grateful

for his insightful guidance, thoughtful understanding, support, encouragement, and

friendship throughout the course of this work. I am indebted to Dan for giving me

many invaluable opportunities which truly made a difference in my academic life.

Without his help, most of my achievements would not have been possible nor would

this thesis have been completed.

I would like to thank the thesis committee members: Prof. Matthias Heinken-

schloss for providing some useful background references and the starting model prob-

lem; Prof. Mark Embree for his helpful suggestion on the error analysis in this thesis,

for being a great instructor and for his incredibly detailed proof-reading with very

useful comments; and Prof. Matteo Pasquali for his insightful suggestions on the

polymer modeling problem. I also would like to thank Prof. Steve Cox and Anthony

Kellems for providing the neuron model to initially test the algorithm in this thesis;

Prof. Béatrice Rivière for suggesting the miscible flow model to illustrate an appli-

cation of the proposed method and for giving related helpful advice and insightful

comments; Dr. Jan Hewitt for helping me strengthen the thesis writing and presen-

tation skills. Part of this thesis work was done during my visit at Delft University of

Technology, NL, where Dan has spent his sabbatical leave during Fall 2010. I wish

to thank Dan for this great opportunity and Prof. Marielba Rojas for being a great

iv

host during my time there.

I would like to thank everyone in the CAAM department for their friendship,

especially, Daria Lawrence, Brenda Aune, Fran Moshiri, Ivy Gonzalez, and Eric Aune

for their wonderful assistance. Thanks also to all my dear friends in Houston for being

part of my good memory during these five years.

My special thanks go to my family, my parents and my two sisters, for their end-

less encouragement, warm support, and unconditional love. I am greatly indebted to

my Mom for always being there for me during my hard times and for the countless

phone calls during these years away from home.

Above all, I thank God for the strength and wisdom to accomplish this work.

Contents

Abstract ii

Acknowledgements iii

List of Figures ix

1 Introduction 1

1.1 Motivation and Goal . 1

1.2 Existing Techniques . 5

1.2.1 Techniques for Constructing Reduced Basis 5

1.2.2 Techniques for Nonlinearities 9

1.3 Thesis Outline and Scope . 14

2 Nonlinear Model Reduction via Discrete Empirical Interpolations 16

2.1 Problem Formulation . 17

2.1.1 Proper Orthogonal Decomposition (POD) 20

2.1.2 Complexity Issue of the POD-Galerkin Approach 22

vi

2.2 Discrete Empirical Interpolation Method (DEIM) 24

2.2.1 DEIM: Algorithm for Interpolation Indices 25

2.2.2 Error Bound for DEIM . 32

2.2.3 Numerical Examples of the DEIM Error Bound 37

2.2.4 Application of DEIM to Nonlinear Discretized Systems 42

2.2.5 Interpolation of General Nonlinear Functions 46

2.2.6 Computational Complexity . 50

3 A State-Space Error Estimate for POD-DEIM Reduced Systems 54

3.1 Problem formulation . 55

3.2 Error analysis of POD-DEIM reduced system 60

3.2.1 Error bounds in ODE setting 62

3.2.2 Error bounds in discrete setting 64

3.3 Analysis based on generalized logarithmic norm 69

3.3.1 Error bounds in continuous ODE setting 71

3.3.2 Error bounds in discretized ODE setting 73

3.4 Conclusion . 79

4 Model Problems/Numerical Examples 81

4.1 The FitzHugh-Nagumo (F-N) System 82

4.1.1 Full Order Model of FD Discretized System 83

4.1.2 A POD-Galerkin Reduced Order Model 85

vii

4.1.3 Reduced-Order Model from POD-DEIM Method 86

4.1.4 Numerical Results . 88

4.2 A Nonlinear 2-D Steady State Problem 90

4.2.1 Model Reduction of the FD Discretized System 91

4.2.2 Numerical Results . 93

5 Application of the POD-DEIM approach to Nonlinear Miscible Vis-

cous Fingering in Porous Media 97

5.1 Introduction . 98

5.2 Governing Equations . 100

5.3 Finite Difference (FD) Discretized System 103

5.4 Reduced-Order System . 105

5.4.1 POD reduced system . 105

5.4.2 POD-DEIM reduced system 109

5.5 Numerical Results . 112

5.5.1 Fixed Parameters . 113

5.5.2 Varying Péclet number: Pe ∈ [110, 120] 117

5.5.3 Miscible Viscous Fingering Induced by Chemical Reaction . . 118

5.6 Conclusions and Remarks . 121

6 Conclusions and Future Work 124

Bibliography 128

viii

A Computational Complexity Details 143

B Example: State-space error bounds 150

B.1 Example: POD-DEIM Model Reduction for Finite Difference System

of Burgers’ Equation . 150

B.2 Numerical Results on Approximate State-Space Error bounds 152

List of Figures

2.1 Illustration of the selection process of indices in Algorithm 1 for the DEIM ap-

proximation. The input basis vectors are the first 6 eigenvectors of the discrete

Laplacian. From the plots, u = uℓ, Uc and r = uℓ−Uc are defined as in iteration

ℓ of Algorithm 1. 28

2.2 Singular values and the corresponding first 6 POD basis vectors with DEIM points

of snapshots from (2.47). 40

2.3 The approximate functions from DEIM of dimension 10 compared with the original

functions (2.47) of dimension n = 100 at µ = 1.17, 1.5, 2.3, 3.1. 40

2.4 Compare average errors of POD and DEIM approximations for (2.47) with the aver-

age error bounds and their approximations given in (2.44) and (2.45), respectively.

. 41

2.5 Singular values and the first 6 corresponding POD basis vectors of the snapshots

of the nonlinear function (2.49). 43

2.6 First 20 points selected by DEIM for the nonlinear function (2.49). 43

x

2.7 Compare the original nonlinear function (2.49) of dimension 400 with the POD and

DEIM approximations of dimension 6 at parameter µ = (−0.05,−0.05). 44

2.8 Left: Average errors of POD and DEIM approximations for (2.49) with the average

error bounds given in (2.44) and their approximations given in (2.45). Right:

Average CPU time for evaluating the POD and DEIM approximations. 44

2.9 Average CPU time (scaled with the CPU time for full-sparse system) in each New-

ton iteration for solving the steady-state 2-D problem. 53

4.1 Numerical solutions v and w from the original FD system (dim 1024) of F-N system

(4.1)–(4.4). 89

4.2 The singular values of the 100 snapshot solutions for v, w, and f(v) from the

full-order FD discretization of the F-N system. 89

4.3 Left: Phase-space diagram of v and w at different spatial points x from the FD

system (dim 1024) and the POD-DEIM reduced systems (dim 5). Right: Corre-

sponding projection of the solutions at different values of x onto the v-w plane. . 89

4.4 Left: Average relative errors from the POD-DEIM reduced system (solid lines) and

from POD reduced systems (dashed line) for the F-N system. Once the dimension

of DEIM reaches 40, the approximation errors from the POD-DEIM and POD

reduced systems are indistinguishable. Right: Average online CPU time (scaled

with the CPU time of the full-sparse system) in each time step of semi-implicit

Euler method. 90

xi

4.5 Singular values of the snapshot solutions u from (4.19) and the nonlinear snapshots

s(u;µ) from (4.20). 94

4.6 The first 6 dominant POD basis vectors of the snapshot solutions u from (4.19)

and of the nonlinear snapshots s(u;µ) from (4.20). 95

4.7 First 30 points selected by DEIM . 95

4.8 Numerical solution from the full-order system (dim= 2500) with the solution from

POD-DEIM reduced system (POD dim = 6, DEIM dim = 6) for µ = (µ1, µ2) =

(0.3, 9). The last plot shows the corresponding errors at the grid points. 95

4.9 Average error from POD-DEIM reduced systems and average CPU time (scaled)

in each Newton iteration for solving the steady state 2-D problem. 96

5.1 Singular values of the solution snapshots and the nonlinear snapshots. 115

5.2 Concentration plots of the injected fluid (from the left half) at time t = 100 and

t = 250 from the full-order system of dimension 15000 and from the POD-DEIM

reduced system with both POD and DEIM having dimension 40 (fixed parameters). 115

5.3 (a) Average relative errors of y = [c;ψ;ω]: defined as E := 1

nt

∑nt

j=1

‖yj−yr
j‖2

‖yj‖2

, from

the POD-DEIM reduced system compared with the ones from the POD reduced

system. (b) CPU time of the full system, POD reduced system, and POD-DEIM

reduced system. 116

xii

5.4 Concentration plots of the injected fluid at time t = 50, 100, 200 from the POD-

DEIM reduced system with POD and DEIM having dimensions 30 and 50, with the

corresponding absolute error at the grid points when compared with the full-order

system of dimension 15000 (Péclet number Pe = 115). 118

5.5 Concentration plots in the flow domain of reactants A, B and the product C from

the reaction A+B → C at time t = 500 from the POD-DEIM reduced system with

POD and DEIM having dimensions 30 and 40, with the corresponding absolute

errors at the grid points when compared to the full-order system of dimension

15000 (fixed parameters). 121

A.1 Approximate Flops (scaled with Flops for the full-sparse system) for each time step

of forward Euler. 147

A.2 Average CPU time (scaled with CPU time for the full-sparse system) for each time

step of forward Euler. 147

A.3 Approximate Flops (scaled with Flops for the full-sparse system) for each Newton

iteration from Table A.2. 149

A.4 Average CPU time (scaled with CPU time for the full-sparse system) for each

Newton iteration for solving the steady-state 2D problem. 149

B.1 Solution of Burgers’ equation from full-order FD system and the singular values of

100 snapshots . 151

B.2 Exact errors and approximate error bounds at 100 time steps for POD and POD-

DEIM reduced systems constructed from POD bases of all 100 solution snapshots. 152

Chapter 1

Introduction

1.1 Motivation and Goal

In many practical applications, such as in optimization, control, and uncertainty

analysis, it is often necessary to provide real-time simulations that repeatedly solve

discretized systems of differential equations describing the physical phenomena of

interest. When the classical grid-based methods are used, the dimension of the re-

sulting discretized systems can get extremely large in order to give highly accurate

approximations. This is because each basis function (vector) of these grid-based

methods is designed to capture only local dynamics around a few grid points, and not

global characteristics of the system. Hence, performing these simulations can become

computationally intensive or possibly infeasible.

Model order reduction can be used to reduce the computational complexity and

1

2

computational time of large-scale dynamical systems by approximations of much lower

dimension that can produce nearly the same input/output response characteristics.

This thesis proposes a method concerned with dimension reduction for high dimen-

sional nonlinear ordinary differential equations (ODEs), which will be referred to as

full-order systems. Although there are numerous important large-scale applications,

such as circuit simulation and structural analysis, which are directly described by

large systems of ODEs, systems of ODEs arising from discretization of partial differ-

ential equations (PDEs) will be primary examples in this thesis. Dimension reduction

of discretized time dependent and/or parametrized nonlinear PDEs is of great value

in reducing computational times in many applications, including the neuron modeling

and two-phase miscible flows in porous media presented here as illustrations.

A common model reduction approach [4] is based on applying the Galerkin pro-

jection onto a low dimensional subspace, which is expected to contain dominant char-

acteristics of the corresponding solution space. This subspace can be represented by

a set of reduced basis functions (vectors) with global support which are “learned” ;

they are constructed from high fidelity classical discretization schemes, such as finite

difference (FD), finite volume (FV)1, or finite element (FE) methods. These reduced

basis functions are hence problem dependent. Fine scale detail is encoded in these

global basis functions and this makes it possible to obtain good approximation with

1In the context of FD or FV methods, although there is no explicit notion of using basis functions,

it can be thought of as using the standard basis vectors in R
n to span the solution at all grid points.

Also, FD methods can be thought of as local interpolation polynomials.

3

relatively few basis functions.

Among the various techniques for obtaining a reduced basis, this thesis will focus

upon the POD approach. This method constructs a reduced basis from many samples

of the trajectories called snapshots. The reduced basis from POD is optimal in the

sense that a certain approximation error concerning the snapshots is minimized. Thus,

the space spanned by the basis from POD often gives an excellent low-dimensional

approximation and it therefore has been used extensively in various applications. The

POD approach will be used here as a starting point.

However, since the full-order systems of interest are nonlinear, the method of

Galerkin projection with any type of reduced basis with global support, including the

ones from POD, reduces dimension in the sense that far fewer variables are present,

but the complexity of evaluating the nonlinear term generally remains that of the

original problem, as explained with more detail in the next chapter. As a result, the

computational complexity of the system is not truly reduced.

This thesis introduces a Discrete Empirical Interpolation Method (DEIM) to over-

come this complexity issue. In particular, the DEIM is based upon replacing the

orthogonal projection of POD with an oblique interpolatory projector. Evaluating

the DEIM approximate nonlinear term does not require a prolongation of the re-

duced state variables back to the original high dimensional state approximation as

in the POD-Galerkin approximation. Hence, DEIM improves the efficiency of the

POD approximation and achieves a complexity reduction of the nonlinear term with

4

a complexity proportional to the number of reduced variables. An error bound for

the DEIM approximation of a nonlinear vector-valued function is derived in this the-

sis. An analysis of DEIM is provided and shows that DEIM gives an approximation

that is nearly as accurate as orthogonal projection but at greatly reduced cost. This

analysis is then further used to develop a state-space error estimate for a reduced-

order system constructed from POD-Galerkin approach with DEIM approximation.

The derivation of this state-space error bound is based on an error estimate for the

POD-Galerkin method given in [94], which shall be discussed in the next section

along with other existing techniques for analyzing the accuracy and stability of the

POD-Galerkin approach.

Throughout this thesis, a reduced-order system obtained directly from the POD-

Galerkin projection will be referred to as the POD reduced system and the one ob-

tained from the POD-Galerkin approach with the DEIM approximation will be re-

ferred to as the POD-DEIM reduced system. The 2-norm in the Euclidean space

will be considered and denoted by ‖ · ‖. The following gives an overview of the ex-

isting work on projection-based model reduction using the reduced basis approach,

particularly from POD, as well as the existing nonlinear model reduction techniques.

5

1.2 Existing Techniques

1.2.1 Techniques for Constructing Reduced Basis

A primary motivation for constructing a reduced basis comes from an observation that

the solution space is often embedded in a manifold that has much lower dimension

than the dimension of the ODE system derived through classical spatial discretization

with a FE, FV, or FD approach. A reduced basis is often empirically derived through

samples of trajectories and hence is generally problem dependent. That is, a set of

selected solutions of the original full-order system is generally required for reduced-

basis methods. The earliest examples of reduced-basis approaches are found in the

applications of nonlinear structural analysis [64] and in the context of fluid flow

simulations e.g. [66], [46]. The reduced bases used in these works include Lagrange,

Taylor, and Hermite bases, which essentially consist of the state solution vectors

and their derivatives. These state solutions are often called snapshots. Specifically,

a set of snapshots consists of discrete samples of trajectories (e.g. state variables at

certain time instances) associated with a particular set of inputs, initial and boundary

conditions.

A number of recent model reduction approaches in the FE context are based on

a Reduced-Basis (RB) approximation framework, where the basis is a set of solution

snapshots specially selected with a greedy selection process [69, 54, 55, 93, 39, 63].

This framework possesses rigorous a posteriori error estimation procedures.

6

Alternatively, instead of directly using solution snapshots to form a reduced ba-

sis, POD can be applied to a set of snapshots to generate an orthonormal reduced

basis that is optimal in the sense that a certain approximation error concerning the

snapshots is minimized.

Existing Work on POD

POD has been successfully used with a Galerkin projection to provide reduced-order

models in numerous applications such as compressible flow [78], computational fluid

dynamics [50, 77], aerodynamics [14], and optimal control [48].

Many extensions and modifications of POD are proposed to improve the efficiency

and accuracy for particular applications of interest. In [96], Willcox and Peraire pro-

posed a technique which combines POD with the concept of balanced truncation to

efficiently construct accurate reduced models for input-output systems in the appli-

cation of control design. In [95], Willcox applied the Gappy POD technique proposed

in [31] for handling incomplete (“gappy”) data sets to reconstruct unsteady flow from

limited available flow measurement data and to determine optimal sensor placement

locations. Eftang, Knezevic and Patera proposed an extension of POD to the RB ap-

proximation framework in [30] by combining POD with a greedy sampling procedure

in parameter space for parametrized parabolic PDEs. In the application of aeronau-

tics where the solutions are sensitive to the changes in parameters, a sophisticated

procedure based on “interpolation” on the tangent space of the Grassmann manifold

7

is proposed by Amsallem and Farhat [2, 1] for efficiently constructing an accurate

and robust POD reduced system with respect to parameter variations.

The choice of the snapshot ensemble is a crucial factor in constructing a POD

basis, and this choice can greatly affect the approximation of the original space of

solutions. However, this issue shall not be discussed further in this thesis. The follow-

ing discussions briefly review some recent techniques concerning snapshot selection.

Most of them are developed specifically only for certain applications. Kunisch and

Volkwein [51] suggested a way to avoid the dependence on the choice of the snapshots

in optimal control applications. A model-constrained adaptive sampling is proposed

in [15] for selecting the snapshots for large-scale systems with high-dimensional para-

metric input spaces. In the optimization application of static systems, Carlberg and

Farhat [18] proposed a goal-oriented framework, so-called compact POD, using snap-

shots from state vectors and their sensitivity derivatives with respect to system input

parameters.

Error Estimate and Stability Analysis for POD-Galerkin reduced system

Analyses of stability and accuracy of POD appear in several recent works. Han and

Park [65] has shown that POD is robust to noise and can be used in conjunction with

empirical data, which is typically characterized by noise. Prajna [68] provided the

condition that guarantees preservation of stability and proposed a stability-preserving

POD model reduction scheme. In [58], the authors applied the dual-weighted-residual

8

method, which uses the solution of a dual or adjoint system to obtain an error es-

timate for the solutions from POD reduced models of nonlinear systems. In [70],

the error bounds of solutions from a POD reduced system were derived and the ef-

fects of small perturbations on the set of snapshots used for constructing the POD

basis were studied. Subsequent work [44] proposed an alternative error estimation

based on an adjoint method combined with the method of small sample statistical

condition estimation. It also analyzed further the effect of perturbations in both the

initial conditions and parameters on the resulting POD reduced system. However, the

analysis in [44] is based on linearization, and hence, large perturbations may require

some knowledge of the solution of the perturbed system. Some related works on error

estimations such as in [88, 32, 58, 43] can be found in the extensive review from [44].

In [49, 50], Kunish and Volkwein derive error estimates for a POD reduced system

for a class of nonlinear parabolic PDEs. Their analyses were done in a function-

space setting, where the snapshots and the POD basis are in general Hilbert space.

Kunish and Volkwein also considered a snapshot set that included finite difference

quotients of the snapshots in response to their theoretical error bounds derived for the

state solutions from the POD-Galerkin reduced system. The approximation errors

were expressed as the contributions from the POD subspace approximation error and

from time discretization error. The theoretical results in [50] provide asymptotic

error estimates that do not depend on the snapshot set and demonstrate the effect

of two different time discretizations used to produce the set of snapshots and for

9

the numerical integration of the reduced system. Nonlinear problems with Lipschitz

continuous nonlinearities are considered in [49] and extended to the Navier-Stokes

equations in [50]. Similar approaches for deriving the error estimates in the function

space setting from [49, 50] were later applied within a finite dimensional Euclidean

space setting in [94].

While the POD-Galerkin method and its extensions discussed above have been

quite successful in substantially reducing the number of state variables, they typi-

cally fail to reduce the computational complexity involved with evaluating nonlinear

terms. Unless there is a special structure, such as a bi-linear form, the evaluation

of nonlinear terms has the same complexity as the full order system. Clearly, con-

structing reduced dimension approximations to the nonlinear terms that actually have

complexity proportional to the number of reduced variables is of the highest priority.

Several approaches have been proposed to address this fundamental issue.

1.2.2 Techniques for Nonlinearities

In the FE context, this inefficiency of the POD-Galerkin approach arises from the

high computational complexity in repeatedly calculating the inner products required

to evaluate the weak form of the nonlinearities, as discussed in [11, 38, 62]. In partic-

ular, in [62], Nguyen and Peraire discuss the limitations of such approaches and give

a number of examples of equations involving non-polynomial nonlinearities. Specifi-

cally, they study linear elliptic equations with non-affine parameter dependence, non-

10

linear elliptic equations and non-linear time dependent convection-diffusion equations.

They demonstrate for these examples that the standard POD-Galerkin approach does

not admit the sort of pre-computation that is possible with polynomial nonlineari-

ties. They propose a reduced basis approach with a best-points interpolation method

(BPIM, see [61]) to selecting interpolation points.

Many nonlinear model reduction techniques have been proposed in the context

of FD and FV discretizations, as well as differential-algebraic equations (e.g. in

circuit simulation). Missing Point Estimation (MPE) was originally proposed by

Astrid [6] to improve the complexity of the POD-Galerkin reduced system from FV

discretization, essentially, by solving only a subset of equations of the original model.

A reduced system is obtained by first extracting certain equations corresponding to

specially chosen spatial grid points and then projecting the extracted system onto the

space spanned by the restricted POD with components/rows corresponding to only

these selected grid points. This procedure can be viewed as performing the Galerkin

projection onto the truncated POD basis via a specially constructed inner product

as defined in [9] that evaluates only at selected grid points instead of computing the

usual L2 inner product. Two heuristic methods for selecting these spatial grid points

are introduced in the thesis [6] (also in subsequent publications, e.g [5, 8, 7]) by aiming

to minimize aliasing effects in using only partial spatial points. This was shown to be

equivalent to a criterion for preserving the orthogonality of the restricted POD basis

vectors, which is further translated into a criterion for controlling condition number

11

growth. These grid point selection procedures were later improved by incorporating a

greedy algorithm from [95]. The applications of the MPE method are primarily in the

context of a linear time varying system arising from FV discretization of a nonlinear

computational fluid dynamic model for a glass melting furnace [6, 5, 8, 7]. It has also

been used in modeling heat transfer in electrical circuits [89] and in subsurface flow

simulation [17].

Alternatively, techniques for approximating a nonlinear function can be used

in conjunction with the POD-Galerkin projection method to overcome this com-

putational inefficiency. There are a number of examples that use model reduction

approaches with nonlinear approximation based on pre-computation of coefficients

defining multi-linear forms of polynomial nonlinearities followed by POD-Galerkin

projection [20, 21, 67, 10, 28, 16]. One of these approaches is found in the trajectory

piecewise-linear (TPWL) approximation proposed by Rewienski and White [74, 73],

which is based on approximating a nonlinear function by a weighted sum of linearized

models at selected points along a state trajectory. These linearization points are se-

lected using prior knowledge from a training trajectory (or its approximation) of the

full-order nonlinear system [72]. The TPWL approach was successfully applied to sev-

eral practical nonlinear systems, especially in circuit simulations [71, 72, 73, 89, 12].

However, there are still many nonlinear functions that may not be approximated well

by using low degree piecewise polynomials unless there are very many constituent

polynomials.

12

More recently, Galbally et al. [33] applied the techniques of gappy POD, EIM, and

BPIM to develop an approach to uncertainty quantification in a nonlinear combus-

tion problem governed by an advection-diffusion-reaction PDE. The nonlinear term

involved an exponential nonlinearity of Arrhenius type. In [33], there is a detailed

explanation of why POD-Galerkin does not reduce the complexity of evaluating the

nonlinear term. They also developed a masked projection framework that is very

similar to the projection methodology developed in this thesis. Their work illustrates

the similarity of the gappy POD, EIM and BPIM approaches.

Comparison of DEIM to Related Techniques

The DEIM approach proposed in this thesis approximates a nonlinear function by

combining projection with interpolation. DEIM constructs specially selected interpo-

lation indices that specify an interpolation based projection to provide a nearly L2

optimal subspace approximation to the nonlinear term without the expense of orthog-

onal projection. This approach is a discrete variant of the Empirical Interpolation

Method (EIM) introduced by Barrault, Maday, Nguyen and Patera [11], which was

originally posed in an empirically derived finite dimensional function space in the FE

context. This DEIM variant was initially developed in order to apply to arbitrary

systems of ODEs regardless of their origin, including the ones arising from FD and FV

methods as well as the ODE system of coefficients derived from FE discretization.

The EIM approximation [11] was initially proposed to be used with the Reduced-

13

Basis(RB) framework [39], whose basis functions would be the snapshots selected by

an adaptive greedy selection process. In [11], this RB basis is used as an input to

the EIM procedure for selecting the spatial interpolation points and each of these

input basis functions will get transformed during this procedure. It can be shown

that a mathematically equivalent approximation can be obtained without this trans-

formation of the input basis [19]. In this thesis, the DEIM procedure for selecting

the interpolation indices will instead use a POD basis as an input (although any type

of basis would be valid) and will not transform the input basis as done in the EIM

procedure.

The proposed DEIM approach is closely related to MPE in the sense that both

methods employ a small selected set of spatial grid points to avoid computing the

expensive L2 inner products at every time step that are required to evaluate the non-

linearities. However, the fundamental procedures for constructing a reduced system

and the algorithms for selecting a set of spatial grid points are different. While MPE

focuses on reducing the number of equations and using a restricted inner product on

the POD basis vectors, DEIM focuses on approximating each nonlinear function, so

that a certain coefficient matrix can be precomputed and, as a result, the complexity

in evaluating the nonlinear term becomes proportional to the small number of selected

spatial indices. Hence, the reduced system from the MPE procedure considers only

a POD basis for the state variables, but the one from the DEIM procedure considers

both a POD basis for the state variables and a POD basis related to each nonlin-

14

ear term. The POD-DEIM approach is also closely related to the approach called

interpolation of function snapshots suggested in [89] as an alternative to MPE for

constructing a reduced system for a nonlinear circuit model. The main steps of both

approaches are the same. The nonlinear approximation is computed by using some

selected spatial points, and then Galerkin projection is applied to the system. How-

ever, a key difference is that in [89] the basis matrices used for spanning the unknowns

(state variables) and the nonlinear function in the reduced system are obtained from

a least-squares solution of the snapshot matrices in such a way that the unknown

coefficients of the resulting reduced system still have the original interpretations of

state variables instead of using basis matrices from SVD truncation as done here in

the POD-DEIM approach. No concrete algorithm was proposed in [89] for selecting

indices (besides the ones used in MPE). However, it was suggested in [89] to select

them to minimize an upper bound of the approximation error which is an idea similar

to the one leading to our error bound for DEIM approximation (see (2.22) and (2.23)

in §2.2.2).

1.3 Thesis Outline and Scope

This thesis is organized as follows. In Chapter 2, the problem formulation is given,

with a brief background of POD and a review on model reduction via the POD-

Galerkin approach. Then the DEIM approximation, which is the main focus of this

thesis, is introduced along with its application for constructing POD-DEIM reduced

15

systems for nonlinear ODEs. The computational issue of the POD-Galerkin approach

and the complexity reduction from applying DEIM are also discussed. Chapter 3

derives a state-space error estimate for POD-DEIM reduced systems introduced in

Chapter 2. This derivation is particulary relevant to the nonlinear ODE systems

arising from spatial discretizations of parabolic PDEs. Numerical examples are il-

lustrated in Chapter 4 for a 1-D nonlinear PDE arising in neuron modeling and a

nonlinear 2-D steady state problem. The purpose of this chapter is to demonstrate

how to apply the POD-DEIM model reduction technique to some simple nonlinear

problems. A more complex numerical application of the POD-DEIM approach is pre-

sented in Chapter 5 through the simulation of nonlinear miscible viscous fingering in a

2-D porous medium. The result in this chapter shows a substantial reduction in com-

putational time of the POD-DEIM reduced system, e.g. by a factor of O(1000), while

the accuracy is still retained. The failure of the POD-Galerkin approach to reduce

the complexity of nonlinear terms is demonstrated in both Chapter 4 and Chap-

ter 5. Finally, the conclusions and possible extensions of this thesis are discussed in

Chapter 6.

Chapter 2

Nonlinear Model Reduction via

Discrete Empirical Interpolations

This chapter presents a model reduction technique for nonlinear ordinary differen-

tial equations (ODEs). The problem formulation is first given in §2.1. Dimension

reduction via Proper Orthogonal Decomposition (POD) with Galerkin projection is

reviewed in §2.1.1 followed by a discussion of its fundamental complexity issue in

§2.1.2. The Discrete Empirical Interpolation Method (DEIM) is then introduced in

§2.2. The key to complexity reduction is to replace orthogonal projection of POD

with the interpolation projection of DEIM. An algorithm for selecting the interpo-

lation indices used in the DEIM approximation is presented in §2.2.1. Section 2.2.2

provides an error bound on this interpolatory approximation, indicating that it is

nearly as good as orthogonal projection. The validity of this error bound and the

16

17

high quality of the DEIM approximations is illustrated in § 2.2.3 through numerical

examples of nonlinear vector-valued functions. Section 2.2.4 explains how to apply

the DEIM approximation to nonlinear terms in POD-Galerkin reduced models of FD

discretized systems, and then the extension to general nonlinear ODEs will be given

in §2.2.5. Finally, the computational complexity will be discussed in §2.2.6.

2.1 Problem Formulation

Although this chapter develops a method for reducing the dimension of general large

scale ODE systems regardless of their origin, a considerable source of such systems is

the semi-discretization of time dependent or parameter dependent PDEs. In this case,

the nonlinearities in the resulting ODEs from the discretization are often in the form

of componentwise-evaluation functions, which will be assumed here. Section 2.2.5 will

illustrate how to handle general nonlinearities. This method will be developed here

in the context of finite difference (FD) discretized systems arising from two types of

nonlinear PDEs, which are used for our numerical computations in Chapters 4 and 5.

One is time dependent and the other is a parametrized steady state problem. We have

considered these two types separately in order to simplify the exposition; however,

the two may be merged to address time dependent parametrized systems.

A FD discretization of a scalar nonlinear PDE in one spatial variable results in a

system of nonlinear ODEs of the form

d

dt
y(t) = Ay(t) + F(y(t)), (2.1)-

18

where t ∈ [0, T] denotes time, y(t) = [y1(t), . . . ,yn(t)]
T ∈ R

n is a vector of state

variables with initial condition y(0) = y0 ∈ R
n, A ∈ R

n×n is a constant ma-

trix, and F is a nonlinear function evaluated at y(t) componentwise, i.e., F =

[F (y1(t)), . . . , F (yn(t))]
T , with a scalar-valued function F : I 7→ R for I ⊂ R. The

matrix A is the discrete approximation of the linear spatial differential operator and

F is a nonlinear function of a scalar variable.

Steady nonlinear PDEs (in several spatial dimensions) might give rise similarly to

a corresponding FD discretized system of the form

Ay(µ) + F(y(µ)) = 0, (2.2)

with the corresponding Jacobian

J(y(µ)) := A + JF(y(µ)), (2.3)

where y(µ) = [y1(µ), . . . ,yn(µ)]T ∈ R
n; A and F are defined as for (2.1). Note that

from (2.3), the Jacobian of the nonlinear function is a diagonal matrix given by

JF(y(µ)) = diag{F ′(y1(µ)), . . . , F ′(yn(µ))} ∈ R
n×n, (2.4)

where F ′ denotes the first derivative of F . The parameter µ ∈ D ⊂ R
d, d = 1, 2, . . . ,

generally represents the system’s configuration in terms of its geometry, material

properties, etc.

The dimension n of (2.1) and (2.2) reflects the number of spatial grid points used

in the FD discretization. As noted, the dimension n can become extremely large

19

when high accuracy is required. This can lead to substantial increases in storage and

computational requirements to solve these systems. Approximate models with much

smaller dimensions are needed to recover the efficiency.

Projection-based techniques are commonly used for constructing a reduced-order

system. They construct a reduced-order system of order k ≪ n that approximates

the original system from a subspace spanned by a reduced basis of dimension k in R
n.

Galerkin projection is used here as the means for dimension reduction. In particular,

let V ∈ R
n×k be a matrix whose orthonormal columns are the vectors in the reduced

basis. Then by replacing y(t) in (2.1) by Vŷ(t), ŷ(t) ∈ R
k and projecting the system

(2.1) onto V, the reduced system of (2.1) is of the form

d

dt
ŷ(t) = VTAV︸ ︷︷ ︸

Â

ŷ(t) + VTF(Vŷ(t)). (2.5)

Similarly, the reduced-order system of (2.2) is of the form

VTAV︸ ︷︷ ︸
Â

ŷ(µ) + VTF(Vŷ(µ)) = 0, (2.6)

with corresponding Jacobian

Ĵ(ŷ(µ)) := Â + VTJF(Vŷ(µ))V, (2.7)

where Â = VTAV ∈ R
k×k. The choice of the reduced basis clearly affects the quality

of the approximation. The techniques for constructing a set of reduced basis use a

common observation that, for a particular system, the solution space is often attracted

to a low dimensional manifold. POD constructs a set of global basis functions from

20

the singular value decomposition (SVD) of snapshots, which are discrete samples of

trajectories y(·) associated with a particular set of boundary conditions, parameter

values and inputs. It is expected that the samples will be on or near the attractive

manifold. Once the reduced model has been constructed from this reduced basis,

it may be used to obtain approximate solutions for a variety of initial conditions

and parameter settings, provided the set of samples is rich enough. This empirically

derived basis is clearly dependent on the sampling procedure.

Among the various techniques for obtaining a reduced basis, POD constructs a re-

duced basis that is optimal in the sense that a certain approximation error concerning

the snapshots is minimized. Thus, the space spanned by the basis from POD often

gives an excellent low dimensional approximation. The POD approach is therefore

used here as a starting point.

2.1.1 Proper Orthogonal Decomposition (POD)

Consider a set of snapshots {y1, . . . ,yns} ⊂ R
n and the corresponding snapshot ma-

trix Y = [y1, . . . ,yns] ∈ R
n×ns . POD constructs an orthonormal basis that can

represent dominant characteristics of the space of expected solutions, which is de-

fined as Range{Y}, the span of the snapshots. Let r = rank{Y}. Consider a

set of orthonormal basis vectors {vi}ki=1 ⊂ R
n and the corresponding basis matrix

V = [v1, . . . ,vk] ∈ R
n×k, for k < r. An approximation of a snapshot yj in Range{V}

is of the form Vŷj for some coefficient vector ŷj ∈ R
k. Applying the Galerkin or-

21

thogonality condition of the residual yj−Vŷj to Range{V} gives VT (yj−Vŷj) = 0,

which implies ŷj = VTyj. That is, the approximation becomes yj ≈ VVTyj. POD

provides an optimal orthonormal basis {vi}ki=1 ⊂ R
n minimizing the sum of squared

errors associated with these approximations for the snapshots. In particular, the POD

basis matrix V = [v1, . . . ,vk] ∈ R
n×k solves the minimization problem:

min
rank{V}=k

ns∑

j=1

‖yj −VVTyj‖2, s.t. VTV = Ik, (2.8)

where Ik ∈ R
k×k is an identity matrix. More details on POD can be found in, e.g.,

[50, 70]. Notice that, for VTV = Ik and Frobenius norm ‖ · ‖F ,

min
rank{V}=k

ns∑

j=1

‖yj −VVTyj‖2 = min
rank{V}=k

‖Y−VVT
Y‖2F = min

rank{Yk}=k
‖Y− Yk‖2F .

The minimization problem (2.8) is therefore equivalent to the problem of low-rank

approximation, which is well-known to be solved by the SVD of Y. Hence, POD is

essentially the same as a truncated SVD in the Euclidean space setting, which will

be considered in this thesis. Specifically, a POD basis of dimension k for (2.8) is just

a set of left singular vectors corresponding to the first k dominant singular values

of the snapshot matrix Y. The minimum sum of squared errors in the 2-norm from

approximating the snapshots using the POD basis is given by

ns∑

j=1

‖yj −VVTyj‖2 =
r∑

i=k+1

σ2
i , (2.9)

for k < r, where V = [v1, . . . ,vk] ∈ R
n×k; v1,v2, . . . ,vr ∈ R

n are the singular vectors

corresponding to the nonzero singular values σ1 ≥ σ2 ≥ . . . ≥ σr > 0 of Y. In the

22

large scale setting, the dominant singular values and vectors of Y can be efficiently

computed by using Matlab routine svds (or ARPACK). If n ≤ ns, one only need

compute matrix-vector products of the form w = Y(YTv), while if n > ns, it is

usually more efficient to compute the dominant singular values and vectors of Y
T

which will only require matrix-vector products of the form w = Y
T (Yv).

The choice of the snapshot ensemble is a crucial factor in constructing a POD basis.

This choice can greatly affect the approximation of the original solution space, but it is

a separate issue and will not be discussed here. POD works well in many applications

and often provides an excellent reduced basis. However, as discussed next, when POD

is used in conjunction with the Galerkin projection, effective dimension reduction is

usually limited to the linear terms or low order polynomial nonlinearities. Systems

with general nonlinearities need additional treatment, which will be presented in §2.2.

2.1.2 Complexity Issue of the POD-Galerkin Approach

This section illustrates the computational inefficiency that occurs in solving the

reduced-order system that is directly obtained from the POD-Galerkin approach.

Equation (2.5) has the nonlinear term

N̂(ŷ) := VT
︸︷︷︸
k×n

F(Vŷ(t))︸ ︷︷ ︸
n×1

. (2.10)

N̂(ŷ) has a computational complexity that depends on n, the dimension of the orig-

inal full-order system (2.1). It requires on the order of 2nk Flops for matrix-vector

multiplications and it also requires a full evaluation of the nonlinear function F at the

23

n-dimensional vector Vŷ(t). In particular, suppose the complexity for evaluating the

nonlinear function F with q components is O(α(q)), where α is some function of q.

Then the complexity of the nonlinear term F(y(t)) in the original system is O(n) and

the complexity for computing (2.10) is roughly O(α(n) + 4nk). As a result, solving

this system might still be as costly as solving the original system. Here, the 4nk flops

are a result of the two matrix-vector products required to form the argument of F

and then to form the projection. We count both the multiplications and additions as

flops.

The same inefficiency occurs when solving the reduced-order system (2.6) for the

steady nonlinear PDEs by Newton iteration. At each iteration, besides the nonlinear

term of the form (2.10), the Jacobian of the nonlinear term (2.7) must also be com-

puted with a computational cost that still depends on the full-order dimension n. I.e.

from (2.7),

ĴF(ŷ(µ)) := VT
︸︷︷︸
k×n

JF(Vŷ(µ))︸ ︷︷ ︸
n×n

V︸︷︷︸
n×k

, (2.11)

has computational complexity roughly O(α(n) + 2n2k + 2nk2 + 2nk) if we treat JF

as dense. The 2n2k term becomes O(nk) if JF is sparse or diagonal.

24

2.2 Discrete Empirical Interpolation Method (DEIM)

An effective way to overcome the difficulty described in §2.1.2 is to approximate the

nonlinear function in (2.5) or (2.6) by projecting it onto a subspace that approximates

the space generated by the nonlinear function and that is spanned by a basis of

dimension m ≪ n. This section considers the nonlinear functions F(Vŷ(t)) and

F(Vŷ(µ)) of the reduced-order systems (2.5) and (2.6), respectively, represented by

f(τ), where τ = t or µ. The approximation from projecting f(τ) onto the subspace

spanned by the basis {u1, . . . ,um} ⊂ R
n is of the form

f(τ) ≈ Uc(τ), (2.12)

where U = [u1, . . . ,um] ∈ R
n×m and c(τ) is the corresponding coefficient vector. The

vector c(τ) can be determined by selecting m distinguished rows from the overdeter-

mined system f(τ) = Uc(τ). In particular, consider a matrix

P = [e℘1 , . . . , e℘m] ∈ R
n×m, (2.13)

where e℘i
= [0, . . . , 0, 1, 0, . . . , 0]T ∈ R

n is the ℘i-th column of the identity matrix

In ∈ R
n×n, for i = 1, . . . ,m. Suppose PTU is nonsingular. Then the coefficient

vector c(τ) can be determined uniquely from

PT f(τ) = (PTU)c(τ), (2.14)

and the final approximation from (2.12) becomes

f(τ) ≈ Uc(τ) = U(PTU)−1PT f(τ). (2.15)

25

Note that pre-multiplying a matrix by PT is equivalent to extracting the rows ℘1, . . . , ℘m

of that matrix, e.g. in Matlab notation PTU = U(~℘, :) ∈ R
m×m with ~℘ =

[℘1, . . . , ℘m]T ∈ R
m, and therefore P should not be constructed explicitly in the

actual computation. To obtain the approximation (2.15), we must specify

1. the projection basis {u1, . . . ,um};

2. the interpolation indices {℘1, . . . , ℘m} used in (2.13).

The projection basis {u1, . . . ,um} for the nonlinear function f is constructed by apply-

ing the POD on the nonlinear snapshots obtained from the original full-order system.

These nonlinear snapshots are the sets {F(y(t1)), . . . ,F(y(tns))} and

{F(y(µ1)), . . . ,F(y(µns))} obtained from (2.10) and (2.11), respectively. Note, these

values are needed to generate the trajectory snapshots in Y and hence represent no

additional cost other than the SVD required to obtain U.

The interpolation indices ℘1, . . . , ℘m, used for determining the coefficient vector

c(τ) in the approximation (2.12), are selected inductively from the basis {u1, . . . ,um}

by the DEIM algorithm introduced in the next section.

2.2.1 DEIM: Algorithm for Interpolation Indices

DEIM is a discrete variant of the Empirical Interpolation Method (EIM) proposed

by Barrault, Maday, Nguyen and Patera in [11] for constructing an approximation

of a non-affine parametrized function with spatial variable defined in a continuous

bounded domain Ω. The continuous domain Ω will be treated here as a finite set

26

of discrete points in Ω. The DEIM algorithm selects an index corresponding to one

of these discrete spatial points at each iteration to limit growth of an error bound.

This provides a derivation of a global error bound as presented in §2.2.2. For general

systems of nonlinear ODEs that are not FD approximations to PDEs, this spatial

connotation of indices will no longer exist. However, the formal procedure remains

unchanged.

Algorithm 1: DEIM

INPUT : {uℓ}mℓ=1 ⊂ R
n linearly independent

OUTPUT: ~℘ = [℘1, . . . , ℘m]T ∈ R
m

1 [|ρ|, ℘1] = max{|u1|}

2 U = [u1], P = [e℘1], ~℘ = [℘1] ;

3 for ℓ← 2 to m do

4 Solve (PTU)c = PTuℓ ;

5 r = uℓ −Uc

6 [|ρ| ℘ℓ] = max{|r|}

7 U← [U uℓ], P← [P e℘ℓ
], ~℘←




~℘

℘ℓ




8 end

The notation max in Algorithm 1 is the same as the function max in Matlab.

Thus, [|ρ|, ℘ℓ] = max{|r|} implies |ρ| = |r℘ℓ
| = maxi=1,...,n{|ri|}, with the smallest

index taken in case of a tie. Note that, define ρ := r℘ℓ
in each iteration ℓ = 1, . . . ,m.

27

From Algorithm 1, the DEIM procedure constructs a set of indices inductively

on the input basis. The order of the input basis {uℓ}mℓ=1 according to the dominant

singular values is important and an error analysis indicates that the POD basis is a

suitable choice for this algorithm. The process starts by selecting the first interpo-

lation index ℘1 ∈ {1, . . . , n} corresponding to the entry of the first input basis u1

with largest magnitude. The remaining interpolation indices, ℘ℓ for ℓ = 2, . . . ,m, are

selected so that each of them corresponds to the entry with the largest magnitude

of the residual r = uℓ −Uc from line 5 of Algorithm 1. The term r can be viewed

as the residual or the error between the input basis vector uℓ and its approximation

Uc from interpolating the basis {u1, . . . ,uℓ−1} at the indices ℘1, . . . , ℘ℓ−1 in line 4 of

Algorithm 1. Hence, r℘i
= 0 for i = 1, . . . , ℓ − 1. However, the linear independence

of the input basis {uℓ}mℓ=1 guarantees that, in each iteration, r is a nonzero vector

and hence ρ = r℘ℓ
is also nonzero. Lemma 2.2.3 will demonstrate that ρ 6= 0 at

each step implies that PTU is always nonsingular and hence the DEIM procedure is

well-defined. This also implies that the interpolation indices {℘i}mi=1 are hierarchical

and non-repeated.

Figure 2.1 illustrates the selection procedure in Algorithm 1 for DEIM interpo-

lation indices. To summarize, the DEIM approximation is given formally as follows.

Definition 2.2.1 Let f : D 7→ R
n be a nonlinear vector-valued function with D ⊆ R

d,

for some positive integer d. Let {uℓ}mℓ=1 ⊂ R
n be a linearly independent set, for

28

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
DEIM# 1

u

current point

0 20 40 60 80 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
DEIM# 2

u

Uc

 r = u−Uc

current point

previous points

0 20 40 60 80 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
DEIM# 3

u

Uc

 r = u−Uc

current point

previous points

0 20 40 60 80 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
DEIM# 4

u

Uc

 r = u−Uc

current point

previous points

0 20 40 60 80 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
DEIM# 5

u

Uc

 r = u−Uc

current point

previous points

0 20 40 60 80 100
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
DEIM# 6

u

Uc

 r = u−Uc

current point

previous points

Figure 2.1: Illustration of the selection process of indices in Algorithm 1 for the DEIM approx-

imation. The input basis vectors are the first 6 eigenvectors of the discrete Laplacian. From the

plots, u = uℓ, Uc and r = uℓ −Uc are defined as in iteration ℓ of Algorithm 1.

,

, , ,

,_
\

,
, ,

,,
,

-._

* 0

\

\

.. ..
' ' '

* 0

' \
' \

\ _,

I

I

I

i

\

\

; ,
I \

\

\

'

\
\

\ , ,,

D 0

D 0

I

'· / ,,,-

29

m ∈ {1, . . . , n}. For τ ∈ D , the DEIM approximation of order m for f(τ) in the

space spanned by {uℓ}mℓ=1 is given by

f̂(τ) := P f(τ), P := U(PTU)−1PT , (2.16)

where U = [u1, . . . ,um] ∈ R
n×m and P = [e℘1 , . . . , e℘m] ∈ R

n×m with {℘1, . . . , ℘m}

being the output from Algorithm 1 with the input basis {ui}mi=1.

Note that the matrix U used in the DEIM approximation (2.2.1) is not required to

have orthonormal columns and also that P = P
2 and P ∈ R

n×n is an oblique projector

onto Span{U}. Clearly, f̂ in (2.16) is indeed an interpolation approximation for the

original function f , since f̂ is exact at the interpolation as verified with the simple

calculation:

PT f̂(τ) = PT
(
U(PTU)−1PT f(τ)

)
= (PTU)(PTU)−1PT f(τ) = PT f(τ).

The DEIM approximation is uniquely determined by the projection basis {ui}mi=1.

This basis not only specifies the projection subspace used in the approximation, but

also determines the interpolation indices used for computing the coefficient of the

approximation. Hence, the choice of projection basis can greatly affect the accuracy

of the approximation in (2.16), as shown also in the error bound of the DEIM ap-

proximation (2.22) in the next section. As noted, POD introduced in §2.1.1 is an

effective method for constructing this projection basis, since it provides an optimal

global basis that captures the dynamics of the space generated from snapshots of the

nonlinear function.

30

The selection of the interpolation points is basis dependent. However, once the

set of DEIM interpolation indices {℘ℓ}mℓ=1 is determined from {ui}mi=1, the DEIM

approximation is independent of the choice of basis spanning the space Range(U). In

particular, let {qℓ}mℓ=1 be any basis for Range(U). Then

U(PTU)−1PT f(τ) = Q(PTQ)−1PT f(τ), (2.17)

where Q = [q1, . . . ,qm] ∈ R
n×m. To verify (2.17), note that Range(U) = Range(Q)

so that U = QR for some nonsingular matrix R ∈ R
m×m. This substitution gives

U(PTU)−1PT f(τ) = (QR)((PTQ)R)−1PT f(τ) = Q(PTQ)−1PT f(τ).

The DEIM index selection procedure in Algorithm 1 can break down only in Step 4

when PTU is not invertible. It can be shown by induction that this will not be the

case (i.e. PTU is non-singular for all iterations) as long as the input vectors {uℓ}mℓ=1

are linearly independent. Moreover, the inverse of PTU can be obtained recursively

from the iterations in Algorithm 1.

Claim 2.2.2 Let {uℓ}mℓ=1 ⊂ R
n be a linearly independent set of input vectors to

Algorithm 1 with output indices {℘ℓ}mℓ=1. Define Mℓ := PT
ℓ Uℓ ∈ R

ℓ×ℓ for ℓ = 1, . . . ,m

where Pℓ = [e℘1 , . . . , e℘ℓ
] ∈ R

n×ℓ, Uℓ = [u1, . . . ,uℓ] ∈ R
n×ℓ. Then Mℓ is nonsingular

with M−1
1 = (pT1 u1)

−1 and for ℓ = 2, . . . ,m,

M−1
ℓ =




I −c

0 1







M−1
ℓ−1 0

−ρ−1aTM−1
ℓ−1 ρ−1


 , (2.18)

31

where aT = pTℓ Uℓ−1, c = M−1
ℓ−1P

T
ℓ−1uℓ, and ρ = pTℓ uℓ−aTc = pTℓ (uℓ−Uℓ−1M

−1
ℓ−1P

T
ℓ−1uℓ)

and pℓ = e℘ℓ
∈ R

n, which can be obtained directly from Algorithm 1.

Proof: At the initial step of Algorithm 1, P1 = e℘1 and U1 = u1. Since u1 is

nonzero, M1 = PT
1 U1 = eT℘1

u1 6= 0 and M−1
1 = 1/eT℘1

u1. To simplify notation, for

ℓ = 2, . . . ,m, let M̄ := Mℓ−1 = P̄T Ū and M := Mℓ = PTU where

U = [Ū u] ∈ R
n×ℓ, Ū = [u1, . . . ,uℓ−1] ∈ R

n×(ℓ−1), u = uℓ ∈ R
n,

P = [P̄ p] ∈ R
n×ℓ, P̄ = [e℘1 , . . . , e℘ℓ−1

] ∈ R
n×(ℓ−1), p = e℘ℓ

∈ R
n.

(2.19)

For ℓ = 2, M̄ = M1 = eT℘1
u1 is invertible, as shown earlier. As an induction hy-

pothesis, assume M̄ = P̄T Ū is invertible for each iteration ℓ ≥ 2. Then, it can be

shown that M used in Step 4 of iteration ℓ + 1 is invertible as follows. First note

that, M =




M̄ P̄Tu

pT Ū pTu


 and M can be factored in the form:

M =




M̄ P̄Tu

pT Ū pTu


 =




M̄ 0

aT ρ







I c

0 1


 , (2.20)

where aT = pT Ū, c = M̄−1P̄Tu, and ρ = pTu − aTc = pT (u − ŪM̄−1P̄Tu). Note

|ρ| = ‖r‖∞ where r is defined at Step 5 of Algorithm 1. Since u = uℓ is not in the

span of {u1, . . . ,uℓ−1}, i.e. u 6= Ūc̄ for any c̄ ∈ R
ℓ−1, then r is a nonzero vector,

which implies ρ = r℘ℓ
6= 0. Now, from (2.20), the inverse of M is given by

M−1 =




I −c

0 1







M̄−1 0

−ρ−1aTM̄−1 ρ−1


 , (2.21)

32

as given in (2.18), which is well-defined since ρ 6= 0 and M̄ is invertible by the

inductive hypothesis. �

It will be shown next that the norm of M−1
ℓ = (PT

ℓ Uℓ)
−1 from (2.18), for ℓ = 1, . . . ,m,

can be used to derive an error bound for the DEIM approximation.

2.2.2 Error Bound for DEIM

This section provides an error bound in the 2-norm for the DEIM approximation for

a nonlinear vector-valued function. This derivation of the error bound provides moti-

vation for the DEIM selection process in Algorithm 1 in terms of recursively limiting

the local growth of a certain magnification factor of the best 2-norm approximation

error. As before, ‖ · ‖ will denote 2-norm. This error bound is given formally as

follows.

Lemma 2.2.3 Let f ∈ R
n be an arbitrary vector. Let {uℓ}mℓ=1 ⊂ R

n be a given

orthonormal set of vectors. From Definition 2.2.1, the DEIM approximation of order

m ≤ n for f in the space spanned by {uℓ}mℓ=1 is f̂ = P f , where P = U(PTU)−1PT ,

U = [u1, . . . ,um] ∈ R
n×m, P = [e℘1 , . . . , e℘m] ∈ R

n×m, and {℘1, . . . , ℘m} being the

output from Algorithm 1 with the input basis {ui}mi=1. Then,

f − f̂ = (I− P)w and ‖f − f̂‖ ≤ Cm E∗(f), (2.22)

where w := (I−UUT)f ,

Cm := ‖(PTU)−1‖ and E∗(f) = ‖(I−UUT)f‖. (2.23)

33

E∗(f) is the error of the best 2-norm approximation for f from the space Range(U)

and the constant Cm is bounded by

Cm ≤ (1 +
√

2n)m−1‖u1‖−1
∞ . (2.24)

Proof: Consider the DEIM approximation f̂ given by (2.15). We wish to deter-

mine a bound for the error ‖f − f̂‖ in terms of the optimal 2-norm (least-squares)

approximation for f from Range(U). This best approximation is given by

f∗ = UUT f , (2.25)

which minimizes the error ‖f − f̂‖ over Range(U). Consider

f = (f − f∗) + f∗ = w + f∗, (2.26)

where w = f − f∗ = (I−UUT)f . From (2.26) and Pf∗ = f∗,

f̂ = Pf = P(w + f∗) = Pw + Pf∗ = Pw + f∗. (2.27)

Equations (2.26) and (2.27) imply f − f̂ = (I− P)w and

‖f − f̂‖ = ‖(I− P)w‖ ≤ ‖I− P‖‖w‖. (2.28)

Note that

‖I− P‖ = ‖P‖ = ‖U(PTU)−1PT‖ = ‖(PTU)−1‖. (2.29)

The first equality in (2.29) follows from the fact that ‖I−P‖ = ‖P‖, for any projector

P 6= 0 or I (see [85]).

--

34

Note that E∗(f) := ‖w‖ is the minimum 2-norm error in the least-squares sense

for f∗ defined in (2.25). From (2.29), the bound for the error in (2.28) becomes

‖f − f̂‖ ≤ ‖(PTU)−1‖ E∗(f), (2.30)

which establishes the error bound (2.22). The magnification factor ‖(PTU)−1‖ de-

pends on the DEIM selection of indices ℘1, . . . , ℘m through the matrix P. It will be

shown that each iteration of the DEIM algorithm aims to select an index to limit

stepwise growth of ‖(PTU)−1‖ and hence to limit size of the bound for the error

‖f − f̂‖.

The recursive formula for (PTU)−1 in Claim 2.2.2 will be considered and the

notation defined in (2.19) will be used here. That is, let M̄ = P̄T Ū and M = PTU.

From Claim 2.2.2, at the initial step of Algorithm 1, M = PTU = eT℘1
u1 and hence

‖M−1‖ = 1
|eT

℘1
u1|

= ‖u1‖−1
∞ ≥ 1. That is, for m = 1, Cm = ‖M−1‖ = ‖u1‖−1

∞ . Note

that the choice of the first interpolation index ℘1 minimizes the matrix norm ‖M−1‖

and hence minimizes the error bound (2.22). Now consider a general step ℓ ≥ 2 with

matrices defined in (2.19). When M is written in the form (2.20), from (2.21),

M−1 =




I −c

0 1







M̄−1 0

−ρ−1aTM̄−1 ρ−1


 (2.31)

=




I −c

0 1







I 0

−ρ−1aT ρ−1







M̄−1 0

0 1


 (2.32)

=








I 0

0 0


+ ρ−1




c

−1



[
aT ,−1

]







M̄−1 0

0 1


 . (2.33)

35

A bound for the 2-norm of M−1 is then given by

‖M−1‖ ≤





∥∥∥∥∥∥∥∥




I 0

0 0




∥∥∥∥∥∥∥∥
+ |ρ|−1

∥∥∥∥∥∥∥∥




c

−1



[
aT ,−1

]
∥∥∥∥∥∥∥∥





∥∥∥∥∥∥∥∥




M̄−1 0

0 1




∥∥∥∥∥∥∥∥
. (2.34)

Now, observe that

∥∥∥∥∥∥∥∥




c

−1



[
aT ,−1

]
∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥
[Ū,u]




c

−1



[
aT ,−1

]
∥∥∥∥∥∥∥∥

(2.35)

≤
∥∥Ūc− u

∥∥∥∥[aT ,−1
]∥∥ (2.36)

≤
√

1 + ‖a‖2
√
n
∥∥Ūc− u

∥∥
∞
≤
√

2n|ρ|. (2.37)

Substituting this into (2.34) gives

‖M−1‖ ≤ [1 +
√

2n]‖M̄−1‖ ≤ (1 +
√

2n)m−1‖u1‖−1
∞ , (2.38)

with the last inequality obtained by recursively applying this stepwise bound over the

m steps. �

Since the DEIM procedure selects the index ℘ℓ that maximizes |ρ|, it minimizes the

reciprocal 1
|ρ|

, which controls the increment in the bound of ‖M−1‖ at iteration ℓ, as

shown in (2.34). Therefore, the selection process for the interpolation index in each

iteration of DEIM (line 6 of Algorithm 1) can be explained in terms of limiting growth

of the error bound of the approximation f̂ . This error bound from Lemma 2.2.3 applies

to any nonlinear vector-valued function f(τ) approximated by DEIM. However, the

bound in (2.24) is not useful as an a priori estimate since it is very pessimistic and

grows far more rapidly than the actual observed values of ‖(PTU)−1‖. In practice,

36

we just compute this norm (the matrix is typically small) and use it to obtain an a

posteriori estimate.

For a given dimension m of the DEIM approximation, the constant C does not de-

pend on f and hence it applies to the approximation f̂(τ) of f(τ) from Definition 2.2.1

for any τ ∈ D . However, the best approximation error

E∗ = E∗(f(τ))

is dependent upon f(τ) and changes with each new value of τ . This would be quite

expensive to compute, so an easily computable estimate is highly desirable. A rea-

sonable estimate is available with the SVD of the nonlinear snapshot matrix

F̂ = [f1, f2, . . . , fns],

fi = f(τi), i = 1, . . . , ns. Let F = Range(F̂) and let F̂ = ÛΣ̂ŴT be its SVD, where

Û = [U, Ũ] and U represents the leading m columns of the orthogonal matrix Û.

Partition Σ̂ =




Σ 0

0 Σ̃


 to conform with the partitioning of Û. The singular values

are ordered as usual with σ1 ≥ σ2 ≥ . . . σm ≥ σm+1 ≥ · · · ≥ σn ≥ 0. The diagonal

matrix Σ has the leading m singular values on its diagonal. The orthogonal matrix

Ŵ = [W,W̃] is partitioned accordingly. Any vector f ∈ F may be written in the

form

f = F̂ĝ = UΣg + ŨΣ̃g̃,

where g = WT ĝ and g̃ = W̃T ĝ. Thus

‖f − f∗‖ = ‖(I−UUT)f‖ = ‖ŨΣ̃g̃‖ ≤ σm+1‖g̃‖.

37

For vectors f nearly in F , we have f = F̂ĝ + w with wT F̂ĝ = 0, and thus

E∗ = E∗(f) ≈ σm+1 (2.39)

is a reasonable approximation so long as ‖w‖ is small (‖w‖2 = O(σm+1) ideally). The

POD approach (and hence the resulting DEIM approach) is most successful when the

trajectories are attracted to a low dimensional subspace (or manifold). Hence, the

vectors f(τ) should nearly lie in F and this approximation will then serve for all of

them.

To illustrate the error bound for DEIM approximation, the numerical results will

be presented next for nonlinear parametrized functions defined on 1-D and 2-D dis-

crete spatial points. These experiments show that the approximate error bound using

σm+1 in place of E∗ is quite reasonable in practice.

2.2.3 Numerical Examples of the DEIM Error Bound

This section demonstrates the accuracy and efficiency of the approximation from

DEIM as well as its error bound given in §2.2.2. The examples here use the POD

basis in the DEIM approximation. The POD basis is constructed from a set of

snapshots corresponding to a selected set of elements in D . In particular, define

D
s = {µs1, . . . , µsns

} ⊂ D (2.40)

to be a parameter set for constructing a snapshot matrix [f(µs1), . . . , f(µ
s
ns

)], which is

used for computing the POD basis {uℓ}mℓ=1 for the DEIM approximation.

38

To evaluate the accuracy, the DEIM approximation f̂ in (2.16) will be applied to the

function at the parameters in the set

D̄ = {µ̄1, . . . , µ̄n̄} ⊂ D , (2.41)

which is different from and larger than the set Ds used for the snapshots. Then the

average error for DEIM approximation f̂ will be considered over the elements in D̄ ,

which is given by

Ē(f) =
1

n̄

n̄∑

i=1

‖f(µ̄i)− f̂(µ̄i)‖2. (2.42)

The average POD error in (2.23) for POD approximation f̂∗ from (2.25) over the

elements in D̄ is given by

Ē∗(f) =
1

n̄

n̄∑

i=1

‖f(µ̄i)− f̂∗(µ̄i)‖2 =
1

n̄

n̄∑

i=1

E∗(f(µ̄i)). (2.43)

From Lemma 2.2.3, the average error bound is then given by

Ē(f) ≤ CĒ∗(f), (2.44)

with the corresponding approximation using (2.39):

Ē(f) . Cσm+1. (2.45)

This estimate is purely heuristic. Although there is little hope for validating this

heuristic in general, it does seem to provide a reasonable qualitative estimate of the

expected error, as shown next in the following examples.

39

2.2.3.1 A nonlinear parametrized function with spatial points in 1-D

Consider a nonlinear parametrized function s : Ω×D 7→ R defined by

s(x;µ) = (1− x) cos(3πµ(x+ 1))e−(1+x)µ, (2.46)

where x ∈ Ω = [−1, 1] and µ ∈ D = [1, π]. This nonlinear function is from an

example in [61]. Let x = [x1, . . . , xn]
T ∈ R

n, with xi equidistantly spaced points in

Ω, for i = 1, . . . , n, n = 100. Define f : D 7→ R
n by

f(µ) = [s(x1;µ), . . . , s(xn;µ)]T ∈ R
n, (2.47)

for µ ∈ D . This example uses 51 snapshots f(µsj) to construct POD basis {uℓ}mℓ=1

with µs1, . . . , µ
s
51 selected as equally spaced points in [1, π]. Figure 2.2 shows the

singular values of these snapshots and the corresponding first 6 POD basis vectors

with the first 6 spatial points selected from the DEIM algorithm using this POD

basis as an input. Figure 2.3 compares the approximate functions from DEIM of

dimension 10 with the original function of dimension 100 at different values of µ ∈ D .

This demonstrates that DEIM gives a good approximation at arbitrary values µ ∈ D .

Figure 2.4 illustrates the average errors defined in (2.42) and (2.43), with the average

error bound and its approximation computed from the right hand side of (2.44) and

(2.45), respectively, with µ̄1, . . . , µ̄n̄ ∈ D̄ selected uniformly over D and n̄ = 101.

40

0 10 20 30 40 50 60
10

−15

10
−10

10
−5

10
0

10
5

Singular values of 51 Snapshots

−1 −0.5 0 0.5 1
−5

−4

−3

−2

−1

0

1

2

3

DEIM points and POD bases (1−6)

PODbasis 1

PODbasis 2

PODbasis 3

PODbasis 4

PODbasis 5

PODbasis 6

DEIM pts

Figure 2.2: Singular values and the corresponding first 6 POD basis vectors with DEIM points of

snapshots from (2.47).

−1 −0.5 0 0.5 1
−2

−1

0

1

2

µ = 1.17

exact

DEIM approx

−1 −0.5 0 0.5 1
−2

−1

0

1

2

µ = 1.5

exact

DEIM approx

−1 −0.5 0 0.5 1
−2

−1

0

1

2

µ = 2.3

exact

DEIM approx

−1 −0.5 0 0.5 1
−2

−1

0

1

2

µ = 3.1

exact

DEIM approx

Figure 2.3: The approximate functions from DEIM of dimension 10 compared with the original

functions (2.47) of dimension n = 100 at µ = 1.17, 1.5, 2.3, 3.1.

[]

~ ~ ~ - II

E - 11 E
11

41

0 10 20 30 40 50
10
−15

10
−10

10
−5

10
0

10
5

m (Reduced dim)

A
v
g

 E
rr

o
r

Avg Error and Avg Error Bound (1D)

Error POD
Error DEIM

Error Bound
Approx Error Bound

Figure 2.4: Compare average errors of POD and DEIM approximations for (2.47) with the average

error bounds and their approximations given in (2.44) and (2.45), respectively.

2.2.3.2 A nonlinear parametrized function with spatial points in 2-D

Consider a nonlinear parametrized function s : Ω×D 7→ R defined by

s(x, y;µ) =
1√

(x− µ1)2 + (y − µ2)2 + 0.12
, (2.48)

where (x, y) ∈ Ω = [0.1, 0.9]2 ⊂ R
2 and µ = (µ1, µ2) ∈ D = [−1,−0.01]2 ⊂ R

2. This

example is modified from the one given in [38]. Let (xi, yj) be uniform grid points in

Ω, for i = 1, . . . , nx and j = 1, . . . , ny. Define s : D 7→ R
nx×ny by

s(µ) = [s(xi, yj;µ)] ∈ R
nx×ny (2.49)

for µ ∈ D and i = 1, . . . , nx, and j = 1, . . . , ny. In this example, the full dimension

is n = nxny = 400 (nx = ny = 20). Note that a corresponding vector-valued function

f : D 7→ R
n for this problem can be defined by reshaping the matrix s(µ) to a

vector of length n = nxny. The 225 snapshots constructed from uniformly selected

parameters µs = (µs1, µ
s
2) in the parameter domain D are used for constructing the

POD basis. A different set of 625 pairs of parameters µ are used for testing (error

42

and CPU time). Figure 2.5 shows the singular values of these snapshots and the

corresponding first 6 POD basis vectors. Figure 2.6 illustrates the distribution of the

first 20 spatial points selected from the DEIM algorithm using this POD basis as

an input. Notice that most of the selected points cluster close to the origin, where

the function s increases sharply. Figure 2.7 shows that the approximate functions

from DEIM of dimension 6 can reproduce the original function of dimension 400

very well at arbitrarily selected value µ ∈ D . Figure 2.8 gives the average errors

with the bounds from the last section and the corresponding average CPU times for

different dimensions of POD and DEIM approximations. The average errors of POD

and DEIM approximations are computed from (2.42) and (2.43), respectively. The

average error bounds and their approximations are computed from the right hand

side of (2.44) and (2.45), respectively. This example uses µ̄1, . . . , µ̄n̄ ∈ D̄ selected

uniformly over D and n̄ = 625. The CPU times are averaged over the same set D̄ .

2.2.4 Application of DEIM to Nonlinear Discretized Systems

The DEIM approximation (2.15) developed in the previous section may now be used

to approximate the nonlinear term in (2.10) and the Jacobian in (2.11) with nonlin-

ear approximations having computational complexity proportional to the number of

reduced variables obtained with POD.

In the case of nonlinear time dependent PDEs in (2.15), by setting τ = t and

f(t) = F(Vŷ(t)), the nonlinear function in (2.5) approximated by DEIM can be

43

0 10 20 30 40 50 60
10
−10

10
−5

10
0

10
5

Singular Values of Snapshots

0
0.5
1

0

0.5

1

0

0.05

0.1

x

POD basis #1

y 0
0.5
1

0

0.5

1

−0.5

0

0.5

x

POD basis #2

y 0
0.5
1

0

0.5

1

−0.2

0

0.2

x

POD basis #3

y

0
0.5
1

0

0.5

1

−0.5

0

0.5

x

POD basis #4

y 0
0.5
1

0

0.5

1

−0.5

0

0.5

x

POD basis #5

y 0
0.5
1

0

0.5

1

−0.5

0

0.5

x

POD basis #6

y

Figure 2.5: Singular values and the first 6 corresponding POD basis vectors of the snapshots of

the nonlinear function (2.49).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1. 2.

3.

4.

5.

6.7.

8.

9. 10.

11.

12.

13.

14.15.

16.

17.

18.

19.

20.

DEIM points

x

y

Figure 2.6: First 20 points selected by DEIM for the nonlinear function (2.49).

•
• . : .
•
• •
11. •

.. · ..

~
. . ~ ...

[#

•

•

•

..,.

<~ •ti
.

..,.

•

•

• •

44

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

1

2

3

4

x

Full dim= 400,[µ
1
,µ
2
] = [−0.05,−0.05]

y

s
(x

,y
;µ
)

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

1

2

3

4

x

 POD: dim = 6, L
2
 error: 8.2e−3

y

s
(x

,y
;µ
)

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

1

2

3

4

x

 DEIM: dim = 6, L
2
 error: 1.8e−2

y

s
(x

,y
;µ
)

Figure 2.7: Compare the original nonlinear function (2.49) of dimension 400 with the POD and

DEIM approximations of dimension 6 at parameter µ = (−0.05,−0.05).

0 5 10 15 20
10
−5

10
0

10
5

m (Reduced dim)

A
v
g

 E
rr

o
r

Avg Error and Avg Error Bound (2D)

Error POD
Error DEIM

Error Bound
Approx Error Bound

0 5 10 15 20
10
−2

10
−1

10
0

10
1

Reduced dim

T
im

e
 (

s
e

c
)

Avg CPU time

POD

DEIM

Figure 2.8: Left: Average errors of POD and DEIM approximations for (2.49) with the average

error bounds given in (2.44) and their approximations given in (2.45). Right: Average CPU time

for evaluating the POD and DEIM approximations.

• ' '• ' ' ·-
1± -•-

-.
'""'""'•-~ ...

"'a. ·--

45

written as

F(Vŷ(t)) ≈ U(PTU)−1PTF(Vŷ(t)) (2.50)

= U(PTU)−1F(PTVŷ(t)). (2.51)

The last equality in (2.51) follows from the fact that the function F evaluates compo-

nentwise at its input vector. The nonlinear term in (2.10) can thus be approximated

by

N̂(ŷ) ≈ VTU(PTU)−1

︸ ︷︷ ︸
precomputed:k×m

F(PTVŷ(t))︸ ︷︷ ︸
m×1

. (2.52)

Note that the term VTU(PTU)−1 in (2.52) does not depend on t and therefore it can

be precomputed before solving the system of ODEs. Note also that PTVŷ(t) ∈ R
m in

(2.52) can be obtained by extracting the rows ℘1, . . . , ℘m of V and then multiplying

against ŷ, which requires 2mk operations. Therefore, if α(m) denotes the cost of

evaluating m components of F, the complexity for computing this approximation

of the nonlinear term roughly becomes O(α(m) + 4km), which is independent of

dimension n of the full-order system (2.1).

Similarly, in the case of steady parametrized nonlinear PDEs, from (2.15), set

τ = µ and f(µ) = F(Vŷ(µ)). Then the nonlinear function in (2.6) approximated by

DEIM can be written as

F(Vŷ(µ)) ≈ U(PTU)−1F(PTVŷ(µ)), (2.53)

46

and the approximation for the Jacobian of the nonlinear term (2.11) is of the form

ĴF(ŷ(µ)) ≈ VTU(PTU)−1

︸ ︷︷ ︸
precomputed:k×m

JF(PTVŷ(µ))︸ ︷︷ ︸
m×m

PTV︸ ︷︷ ︸
m×k

, (2.54)

where

JF(PTVŷ(µ)) = JF(yr(µ)) = diag{F ′(yr1(µ)), . . . , F ′(yrm(µ))},

and yr(µ) = PTVŷ(µ), which can be computed with complexity independent of n

as noted earlier. Therefore, the computational complexity for the approximation in

(2.54) is roughly O(α(m) + 2mk + 2γmk + 2mk2), where γ is the average number of

nonzero entries per row of the Jacobian.

The approximations from DEIM are now in the form of (2.52) and (2.54) that

recover the computational efficiency of (2.10) and (2.11), respectively.

Note that the nonlinear approximation from DEIM in (2.51) and (2.53) are ob-

tained by exploiting the special structure of the nonlinear function F being evaluated

componentwise at y. The next section provides a completely general scheme.

2.2.5 Interpolation of General Nonlinear Functions

The very simple case of componentwise function F(y) = [F (y1), . . . , F (yn)]
T , has

been discussed for purposes of illustration and is indeed important in its own right.

However, DEIM extends easily to general nonlinear functions. Matlab notation is

used here to explain this generalization.

[F(y)]i = Fi(y) = Fi(yji
1
,yji

2
,yji

3
, . . . ,yji

ni
) = Fi(y(ji)), (2.55)

47

where Fi : Yi → R, Yi ⊂ R
ni and the integer vector ji = [ji1, j

i
2, j

i
3, . . . , j

i
ni

]T denotes

the indices of the subset of components of y required to evaluate the i-th component

of F(y) for i = 1, . . . , n.

The nonlinear function of the reduced-order system obtained from the POD-

Galerkin method by projecting on the space spanned by columns of V ∈ R
n×k is

in the form of F(Vŷ), where the components of ŷ ∈ R
k are the reduced variables.

Recall that the DEIM approximation of order m for F(Vŷ) is given by

F(Vŷ) ≈ U(PTU)−1

︸ ︷︷ ︸
k×m

PTF(Vŷ)︸ ︷︷ ︸
m×1

, (2.56)

where U ∈ R
n×m is the projection matrix for the nonlinear function F,

P = [e℘1 , . . . , e℘m] ∈ R
n×m, and ℘1, . . . , ℘m are interpolation indices from the DEIM

point selection algorithm. In the simple case when F is evaluated componentwise at y,

we have PTF(Vŷ) = F(PTVŷ) where PTV can be obtained by extracting rows of V

corresponding to ℘1, . . . , ℘m and hence its computational complexity is independent

of n. However, this is clearly not applicable to the general nonlinear vector-valued

function.

An efficient method for computing PTF(Vŷ) in the DEIM approximation (2.56)

of a general nonlinear function is possible by using a certain sparse matrix data

structure. Notice that, since yj ≈ V(j, :)ŷ, an approximation to F(y) is provided by

F(Vŷ) = [F1(V(j1, :)ŷ), . . . , Fn(V(jn, :)ŷ)]T ∈ R
n, (2.57)

48

and thus

PTF(Vŷ) = [F℘1(V(j℘1 , :)ŷ), . . . , F℘m(V(j℘m , :)ŷ)]T ∈ R
m. (2.58)

The complexity for evaluating each component ℘i, i = 1, . . . ,m, of (2.58):

F̃℘i
(ŷ) := F℘i

(V(j℘i
, :)ŷ) (2.59)

is n℘i
×k Flops plus the complexity of evaluating the nonlinear scalar valued function

F℘i
of the n℘i

variables indexed by j℘i
.

The sparse evaluation procedure may be implemented using a compressed sparse

row data structure as used in sparse matrix factorizations. Two linear integer ar-

rays are needed: irstart is a vector of length m + 1 containing pointers to locations

in the vector jrow, which is of length n~℘ =
∑m

i=1 n℘i
. The successive ni entries of

jrow(irstart(i)) indicate the dependence of the i component of F(y) on the selected

variables from y. In particular,

• irstart(i) contains location of the start of the i-th row with irstart(m + 1) =

n~℘ + 1.

I.e., irstart(1) = 1, and irstart(i) = 1 +
∑i−1

j=1 n℘j
for i = 2, . . . ,m+ 1.

• jrow contains the indices of the components in y required to compute the ℘i-th

49

function F℘i
in locations irstart(i) to irstart(i+ 1)− 1, for i = 1, . . . ,m. I.e.,

irstart(1) irstart(2) irstart(m)

↓ ↓ ↓

jrow = [j℘1

1 , . . . , j℘1
n℘1︸ ︷︷ ︸

j℘1

, j℘2

1 , . . . , j℘2
n℘2︸ ︷︷ ︸

j℘2

, . . . , j℘m

1 , . . . , j℘m
n℘m︸ ︷︷ ︸

j℘m

]T ∈ Z
n~℘

+ .

Given V and ŷ, the following demonstrates how to compute the approximation F̃℘i
(ŷ)

in (2.59), for i = 1, . . . ,m, from the vectors irstart and jrow.

for i = 1 : m

j℘i
= jrow(irstart(i) : irstart(i+ 1)− 1)

F̃℘i
(ŷ) = F℘i

(V(j℘i
, :)ŷ)

end

Typically, the Jacobians of large scale problems are sparse, and this scheme will

be very efficient. However, if the Jacobian is dense (or nearly so) the complexity

would be on the order of mn, where m is the number of interpolation points.

The next section will discuss the computational complexity used for constructing

and solving the reduced-order systems. It will also illustrate, in terms of complexity

as well as computation time, that solving the POD reduced system could be more

expensive than solving the original full-order system.

D D D

50

2.2.6 Computational Complexity

Recall the POD-DEIM reduced system for the unsteady nonlinear problem (2.1):

d

dt
ŷ(t) = Âŷ(t) + B F(V~℘ŷ(t)), (2.60)

and the POD-DEIM reduced system for the steady state problem (2.2):

Âŷ(t) + B F(V~℘ŷ(t)) = 0, (2.61)

where Â = VTAV ∈ R
k×k, and B = VTUU−1

~℘ ∈ R
k×m with U~℘ = PTU and

V~℘ = PTV. This section summarizes the computational complexity for constructing

(offline) and solving (online) the POD-DEIM reduced system compared to both the

original full-order system and the POD reduced system. Table 2.1 gives the offline

computational complexity for constructing a POD-DEIM reduced system.

Procedure (offline) Complexity (offline)

Snapshots Problem dependent

SVD: POD basis O(nn2
s)

DEIM Algorithm: m interpolation indices O(m4 +mn)

Pre-compute: Â = VT AV





O(n2k + nk2), for dense A

O(nk + nk2), for sparse A

Pre-compute: B = VT UU−1

~℘ O(nkm+m2n+m3)

Table 2.1: Computational complexity for constructing a POD-DEIM reduced-order system.

Note that for large snapshot sets, it is far more efficient to compute the dominant

singular values and vectors iteratively via ARPACK (or svds in Matlab) [52]. The

51

computational work shown in Table 2.1 has to be done only once before solving the

POD-DEIM reduced systems. The constant coefficient matrices Â and B are pre-

computed, stored and reused while solving the reduced systems.

The online computational complexity for solving the standard POD reduced sys-

tem can even exceed the complexity for solving the original full-order system due

to the orthogonal projection of the nonlinear term at each iteration, especially when

A ∈ R
n×n represents the discretization of a linear differential operator and its sparsity

is employed in the computation. This section will consider the online computational

complexity and online CPU time only for solving the parametrized steady-state prob-

lem using Newton’s method. More details on the online computational complexity

for solving the unsteady nonlinear problem will be given in Appendix A.

Table 2.2 summarizes the complexity (Flops) for computing one Newton iteration

of the full-order system (2.1) as well as the POD and POD-DEIM reduced-order

systems in (2.6) and (2.61). Notice that, in the case of a sparse full-order system, the

complexity O(k3+nk2) used in solving the POD reduced system could become higher

than the complexity O(n2) used in solving the original system once O(k2) becomes

proportional to O(n). In practice, the CPU time may not be directly proportional to

these predicted Flops since there are many other factors that might affect the CPU

times. However, this analysis does reflect the relative computational requirements

and may be useful for predicting expected relative computational times.

The inefficiency of the POD reduced system indeed occurs in this computation.

52

To illustrate this effect, the nonlinear 2-D steady state problem introduced later in

§4.1.4 will be considered. From Figure 2.9, the average CPU time for solving the

POD reduced system in each time step exceeds the CPU time for solving the original

system as soon as its dimension reaches around 80. Also, Figure 4.9 in §4.1.4 shows

that, while the POD reduced system of dimension 15 gives an O(10) reduction in

computation time as compared to the full-order system, the POD-DEIM reduced

system with both POD and DEIM having dimension 15 gives an O(100) reduction in

computation time with the same order of accuracy. These demonstrate the inefficiency

of the POD reduced system that has been remedied by the introduction of DEIM.

System Complexity (online)

Full (2.1) Dense A: O(n3), Sparse A: O(n2)

POD (2.6) O(k3 + nk2)

POD-DEIM (2.61) O(k3 +mk2)

Table 2.2: Comparison of the online computational work for each Newton iteration of the steady-

state problem.

This chapter has illustrated how the POD-DEIM approach can be used to con-

struct a reduced system as well as discussed its computational complexity reduction.

The next chapter will consider the accuracy of the state solution from the POD-DEIM

reduced system, particularly for the unsteady nonlinear problem (2.1).

53

0 20 40 60 80 100
10
−2

10
−1

10
0

10
1

10
2

10
3

k (POD dim)

ti
m

e
 (

s
e

c
)

Average CPU time (scaled) for each Newton Iteration

DEIM1

DEIM10

DEIM20

DEIM30

DEIM40

DEIM50

DEIM60

DEIM70

DEIM80

DEIM90

DEIM100

POD

Full:n=2500(dense)

Full:n=2500(sparse)

Figure 2.9: Average CPU time (scaled with the CPU time for full-sparse system) in each Newton

iteration for solving the steady-state 2-D problem.

---&-
--+-

--+-

--e-

--+-----&-
-+-
--e-
--+-

..........
--e-

----------~-;.;- -=------I::"":""':~

Chapter 3

A State-Space Error Estimate for

POD-DEIM Reduced Systems

This chapter derives state space error bounds for the solutions of reduced-order sys-

tems constructed using Proper Orthogonal Decomposition (POD) together with the

Discrete Empirical Interpolation Method (DEIM) introduced in Chapter 2. The anal-

ysis is particularly relevant to nonlinear ODE systems arising from spatial discretiza-

tions of parabolic PDEs. The resulting error estimates in 2-norm reflect the approx-

imation property of the POD based scheme through the decay of the corresponding

singular values. The derivation clearly identifies where the parabolicity is crucial. It

also explains how the DEIM approximation error involving the nonlinear term comes

into play.

The error bound for the DEIM approximation for a nonlinear vector-valued func-

54

55

tion given in Lemma 2.2.3 from Chapter 2 is used in this chapter to establish the

global accuracy of state solution from the POD-DEIM reduced system. The deriva-

tion given here extends the error analysis of Kunish and Volkwein in [94] for POD

reduced systems to the POD-DEIM reduced systems for ODEs with Lipschitz contin-

uous nonlinearities. As before, ‖ · ‖ shall be used to denote the 2-norm in Euclidean

space throughout this chapter. The 2-norm error estimates presented here are shown

to be proportional to the sums of the singular values corresponding to neglected POD

basis vectors both in Galerkin projection of the reduced system and in DEIM approxi-

mation of the nonlinear term. The separate POD basis used in DEIM to approximate

the nonlinearity is very closely related Kunish-Volkwein’s inclusion of finite difference

snapshots [49]1.

3.1 Problem formulation

Consider systems of nonlinear ODEs of the form:

d

dt
y(t) = Ay(t) + F(t,y(t)), y(0) = y0, for t ∈ [0, T], (3.1)

where the matrix A ∈ R
n×n is constant and the nonlinear function F : [0, T]→ Y is

assumed to be uniformly Lipschitz continuous with respect to the second argument

1 In [49], the finite difference snapshots of the form (yj+1−yj)/h are included into the snapshot

set. This is related to the POD-DEIM approach in this thesis which considers also the nonlinear

snapshots, since (yj+1−yj)/h ≈ ẏ(tj) = F(yj), where yj ≈ y(tj) and ẏ = F(y) for time stepsize h.

56

with Lipschitz constant Lf > 0 and Y ⊆ R
n. I.e., for y1,y2 ∈ Y and for all t ∈ [0, T],

‖F(t,y1)− F(t,y2)‖ ≤ Lf‖y1 − y2‖. (3.2)

Recall that, in the POD-DEIM approach, two POD bases are derived. One is the

POD basis matrix V ∈ R
n×k of the solution y(t) and the other is the POD basis

matrix U ∈ R
n×m of the nonlinear function F(t,y(t)). The corresponding POD-

DEIM reduced system is constructed by applying Galerkin projection on the column

space of the POD basis matrix V, and then applying DEIM approximation to the

nonlinear function using interpolation projection onto the column space of the POD

basis matrix U. The resulting reduced system is then given by

d

dt
ŷ(t) = Âŷ(t) + VT

PF(t,Vŷ(t)), ŷ(0) = VTy0, for t ∈ [0, T], (3.3)

where Â := VTAV ∈ R
k×k, P := U(PTU)−1PT ∈ R

n×n, and P ∈ R
n×m is a matrix

whose columns come from some selected columns of the identity matrix corresponding

to the DEIM indices, as defined in § 2.2 of Chapter 2. Note that in actual computation,

the quantity VTU(PTU)−1 ∈ R
m×m in the nonlinear term would be precomputed

and stored, so that the computational cost in solving (3.3) is only proportional to

the reduced dimensions k and m (and not the original dimension n) as explained

in the previous chapter. However, for the purpose of error analysis, this chapter

will consider the nonlinear term written in the form as given in (3.3). Notice that

if m = n, then P is equal to the n-by-n identity matrix and the system in (3.3) is

just a reduced system constructed by the standard POD-Galerkin approach. Hence,

-

57

the error analyses given in this chapter will also apply to the POD reduced system.

Recall that the Lipschitz continuity assumption on F in the original system (3.1)

will guarantee the existence and uniqueness of the solution from the original system

(by, e.g., Picard-Lindelöf theorem). The Lipschitz continuity of F is inherited by the

reduced order nonlinear term F̂(t, ŷ(t)) := VT
PF(t,Vŷ(t)), since

‖F̂(t, ŷ1(t))− F̂(t, ŷ2(t))‖ = ‖VT
PF(t,Vŷ1(t))−VT

PF(t,Vŷ2(t))‖

≤ Lf‖P‖‖ŷ1(t)− ŷ2(t)‖,

for all t ∈ [0, T], where ‖P‖ is a bounded constant as shown in Lemma 2.2.3 and the

fact that V has orthonormal columns is also used. Thus, existence and uniqueness of

the solution to the POD-DEIM reduced system (3.3) will also be inherited.

The solution y(t) of the original full-order system (3.1) is then approximated

by Vŷ, where ŷ is the solution from the POD-DEIM reduced system (3.3). The

accuracy of this approximation therefore can be measured by considering the error

‖y(t)−Vŷ(t)‖ for t ∈ [0, T]. The bounds for this DEIM state space error will be the

main focus in this chapter. Note that the derivation for the error bounds presented

later in this chapter can be applied to the case when other matrices with orthonormal

columns are used in place of these POD basis matrices. This derivation also can be

extended to a more general class of parametrized ODE systems.

The error bounds in discrete setting will be also considered in §3.2.2 where implicit

Euler time integration is used for both full-order system (3.1) and the POD-DEIM

58

reduced system (3.3) as shown below:

1

△t(Yj − Yj−1) = AYj + f(tj, Yj), Y0 = y0, (3.4)

1

△t(Ŷj − Ŷj−1) = ÂŶj + VT
PF(tj,VŶj), Ŷ0 = VTy0, (3.5)

where △t = T/nt, Yj and Ŷj are the approximations of y(tj) and ŷ(tj), tj = j△t,

j = 1, . . . nt for a given nt. The accuracy of the POD-DEIM discretized system (3.5)

will be considered through the discrete state space errors: ‖Yj −VYj‖. Similar error

bounds can be obtained for other discretization schemes.

The goal here is to compare the accuracy of the POD-DEIM approximate solutions

with the best approximation in the least-square sense. In particular, the resulting L2-

norm error bounds derived in this chapter will be expressed in terms of the errors Ey

and Ef in the continuous setting (or Ēy and Ēf in the discrete setting) where

Ey :=

∫ T

0

‖y(t)−VVTy(t)‖2dt, Ef :=

∫ T

0

‖f(t)−UUT f(t)‖2dt, (3.6)

Ēy :=
nt∑

j=0

‖Yj −VVTYj‖2, Ēf :=
nt∑

j=0

‖Fj −UUTFj‖2, (3.7)

with f(t) = F(t,y(t)), Fj = F(tj, Yj). Note that, the least square approximation of

y(t) in the span of V is given by VVTy(t) for VTV = I, t ∈ [0, T]. Hence, Ey can be

viewed as the least-square error for a given basis matrix V. The error Ey is minimized

when V is chosen to be the POD basis of the snapshot set {y(t)|t ∈ [0, T]}. I.e., by

definition [49, 50, 94], V = [v1, . . . ,vk] ∈ R
n×k is the POD basis for {y(t)|t ∈ [0, T]}

if it solves the following minimization problem:

min
rank{Φ}=k

∫ T

0

‖y(t)− ΦΦTy(t)‖2dt, s.t. ΦTΦ = Ik. (3.8)

59

It is well known [50] that the POD basis which solves (3.8) is the set of first k

dominant eigenvectors of the symmetric matrix R :=
∫ T

0
y(t)y(t)Tdt ∈ R

n×n. Using

the notation established in [50], let r = rank{R} and let λ∞1 ≥ λ∞2 ≥ · · · ≥ λ∞r > 0 be

the nonzero eigenvalues of R with the corresponding eigenvectors v1,v2, . . . ,vr ∈ R
n.

Then, the minimum 2-norm error of (3.8) is given by2

∫ T

0

‖y(t)−VVTy(t)‖2dt =
r∑

i=k+1

λ∞i . (3.9)

Similarly, Ef is minimized when U ∈ R
n×m is the POD basis matrix of nonlinear

snapshots f(t) = F(t,y(t)) for time t on the entire time interval [0, T], and the

minimum value is given by

∫ T

0

‖f(t)−UUT f(t)‖2dt =
rs∑

i=m+1

s∞i , (3.10)

where s∞1 ≥ s∞2 ≥ . . . ≥ s∞rs > 0 are the rs nonzero eigenvalues of
∫ T

0
f(t)f(t)Tdt ∈

R
n×n. Analogously, the errors Ēy and Ēf in the discrete setting are minimized when

V is the POD basis of Y = [Y1, . . . , Ynt] and U is the POD basis of F = [F1, . . . , Fnt]

with the minimum values given by, respectively,

ns∑

j=1

‖Yj −VVTYj‖2 =
r̄∑

i=k+1

λi (3.11)

ns∑

j=1

‖Fj −UUTFj‖2 =
r̄s∑

i=m+1

si, (3.12)

2The connection between (3.9) and (2.8) in Chapter 2 was demonstrated in [50] when the sampled

snapshots used for (2.8) are sufficiently dense in [0, T]. In particular,
∑r

i=k+1
λi ≤ 2

∑r
i=k+1

λ∞i

when ns > n̄s for some sufficient large value n̄s.

60

where {λi}r̄i=1 and {si}r̄si=1 are eigenvalues of YY
T and FF

T , indexed in decreasing

order as defined similarly for the POD basis in Chapter 2.

3.2 Error analysis of POD-DEIM reduced system

This section develops a bound on the state approximation error for numerical solu-

tions obtained from the POD-DEIM reduced system. The derivation will involve an

application of the logarithmic norm [24] and the integral form of Gronwall’s lemma

[40, 13]. The logarithmic norm of A ∈ C
n×n with respect to the 2-norm is defined as

[24]

µ(A) := lim
h→0+

‖I + hA‖2 − 1

h
, (3.13)

which has an explicit expression suitable for calculation given by

µ(A) = max{µ : µ ∈ σ ([A + A∗]/2)}, (3.14)

where σ ([A + A∗]/2) is the set of eigenvalues of the Hermitian part [A + A∗]/2 of

A. Note that the quantity in (3.14) is also known as numerical abscissa of A. A

well-known property of logarithmic norm that will be used here is

‖eAt‖ ≤ eµ(A)t, (3.15)

for t ≥ 0 (see, e.g.[24, 83, 53]). By using (3.14), it is straightforward to show that

µ(Â) ≤ µ(A), (3.16)

61

where Â = VTAV ∈ R
k×k and V ∈ R

n×k, VTV = I. Hence, (3.15) and (3.16) give

‖eÂt‖ ≤ eµ(A)t. (3.17)

The logarithmic norm was introduced by Dahlquist [24] to provide a mechanism

for bounding the growth of the solution to a linear dynamical system of the form

ẏ(t) = Ay(t) + r(t)

whenever r is a bounded function of t. For t ≥ 0 the norm of y satisfies the differential

inequality

d

dt
‖y(t)‖ ≤ µ(A)‖y(t)‖+ ‖r(t)‖, (3.18)

As explained by Söderlind [82], the bound (3.18) is able to distinguish between forward

and reverse time and it may also be able to distinguish between stable and unstable

systems. In fact, µ(A) may be negative and when it is, the system is certain to

be stable. The opposite assertion (A stable implies µ(A) < 0) is not true. The

non-normal matrix



λ 1

0 λ


 provides a counterexample when −.5 < Real(λ) < 0.

More details on logarithmic norms can be found in e.g. [24, 83, 25, 82]. Next,

bounds on the state approximation error provided by POD-DEIM solutions will be

derived in two different settings: one for the ideal case involving the full trajectory of

the ODE system, as presented in §3.2.1, while the other one applies to the reduced

system derived from snapshots obtained via numerical solution of the ODE system,

as presented in §3.2.2.

-

62

3.2.1 Error bounds in ODE setting

This section compares the solution y(t) from the original full-order system (3.1) to

the approximation Vŷ(t) where ŷ is the solution of the POD-DEIM reduced system

(3.3). Define the pointwise error e(t) := y(t)−Vŷ(t), and write

e(t) = ρ(t) + θ(t),

where ρ(t) := y(t)−VVTy(t), and θ(t) := VVTy(t)−Vŷ(t).Notice that
∫ T

0
‖ρ(t)‖dt =

Ey is the minimum L2-norm error of the approximation on Span{U}, as defined in

(3.6). It therefore only remains to find a bound for ‖θ(t)‖ which can be done through

the application of Gronwall’s lemma. Define θ̂(t) := VT θ(t). Then θ(t) = Vθ̂(t).

Consider
˙̂
θ(t) = VT ẏ(t)− ˙̂y(t) with ẏ(t) and ˙̂y(t) satisfying (3.1) and (3.3). That is,

d

dt
θ̂(t) = VT [A [ρ(t) + θ(t)] + F(t,y(t))− PF(t,Vŷ(t))]

= Âθ̂(t) + G(t), (3.19)

where G(t) := VTAρ(t) + VT [F(t,y(t))− PF(t,Vŷ(t))]. Note that θ(0) = 0 since

ŷ0 = VTy(0). Hence, the solution to (3.19) can be written as

θ̂(t) =

∫ t

0

eÂ(t−s)G(s)ds. (3.20)

To find a bound for ‖G(t)‖, write

G(t) = VTAρ(t) + VT
[
(I− P)F(t,y(t)) + P[F(t,y(t))− F(t,Vŷ(t))]

]
.

-

63

The Lipschitz continuity of F, together with (I − P)F(t,y(t)) = (I − P)w(t) from

(2.22) in Lemma 2.2.3, where w(t) := F(t,y(t))−UUTF(t,y(t)), implies

‖G(t)‖ ≤ ‖VTAρ(t)‖+ ‖VT (I− P)F(t,y(t))‖+ ‖VT
P‖Lf‖y(t)−Vŷ(t)‖

≤ α‖ρ(t)‖+ β‖w(t)‖+ γ‖θ(t)‖, (3.21)

where α := ‖VTA‖ + ‖VT
P‖Lf , β := ‖VT (I − P)‖, γ := ‖VT

P‖Lf . Since

‖θ̂(t)‖ = ‖θ(t)‖ and ‖eÂ(t−s)‖ ≤ eµ(t−s) where µ := µ(A), (3.20) and (3.21) imply

‖θ(t)‖ ≤
∫ t

0

‖eÂ(t−s)‖
(
α‖ρ(s)‖+ β‖w(s)‖+ γ‖θ(s)‖

)
ds

≤ η + γ

∫ t

0

eµ(t−s)‖θ(s)‖ds, (3.22)

where η satisfies η ≥ η̂(t) :=
∫ t

0
eµ(t−s)

(
α‖ρ(s)‖ + β‖w(s)‖

)
ds, for all t ∈ [0, T].

Applying the integral form of Gronwall’s inequality [13] to (3.22) gives

‖θ(t)‖ ≤ ηeγbµ(t), (3.23)

where bµ(t) :=
∫ t

0
eµ(t−s)ds =





1
µ
(eµt − 1) , µ 6= 0

t , µ = 0

. Now, η can be specified by

applying the Cauchy-Schwarz inequality to η̂(t) so that we can put

η :=
[
aµ(T)

(
α2 Ey + β2 Ef

)]1/2
,

where aµ(t) := 2
∫ t

0
e2µ(t−s)ds =





1
µ
(e2µt − 1) , µ 6= 0

2t , µ = 0

, with Ey =
∫ T

0
‖ρ(t)‖2dt

and Ef =
∫ T

0
‖w(t)‖2dt, as defined in (3.6). Using bµ(t) ≤ bµ(T) for all t ∈ [0, T] and

(3.23), a bound for ‖θ(t)‖2 is given by

‖θ(t)‖2 ≤ aµ(T)e2γbµ(T)
[
α2 Ey + β2 Ef

]
, (3.24)

64

for all t ∈ [0, T]. Finally, since ρ(t)T θ(t) = 0, then

∫ T

0

‖e(t)‖2dt =

∫ T

0

‖ρ(t)‖2dt+

∫ T

0

‖θ(t)‖2dt ≤ C (Ey + Ef) , (3.25)

where C = max{1 + cµα
2T, cµβ

2T} and cµ = aµ(T)e2γbµ(T). Notice that when µ < 0,

aµ(t), bµ(t) <
1
|µ|

for all t > 0 and hence cµ <
e2γ/|µ|

|µ|
, which does not depend on the

final integration time T . In this case, the error bound in (3.25) is linear in T as well

as the least-square errors Ey and Ef .

In practice, the exact solutions of dynamical systems are not available and the

numerical solutions from their discretized systems are often required. The next section

will apply an analogous derivation to analyze the accuracy of a discretized POD-DEIM

reduced system compared to the discretized full-order system.

3.2.2 Error bounds in discrete setting

This section compares the solutions of (3.4) and (3.5) obtained from implicit Euler

time discretization for the full-order system (3.1) and the POD-DEIM reduced system

(3.3), respectively. Define the error at time step tj as Ej := Yj −VŶj, and write

Ej = ρj + θj,

where ρj := Yj −VVTYj, θj := VVTYj −VŶj. Since ρTj θj = 0, ‖Ej‖2 = ‖ρj‖2 +

‖θj‖2. Note that, from (3.7),
∑nt

j=0 ‖ρj‖2 = Ēy, and it therefore remains to determine

a bound for the norm of θj. Analogous to the continuous case, the discrete Gronwall’s

lemma can be used to obtain a bound for ‖θj‖. Define θ̂j := VT θj = VTYj − Ŷj for

65

VTV = I. Then θj = Vθ̂j. Consider

1

△t(θ̂j − θ̂j−1) = VT
[1

△t(Yj − Yj−1)
]
−
[1

△t(Ŷj − Ŷj−1)
]
.

That is, using Yj −VŶj = ρj + θj gives

1

△t(θ̂j − θ̂j−1) = VTA[ρj + θj] + VT [F(tj, Yj)− PF(tj,VŶj)], (3.26)

= Âθ̂j + Gj, (3.27)

where Gj := VTAρj + VT [F(tj, Yj) − PF(tj,VŶj)]. From successive substitution of

θ̂j−1, . . . , θ̂0,

θ̂j = (I−△tÂ)−1
[
θ̂j−1 +△tGj

]
(3.28)

= (I−△tÂ)−j θ̂0 +△t
j∑

i=1

[
(I−△tÂ)−iGj−i+1

]
. (3.29)

To find a bound for ‖Gj‖, first rewrite

Gj = VTAρj + VT
[
(I− P)F(tj, Yj) + P[F(tj, Yj)− F(tj,VŶj)]

]
.

Then, by using Cauchy-Schwarz inequality, Lipschitz continuity of F, and (I−P)F(tj, Yj) =

(I− P)wj for wj = (I−UUT)F(tj, Yj) from Lemma 2.2.3,

‖Gj‖ ≤ α‖ρj‖+ β‖wj‖+ γ‖θj‖, (3.30)

where α = ‖VTA‖+‖VT
P‖Lf , β = ‖VT (I−P)‖, γ = ‖VT

P‖Lf . Let µ = µ(A) and

assume µ△t < 1, so that I−△tÂ is invertible. Then ‖(I−△tÂ)−1‖ ≤ (1−△tµ)−1

[83]. Let ζ := (1−△tµ)−1. Since ‖θj‖ = ‖θ̂j‖, then (3.29) and (3.30) give

‖θj‖ ≤ ζj‖θ0‖+△t
j∑

i=1

ζ i‖Gj−i+1‖ ≤ η̄ +△tγ
j∑

ℓ=1

ζ̂ℓ‖θℓ‖, (3.31)

66

where ζ̂ℓ := ζj−ℓ+1 and η̄ satisfies η̄ ≥ ηj := ζj‖θ0‖ +△t∑j
ℓ=1

[
ζ̂ℓ(α‖ρℓ‖+ β‖wℓ‖)

]
,

for all j = 1, . . . , nt. By using the Cauchy-Schwarz inequality, we can put η̄ as

η̄ :=
[
△tāµ

(
α2 Ēy + β2 Ēf

)]1/2
, (3.32)

where āµ := 2△t
∑nt

ℓ=1 ζ
2ℓ = 2△tζ2

(
1−ζ2nt

1−ζ2

)
and Ēy =

∑nt

ℓ=1 ‖ρℓ‖2, Ēf =
∑nt

ℓ=1 ‖wℓ‖2

as defined in (3.7). Note that θ0 = 0, since Y0 = y0 and Ŷ0 = VTy0. Now we can

apply the discrete Gronwall lemma (e.g. [22]) on (3.31) to obtain

‖θj‖ ≤ η̄ exp

{
△tγ

j∑

ℓ=1

ζ̂ℓ

}
. (3.33)

Let b̄µ := △t∑nt

ℓ=1 ζ
ℓ = △tζ

(
1−ζnt

1−ζ

)
. Then, using T = nt△t gives

nt∑

j=1

‖θj‖2 ≤
nt∑

j=1

η̄2e2γb̄µ ≤ T āµe
2γb̄µ

(
α2 Ēy + β2 Ēf

)
. (3.34)

Finally, since ρTj θj = 0, then
∑nt

j=0 ‖Yj −VŶj‖2 =
∑nt

j=0 ‖ρj‖2 +
∑nt

j=0 ‖θj‖2 and

nt∑

j=0

‖Yj −VŶj‖2 ≤ C̄
(
Ēy + Ēf

)
, (3.35)

where C̄ = max{1 + c̄µα
2T, c̄µβ

2T}, c̄µ := āµe
2γb̄µ . Note that for ζ := (1 −△tµ)−1

and µ = µ(A), if µ < 0, then 0 < ζ < 1 and

b̄µ ≤ △tζ
(

∞∑

ℓ=0

ζℓ

)
= △tζ

(
1

1− ζ

)
= △t 1/(1−△tµ)

1− 1/(1−△tµ)
=

1

|µ| ,

and similarly, then 0 < ζ2 < 1 and

āµ ≤ 2△t ζ2

1− ζ2
= 2△t 1/(1−△tµ)2

1− 1/(1−△tµ)2
=

1

|µ|+ (△t|µ|2)/2 .

That is c̄µ ≤
(

1
|µ|+(△t|µ|2)/2

)
e2γ/|µ| which is uniformly bounded for a fixed △t. In

this case, c̄µ converges to cµ in the continuous setting as △t → 0. The following

summarizes the error bounds just derived in § 3.2.1 and § 3.2.2.

67

Theorem 3.2.1 Let y(t) be the solution of the original full-order system (3.1) and

ŷ(t) be the solution of the POD-DEIM reduced system (3.3), for t ∈ [0, T]. Let

µ = µ(A) be the logarithmic norm defined in (3.13) and assume that F(t,y) in (3.1)

is Lipschitz continuous in the second argument, with Lipschitz constant Lf as in (3.2).

Let Yj and Ŷj be the solutions of the discretized systems (3.4) and (3.5) from implicit

Euler method at tj = j△t ∈ [0, T], △t = T/nt for j = 0, . . . nt. Assume that µ△t < 1.

Then

∫ T

0

‖y(t)−Vŷ(t)‖2dt ≤ C (Ey + Ef) , (3.36)

nt∑

j=0

‖Yj −VŶj‖2 ≤ C̄
(
Ēy + Ēf

)
, (3.37)

where C := max{1 + cµα
2T, cµβ

2T}, C̄ := max{1 + c̄µα
2T, c̄µβ

2T},

α := ‖VTA‖+ ‖VT
P‖Lf , β := ‖VT (I− P)‖, γ := ‖VT

P‖Lf , (3.38)

cµ := aµe
2γbµ , with





aµ = 1
µ
(e2µT − 1), bµ = 1

µ
(eµT − 1) , µ 6= 0

aµ = 2T, bµ = T , µ = 0

(3.39)

c̄µ := āµe
2γb̄µ , with āµ = 2△tζ2

(
1− ζ2nt

1− ζ2

)
, b̄µ = △tζ

(
1− ζnt

1− ζ

)
, (3.40)

ζ = (1 − △tµ)−1 and Ey, Ef , Ēy, Ēf are the minimum L2-norm errors as defined in

(3.6) and (3.7).

Remark 3.2.2 Using the notation and assumptions from Theorem 3.2.1:

(i) If µ < 0, then aµ, bµ <
1
|µ|

and āµ <
1

|µ|+(△t|µ|2)/2
, b̄µ <

1
|µ|

. That is, cµ and c̄µ in

(3.39) can be bounded by a constant independent of T or nt (for fixed △t):

cµ <
e2γ/|µ|

|µ| , c̄µ <
e2γ/|µ|

|µ|+ (△t|µ|2)/2 . (3.41)

68

(ii) When the POD-DEIM reduced system (3.3) is constructed from the POD ba-

sis matrices V ∈ R
n×k, and U ∈ R

n×m of solution snapshots and nonlin-

ear snapshots, respectively, which satisfy (3.8), then, from (3.9) and (3.10),

Ey =
∑r

ℓ=k+1 λ
∞
ℓ , Ef =

∑rs
ℓ=m+1 s

∞
ℓ . In this case, if also µ = µ(A) < 0, then

from (i) the error bound can be simplified as

∫ T

0

‖y(t)−Vŷ(t)‖2dt ≤ Co

(
r∑

ℓ=k+1

λ∞ℓ +
rs∑

ℓ=m+1

s∞ℓ

)
, (3.42)

where Co := max{1 + coα
2T, coβ

2T}, co = e2γ/|µ|

|µ|
with α,β, γ from (3.38).

(iii) Similarly, when the discretized POD-DEIM reduced system (3.5) is constructed

from the POD basis matrices V ∈ R
n×k, and U ∈ R

n×m of snapshot matrices

Y = [Y1, . . . , Ynt] and F = [F(t1, Y1), . . . ,F(tnt , Ynt)] ∈ R
n×nt, then using (3.11)

and (3.12) gives Ēy =
∑r̄

ℓ=k+1 λℓ, Ēf =
∑r̄s

ℓ=m+1 sℓ. In this case, if also µ =

µ(A) < 0, then from (i),

nt∑

j=0

‖Yj −VŶj‖2 ≤ C̄o

(
r̄∑

ℓ=k+1

λℓ +
r̄s∑

ℓ=m+1

sℓ

)
, (3.43)

where C̄o := max{1+ c̄oα
2T, c̄oβ

2T}. c̄o = e2γ/|µ|

|µ|+(△t|µ|2)/2
, with α,β, γ from (3.38).

When (ii) or (iii) of Remark 3.2.2 holds true, Ey and Ef in (3.6) or Ēy and Ēf in (3.7)

are minimized as noted earlier. For a special case, when (i) and (iii) in Theorem 3.2.1

are both true, the pointwise error in the discrete setting is uniformly bounded at each

time step j = 1, . . . , nt:

‖Yj −VŶj‖2 ≤ c̄

(
r̄∑

ℓ=k+1

λℓ +
r̄s∑

ℓ=m+1

sℓ

)
, (3.44)

69

where c̄ := 2 max{1 + c̄µα
2, c̄µβ

2}, c̄o = e2γ/|µ|

|µ|+(△t|µ|2)/2
, with α,β, γ defined as in (3.38).

The error analysis in this section has illustrated the basic idea concerning how the

parabolicity assumption together with the combination of the POD-DEIM approach

will lead to a bound on the state approximation error. However, it depends upon the

ability to separate out a constant matrix A on the right hand side of the ODE system.

The key tool in this analysis has been the logarithmic norm. The next section will

utilize a generalization to obtain an error estimate that does not require the constant

matrix A.

3.3 Analysis based on generalized logarithmic norm

A logarithmic norm was used in the previous section to analyze the state approxi-

mation error of the POD-DEIM system. That approach required the presence of a

constant matrix A. More generally, as is done in [82], one can apply a logarithmic

norm argument to a local linearization about the trajectory. The analysis in this

section will employ a generalization of the logarithmic norm that avoids the need for

a linearization or for the presence of a constant A. The generalization of logarithmic

norm to unbounded nonlinear operators was introduced through logarithmic Lipschitz

constants in [81] to avoid working with linearizations and logarithmic norms that are

only applicable to linear operators. Here, this tool will be used to develop a con-

ceptual framework suitable for analyzing POD-DEIM reduced systems of nonlinear

70

ODEs. Consider nonlinear ODEs of the form:

ẏ(t) = F(t,y(t)), y(0) = y0, (3.45)

where F : [0, T]×Y → R
n, Y ⊆ R

n with the POD-DEIM reduced system of the form:

˙̂y(t) = F̂(t, ŷ(t)), ŷ(0) = VTy0, (3.46)

where F̂ : [0, T] × Ŷ → R
k, Ŷ ⊆ R

k, F̂(t, ŷ) = VT
PF(t,Vŷ) for ŷ ∈ Ŷ , t ∈ [0, T].

Note that the POD reduced system can be obtained by replacing P with the n-by-n

identity matrix. Hence, the error bounds derived in this section also apply to the POD

reduced system. This section will use the Euclidian inner product 〈·, ·〉 : R
d×R

d → R,

for some positive integer d, i.e. 〈u,v〉 = uTv for u,v ∈ R
d, and its induced norm

‖u‖ =
√
〈u,u〉, u ∈ R

d. As in [82], for a map F : [0, T]×Y → R
d, Y ⊆ R

d, the least

upper bound (lub) logarithmic Lipschitz constants with respect to the inner product

〈·, ·〉 can be defined, uniformly for all t ∈ [0, T], as:

M [F] := sup
u6=v

〈u− v,F(t,u)− F(t,v)〉
‖u− v‖2 . (3.47)

The convergence of the solution as well as the stability of the corresponding POD-

DEIM reduced system can be analyzed by using these logarithmic Lipschitz constants.

The map F is called uniformly negative monotone if M [F] < 0, in which case it will

be shown that the error bound of the reduced-order solution is uniformly bounded

on t ∈ [0, T].

The asymptotic error analysis will be considered first in § 3.3.1 for the continuous

setting, where the overall accuracy of the reduced system is only contributed from

71

applying the POD-DEIM technique without other effects, such as the choice of time

integration method. Then, a framework for error analysis in the discrete setting for

the implicit Euler time integration scheme will be presented in § 3.3.2. Note that

Lipschitz continuity of F is the only main assumption used in this section. The

resulting error bounds in the 2-norm, which are summarized in Theorem 3.3.1, reflect

the approximation property of POD based scheme through the decay of singular

values, as in §3.2. The differences of the results here from the ones in §3.2 will be

discussed at the end of this section.

3.3.1 Error bounds in continuous ODE setting

Consider the error of the solution from the POD-DEIM reduced system of the form

e(t) = y(t)− yr(t), yr(t) := Vŷ(t),

where V ∈ R
n×k is the POD basis matrix with y and ŷ satisfying (3.45) and (3.46),

respectively. Again, put

e(t) = ρ(t) + θ(t),

where ρ(t) := y(t)−VVTy(t), θ(t) := VVTy(t)−Vŷ(t), and note that ŷ(0) = VTy0

implies θ(0) = 0. Note also that ρ(t)T θ(t) = 0 implies that ‖e(t)‖2 = ‖ρ(t)‖2+‖θ(t)‖2.

Define θ̂(t) := VT θ(t) = VTy(t)− ŷ(t). As before, θ(t) = Vθ̂(t) and hence ‖θ(t)‖ =

72

‖θ̂(t)‖. Now, consider

˙̂
θ(t) = VT ẏ(t)− ˙̂y(t) = VTF(t,y(t))− F̂(t, ŷ(t)) (3.48)

= F̂(t,VTy(t))− F̂(t, ŷ(t)) + r̂(t), (3.49)

where

r̂(t) := VTF(t,y(t))− F̂(t,VTy(t)). (3.50)

Next, since ‖θ̂(t)‖2 = θ̂(t)T θ̂(t),

d

dt
‖θ̂(t)‖ =

〈
θ̂(t),

˙̂
θ(t)

〉

‖θ̂(t)‖

=

〈
θ̂(t), F̂(t,VTy(t))− F̂(t, ŷ(t)) + r̂(t)

〉

‖θ̂(t)‖

=

〈
θ̂(t), F̂(t,VTy(t))− F̂(t, ŷ(t))

〉

‖θ̂(t)‖
+

〈
θ̂(t), r̂(t)

〉

‖θ̂(t)‖
≤ M [F̂]‖θ̂(t)‖+ ‖r̂(t)‖.

Notice that ‖r̂(t)‖ is independent of ‖θ̂(t)‖ and hence Gronwall’s inequality is not

required here. Since ‖θ(t)‖ = ‖θ̂(t)‖ and ‖θ(0)‖ = 0, then

‖θ(t)‖ ≤ eM [F̂]t‖θ(0)‖+

∫ t

0

eM [F̂](t−τ)‖r̂(τ)‖dτ =

∫ t

0

eM [F̂](t−τ)‖r̂(τ)‖dτ. (3.51)

Now, the expression for r̂(t) can be rewritten as the sum of differences, which can be

estimated in terms of the neglected singular values as follows. From Lemma 2.2.3,

73

for w(t) = F(t,y(t))−UUTF(t,y(t)),

r̂(t) = VTF(t,y(t))− F̂(t,VTy(t)) = VT [F(t,y(t))− PF(t,VVTy(t))]

= VT [F(t,y(t))− PF(t,y(t)) + PF(t,y(t))− PF(t,VVTy(t))]

= VT (I− P)w(t) + VT
P(F(t,y(t))− F(t,VVTy(t))).

The Lipschitz continuity of F implies ‖F(t,y(t)) − F(t,VVTy(t))‖ ≤ Lf‖y(t) −

VVTy(t)‖ = Lf‖ρ(t)‖, so that

‖r̂(t)‖ ≤ α‖ρ(t)‖+ β‖w(t)‖, (3.52)

where α := ‖VT
P‖Lf , β := ‖VT (I − P)‖. Thus, by applying the Cauchy-Schwarz

inequality and triangle inequality to (3.51) and (3.52),

‖θ(t)‖2 ≤ aM(T)
(
α2Ey + β2Ef

)
,

for all t ∈ [0, T], where aM(t) := 2
∫ t

0
e2M [F̂](t−τ)dτ =





1

M [F̂]
(e2M [F̂]t − 1), M [F̂] 6= 0

2t, M [F̂] = 0

and Ey =
∫ T

0
‖ρ(t)‖2dt, Ef =

∫ T
0
‖w(t)‖2dt, as defined in (3.6). Finally,

∫ T

0

‖e(t)‖2dt =

∫ T

0

‖ρ(t)‖2dt+

∫ T

0

‖θ(t)‖2dt ≤ C
(
Ey + Ef

)
,

where C = max{1 + aM(T)α2T, aM(T)β2T}. When M [F̂] < 0, aM(T) ≤ 1

|M [F̂]|
, which

is independent of T .

3.3.2 Error bounds in discretized ODE setting

Using our analysis of the full trajectory as a guide, by analogy to (3.45) and (3.46),

this section shall analyze the discrete systems obtained from backward Euler time in-

74

tegration corresponding to the full-order system and the POD-DEIM reduced system

in the form: for Y0 = y0 and Ŷ0 = VTy0,

Yj − Yj−1

△t = F(tj, Yj),
Ŷj − Ŷj−1

△t = F̂(tj, Ŷj), (3.53)

△t = T/nt, where nt is the number of time steps, Yj and Ŷj are approximations of

y(tj) and ŷ(tj) respectively, at tj = j△t, j = 0, . . . , nt. Assume that △t (or nt) is

chosen so that △tM [F] < 1. Consider the error:

Ej = Yj −VŶj,

where Yj is the solution of full-order system, and Ŷj is the solution of the POD-DEIM

reduced system in (3.53), for j = 1, . . . , nt. Write

Ej = ρj + θj,

where ρj := Yj −VVTYj, θj := VVTYj −VŶj. Define θ̂j := VT θj = VTYj − Ŷj. As

before, θj = Vθ̂j, ‖θj‖ = ‖θ̂j‖ and ρTj θj = 0. From (3.53), consider

θ̂j − θ̂j−1

△t = VT

(
Yj − Yj−1

△t

)
+
Ŷj − Ŷj−1

△t = VTF(tj, Yj) + F̂(tj, Ŷj)

= F̂(tj,V
TYj)− F̂(tj, Ŷj) + R̂j,

where

R̂j = VTF(tj, Yj)− F̂(tj,V
TYj). (3.54)

75

Then,

‖θ̂j‖ − ‖θ̂j−1‖
△t ≤ 1

△t

(
〈θ̂j, θ̂j〉
‖θ̂j‖

− 〈θ̂j, θ̂j−1〉
‖θ̂j‖

)

=
1

‖θ̂j‖

〈
θ̂j,

θ̂j − θ̂j−1

△t

〉

=
1

‖θ̂j‖

〈
θ̂j, F̂(tj,V

TYj)− F̂(tj, Ŷj) + R̂j

〉

=
1

‖θ̂j‖

〈
θj, F̂(tj,V

TYj)− F̂(tj, Ŷj)
〉

+
1

‖θ̂j‖

〈
θ̂j, R̂j

〉

≤ M [F̂]‖θ̂j‖+ ‖R̂j‖,

where the first inequality follows from 〈θ̂j, θ̂j−1〉 ≤ ‖θ̂j‖‖θ̂j−1‖; the last equality used

〈θ̂j, F̂(VTYj)− F̂(Ŷj)〉 ≤M [F̂]‖θ̂j‖2 from (3.47); and the last inequality follows from

〈θ̂j, R̂j〉 ≤ ‖θ̂j‖‖R̂j‖. That is, by using ‖θ̂j‖ = ‖θj‖, for ζ := 1

1−△tM [F̂]
,

‖θj‖ ≤ ζ
(
‖θj−1‖+△t‖R̂j‖

)
≤ ζj‖θ0‖+△t

j∑

ℓ=1

ζℓ‖R̂j−ℓ+1‖. (3.55)

As in the continuous case, ‖R̂ℓ‖ will be written as a sum of differences that can be

estimated using the neglected singular values. First, consider

R̂ℓ = VTF(tℓ, Yℓ)− F̂(tℓ,VVTYℓ) = VT [F(tℓ, Yℓ)− PF(tℓ,VVTYℓ)]

= VT [F(tℓ, Yℓ)− PF(tℓ, Yℓ) + PF(tℓ, Yℓ)− PF(tℓ,VVTYℓ)]

= VT (I− P)wℓ + VT
P(F(tℓ, Yℓ)− F(tℓ,VVTYℓ)),

where wℓ = (I − UUT)F(tℓ, Yℓ) from Lemma 2.2.3. The Lipschitz continuity of F

implies ‖F(tℓ, Yℓ)− F(tℓ,VVTYℓ)‖ ≤ Lf‖Yℓ −VVTYℓ‖ = Lf‖ρℓ‖, and thus

‖R̂ℓ‖ ≤ α‖ρℓ‖+ β‖wℓ‖, (3.56)

76

where α := ‖VT
P‖Lf , β := ‖VT (I−P)‖. From (3.55), since θ0 = 0, then by applying

again the Cauchy-Schwarz inequality and triangle inequality, for j = 0, . . . , nt,

‖θj‖2 ≤ (△t)2

(
j∑

ℓ=1

ζ2ℓ

)(
j∑

ℓ=1

‖R̂ℓ‖2
)
≤ (△t)2 āM

(
α2Ēy + β2Ēf

)
,

where āM := 2
∑nt

ℓ=1 ζ
2ℓ and Ēy =

∑j
ℓ=1 ‖ρℓ‖2, Ēf =

∑j
ℓ=1 ‖wℓ‖2, defined earlier in

(3.7). Finally, using
∑nt

ℓ=0 ‖Eℓ‖2 =
∑nt

ℓ=0 ‖ρℓ‖2 +
∑nt

ℓ=0 ‖θℓ‖2 gives

nt∑

ℓ=0

‖Eℓ‖2 ≤ C̄
(
Ēy + Ēf

)
, (3.57)

where C̄ = max{1+āM△tα2T, āM△tβ2T} and for T = nt△t. When M [F̂] < 0, for all

j = 1, 2, . . . , nt, qj =
∑j

ℓ=1 ζ
2ℓ ≤∑∞

ℓ=1 ζ
2ℓ =

∑∞
ℓ=0 ζ

2ℓ − 1 = 1
1−ζ2
− 1 = 1

(1−△tM [F̂])2−1
.

Therefore the norm of the total error ‖Ej‖ is uniformly bounded on [0, T] as shown

below:

‖Eℓ‖2 = ‖ρℓ‖2 + ‖θℓ‖2 ≤ c̄

(
r∑

ℓ=k+1

λℓ +
rs∑

ℓ=m+1

sℓ

)
, (3.58)

where c̄ = max{1 + q̄α2, q̄β2}, q̄ = 1

|M [F̂]|+△tM [F̂]2/2
.

The following theorem summarizes the results of error bounds for POD-DEIM

solutions which are derived in this section through the application of logarithmic

Lipschitz constant M [·].

Theorem 3.3.1 Let y(t) be the solution of the original full-order system (3.45) and

ŷ(t) be the solution of the POD-DEIM reduced system (3.46), for t ∈ [0, T]. Let Yj

and Ŷj be the solutions of the discretized systems of (3.45) and (3.46), respectively,

77

obtained from implicit Euler time integration at tj = j△t ∈ [0, T], △t = T/nt for

j = 0, . . . nt. Let M [F̂] be the logarithmic Lipschitz constant of F̂ defined as in (3.47)

and assume that F(t,y) in (3.45) is Lipschitz continuous with Lipschitz constant Lf

as in (3.2). Assume also that △t (or nt) is chosen so that △tM [F] < 1. Then

∫ T

0

‖y(t)−Vŷ(t)‖2dt ≤ C (Ey + Ef) , (3.59)

nt∑

j=0

‖Yj −VŶj‖2 ≤ C̄
(
Ēy + Ēf

)
, (3.60)

where C := max{1 + cMα
2T, cMβ

2T} and C̄ := max{1 + c̄Mα
2T, c̄Mβ

2T},

α := ‖VT
P‖Lf , β := ‖VT (I− P)‖, ζ :=

1

1−△tM [F̂]
, (3.61)

cM :=





e2M [F̂]T−1

M [F̂]
, M [F̂] 6= 0

2T, M [F̂] = 0

, c̄M := △tζ2

(
1− ζ2nt

1− ζ2

)
, (3.62)

and Ey, Ef , Ēy, Ēf are defined as in (3.6) and (3.7).

Remark 3.3.2 Using the notation and assumptions from Theorem 3.3.1:

(i) If M [F̂] < 0, then cM and c̄M in (3.62) are bounded by

cM <
1

|M [F̂]|
, and c̄M <

1

|M [F̂]|+△tM [F̂]2/2
. (3.63)

(ii) When the POD basis matrices V ∈ R
n×k and U ∈ R

n×m used in (3.46), respec-

tively, satisfy (3.9) and (3.10), then Ey =
∑r

ℓ=k+1 λ
∞
ℓ , Ef =

∑rs
ℓ=m+1 s

∞
ℓ . In this

case, if also M [F̂] < 0, then from (i),

∫ T

0

‖y(t)−Vŷ(t)‖2dt ≤ Co
(

r∑

ℓ=k+1

λ∞ℓ +
rs∑

ℓ=m+1

s∞ℓ

)
, (3.64)

where Co := max{1 + α2T/|M [F̂]|, β2T/|M [F̂]|}.

78

(iii) Analogously, when V ∈ R
n×k and U ∈ R

n×m used in (3.46) are the POD basis

matrices of Y = [Y1, . . . , Ynt] and F = [F(t1, Y1), . . . ,F(tnt , Ynt)] ∈ R
n×nt, then

using (3.11) and (3.12) gives Ēy =
∑r̄

ℓ=k+1 λℓ, Ēf =
∑r̄s

ℓ=m+1 sℓ. In this case, if,

also M [F̂] < 0, then from (i),

nt∑

j=0

‖Yj −VŶj‖2 ≤ C̄o
(

r̄∑

ℓ=k+1

λℓ +
r̄s∑

ℓ=m+1

sℓ

)
, (3.65)

where C̄o := max{1 + q̄α2T, q̄β2T}, q̄ = 1

|M [F̂]|+△tM [F̂]2/2
.

The bounds for pointwise errors can be obtained similarly and are given below.

Remark 3.3.3 Using the notation and assumptions from Theorem 3.3.1:

When (i) and (iii) of Remark 3.3.2 hold true, the norm of the pointwise error in

the discrete setting is uniformly bounded at each time step:

‖Yℓ −VŶℓ‖2 ≤ c̄

(
r̄∑

ℓ=k+1

λℓ +
r̄s∑

ℓ=m+1

sℓ

)
, for all ℓ = 1, . . . nt, (3.66)

where c̄ = max{1 + q̄α2, q̄β2}, q̄ = 1

|M [F̂]|+△tM [F̂]2/2
.

Notice that, for M [F] < 0, the error bound (3.60) in the discretized setting converges

to the bound (3.59) in the continuous setting. In particular, as △t→ 0, it was shown

in [50] that Ēy and Ēf converge to Ey and Ef , respectively; and from (3.63), we have

that the bound for c̄M converges to the bound for cM .

Notice also that there are two main differences for the error bounds in the con-

tinuous setting from (3.36) of Theorem 3.2.1 and from (3.59) of Theorem 3.3.1: one

in the quantities µ(·) and M [·]; and the other in the terms cµ and cM . Note that

79

µ(·) and M [·] are the same when they are applied to linear operators, and hence

there is no need to introduce the notion of logarithmic Lipschitz constant for linear

systems. With nonlinearities, however, applying the logarithmic Lipschitz constant

M [·] will allow us to avoid using Gronwall’s inequality, as required in the standard

approach for deriving error bounds, which often gives pessimistic bounds with expo-

nential growth, e.g. the term cµ in (3.41) has the exponential part, e2γbµ , arising from

applying Gronwall’s inequality in (3.23), while cM in (3.63) does not.

The derivations of the error bounds presented in this chapter provide weighting

coefficients of the least-squares errors Ey, Ef (or Ēy, Ēf in discrete cases) for the

solution snapshots and the nonlinear snapshots, which further imply the contributions

of the error from POD and DEIM in the overall approximation. These bounds clearly

explain the stagnation of the errors as observed in the numerical results shown in

Chapters 4 and 5 (see e.g. Fig. 4.4 and Fig. 4.9). Moreover, for some simple problems,

these bounds can be used for determining a suitable dimension (k,m) for the POD-

DEIM approximation. Appendix B illustrates an application of the error estimates

given in this chapter.

3.4 Conclusion

This chapter derived the error bounds of the state approximations from the POD-

DEIM reduced systems for the ODEs with Lipschitz continuous nonlinearities. The

analysis was considered in the continuous setting where the availability of the solu-

80

tions was assumed on the entire time interval and the overall accuracy of the reduced

system was only contributed from applying the POD-DEIM technique. A frame-

work for error analysis was given in the discrete setting for the implicit Euler time

integration scheme, which can be extended to other numerical methods. The pro-

posed error bounds in both continuous and discrete settings were derived through

a standard approach using logarithmic norms, as well as through an application of

generalized logarithmic norms [81]. The conditions under which the reduction error

is uniformly bounded were also discussed. The resulting error bounds in the 2-norm

reflect the approximation property of the POD based scheme through the decay of

the corresponding singular values.

The next chapter will demonstrate the applications of the POD-DEIM model

reduction technique through some numerical examples.

Chapter 4

Model Problems/Numerical

Examples

This chapter illustrates how to apply the Proper Orthogonal Decomposition (POD)

with the Discrete Empirical Interpolation Method (DEIM) introduced in Chapter 2

to nonlinear systems from finite difference (FD) discretizations of two problems. The

first is a nonlinear 1-D PDE arising in neuron modeling. The second is a nonlinear 2-D

steady state problem whose solution is obtained by solving its FD discretized system

by using Newton’s method. In both experiments, computation time was reduced

roughly by a factor of 100. A more complex numerical result will be considered in

the next chapter through the application of two-phase miscible flow in porous media.

81

82

4.1 The FitzHugh-Nagumo (F-N) System

The FitzHugh-Nagumo system is used in neuron modeling. It is a simplified version

of the Hodgkin-Huxley model, which describes in a detailed manner activation and

deactivation dynamics of a spiking neuron [76, 23]. This system [23] is given by

(4.1)–(4.4). For x ∈ [0, L], t ≥ 0,

εvt(x, t) = ε2vxx(x, t) + f(v(x, t))− w(x, t) + c, (4.1)

wt(x, t) = bv(x, t)− γw(x, t) + c, (4.2)

with nonlinear function f(v) = v(v−0.1)(1−v). The initial and boundary conditions

are:

v(x, 0) = 0, w(x, 0) = 0, x ∈ [0, L], (4.3)

vx(0, t) = −i0(t), vx(L, t) = 0, t ≥ 0, (4.4)

where the parameters are given by L = 1, ε = 0.015, b = 0.5, γ = 2, c = 0.05. The

stimulus is i0(t) = 50000t3 exp(−15t). The variables v and w are voltage and recovery

of voltage, respectively. Note that this is not a scalar equation and requires a slight

generalization of the problem setting discussed earlier in Chapter 2. However, the

FD discretization does indeed yield a system of ODEs of the same form as (2.1), as

shown next.

83

4.1.1 Full Order Model of FD Discretized System

For illustration purposes, the central FD discretization in the spatial variable with

forward Euler time integration scheme is used in this section to construct a discretized

system of the PDE in (4.1) and (4.2). Consider first the discretization of the spatial

domain xi = i△x for i = 0, 1, . . . , n+ 1 with x0 = 0 and xn+1 = L and the discretiza-

tion of the time domain tj = j△t for j = 0, 1, . . . , where△x is the spatial stepsize and

△t is the time stepsize. Let vji and wji denote the solution of the discretized system

at the mesh point (xi, tj) of v(xi, tj) and w(xi, tj), respectively. For i = 0, . . . , n+ 1,

and j = 0, 1, . . . ,

ε

(
vj+1
i − vji
△t

)
= ε2

(
vji−1 − 2vji + vji+1

(△x)2

)
+ f(vji)− wji + c (4.5)

wj+1
i − wji
△t = bvji − γwji + c, (4.6)

with initial conditions: v0
i = 0 and w0

i = 0 for all i = 1, . . . , n+ 1, and the boundary

conditions:
vj
1−v

j
0

△x
= −i0(tj) ⇒ vj0 = vj1 +△x i0(tj), and

vj
n+1−v

j
n

△x
= 0 ⇒ vjn+1 = vjn

for j = 0, 1, That is,

vj0 − 2vj1 + vj2
△x2

=
(vj1 +△x i0(tj))− 2vj1 + vj2

(△x)2
=
−vj1 + vj2
(△x)2

+
i0(tj)

△x , (4.7)

vjn−1 − 2vjn + vjn+1

(△x)2
=
vjn−1 − 2vjn + vjn

(△x)2
=
vjn−1 − vjn

(△x)2
. (4.8)

84

Let vj = [vj1, . . . , v
j
n]
T ∈ R

n, wj = [wj1, . . . , w
j
n]
T ∈ R

n, and yj =




vj

wj


 ∈ R

2n.

Then, the full-order FD system is of the form: for j = 0, 1, 2, . . . ,

E
1

△t(y
j+1 − yj) = Ayj + g(tj) + F(yj) and y0 = 0, (4.9)

E =



εIn 0

0 In


 ∈ R

2n×2n, A =



− ε2

△x2 K −In,

bIn −γIn


 ∈ R

2n×2n

K =




1 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 1




∈ R
n×n, In ∈ R

n×n = identity matrix,

g(t) =
ε2

△x




g0(t)

0


+ c ∈ R

2n, with g0(t) =




i0(t)

0

...

0




∈ R
n, c = c




1

1

...

1




∈ R
2n,

F(yj) =



f(vj)

0


 ∈ R

2n, with f(vj) =




f(vj1)

...

f(vjn)



∈ R

n, j = 0, 1, 2,

85

4.1.2 A POD-Galerkin Reduced Order Model

The POD basis used for constructing a reduced-order system can be computed from a

given set of snapshots. In this setting, a snapshot is defined as the numerical solution

of (4.1)-(4.4) at a particular time t. Consider a set of ns snapshots at times t1, . . . , tns .

Let vℓ and wℓ be the ℓth snapshots from (4.9) at time tℓ. Define snapshot matrices:

V =




| |

v1 . . . vns

| |



∈ R

n×ns , W =




| |

w1 . . . wns

| |



∈ R

n×ns . (4.10)

Let r = min{rank(V), rank(W)}. The POD basis matrix of dimension k ≤ r, denoted

by Uv ∈ R
n×k, for the snapshots {vℓ}ns

ℓ=1 is formed by k left singular vectors of V

corresponding to the first k largest singular values of V (and similarly for the POD

basis matrix, denoted by Uw ∈ R
n×k, for the snapshots {wℓ}ns

ℓ=1). Define

U =




Uv 0

0 Uw


 ∈ R

2n×2k. (4.11)

The reduced-order system of the discretized FD is obtained by projecting the system

and the solution onto the range of U. By replacing yj in the full-order system with

Uŷj, ŷj ∈ R
2k, and applying the Galerkin projection, the reduced system is of the

form

UTEU︸ ︷︷ ︸
Ê

1

△t(ŷ
j+1 − ŷj) = UTAU︸ ︷︷ ︸

Â

ŷj + UTg(tj)︸ ︷︷ ︸
ĝ(tj)

+UTF(Uŷj)︸ ︷︷ ︸
F̂(ŷj)

; ŷ0 = 0. (4.12)

The resulting POD reduced system is given by

Ê
1

△t(ŷ
j+1 − ŷj) = Âŷj + ĝ(tj) + F̂(ŷj) and ŷ0 = 0, (4.13)

86

where Ê = UTEU =



εIk 0

0 Ik


 ∈ R

2k×2k, Ik ∈ R
k×k is the identity matrix;

Â = UTAU; ĝ(tj) = UTg(tj); and F̂(ŷj) = UTF(Uŷj).

Notice that, although the equation in (4.13) is expressed in the expansion of the

reduced (POD) basis, the complexity in computing the nonlinear term still depends

on the dimension n of the full FD system. In particular, the nonlinear term is F̂(ŷj) =


F̂v(v̂j)

0


, where F̂v(v̂j) is of the form

F̂v(v̂j) = (Uv)T︸ ︷︷ ︸
k×n

f(Uvv̂j)︸ ︷︷ ︸
n×1

∈ R
k. (4.14)

As discussed in Chapter 2, the problem here is that f(Uvv̂j) cannot be precomputed,

since it depends on the unknown vector v̂j. DEIM will be applied to (4.14), as shown

next.

4.1.3 Reduced-Order Model from POD-DEIM Method

The (on-line) dependence on the dimension of the full FD discretized system in (4.13)

can be removed by using DEIM as described in Section 2.2 in Chapter 2. The POD

basis of the nonlinear snapshots will be used as an input basis for the DEIM algorithm

(see Algorithm 1). The POD basis of the nonlinear snapshots is constructed from the

solutions of the full FD system as follows. Let {v1, . . . ,vns} be a set of solutions from

the full FD system (4.9) and recall that the nonlinear function f(vℓ) is evaluated at

87

vℓ componentwise, for ℓ = 1, . . . , ns. Define

F =




| |

f(v1) . . . f(vns)

| |



∈ R

n×ns . (4.15)

The POD basis matrix of dimension m ≤ rank(F), denoted by Uf ∈ R
n×m, for

the snapshots {f(vℓ)}ns
ℓ=1, is the matrix consisting of left singular vectors of F corre-

sponding to the first m largest singular values. With input basis vectors from Uf ,

Algorithm 1 in Chapter 2 for DEIM is then used to generate interpolation indices

℘̂ = [℘1, . . . , ℘m]T for constructing matrix P defined in (2.13). The DEIM approxi-

mation is then

f(Uvv̂) ≃ Uf (PTUf)−1PTf(Uvv̂) = Uf (PTUf)−1f(PTUv
︸ ︷︷ ︸

D

v̂), (4.16)

where the last equality follows from the fact that f is a componentwise evaluation

function. Note that D := PTUv ∈ R
m×k can be precomputed by selecting the rows

℘1, . . . , ℘m of Uv. Hence, the nonlinear term (4.14) is approximated by

F̂v(v̂) ≃ (Uv)TUf (PTUf)−1

︸ ︷︷ ︸
C: k×m

f(Dv̂)︸ ︷︷ ︸
m×1

= C f(Dv̂), (4.17)

where C := (Uv)TUf (PTUf)−1 ∈ R
k×m can be precomputed so that there is no

dependence on dimension of original FD system. Finally, from (4.13), the approximate

DEIM reduced system is given by

Ê
1

△t(ŷ
j+1 − ŷj) = Âŷj + ĝ(tj) +




C f(Dv̂j)

0


 and ŷ0 = 0, (4.18)

88

where Ê, Â, ĝ(t) are defined as in (4.13); C , D are defined as in (4.17); and f(Dv̂j) ∈

R
m is evaluated componentwise at m entries of Dv̂j ∈ R

m.

4.1.4 Numerical Results

The dimension of the full-order FD system is 1024. The POD basis vectors are

constructed from 100 snapshot solutions obtained from the solutions of the full-order

FD system at equally-spaced time steps in the interval [0, 8].

Figure 4.2 shows the fast decay around the first 40 singular values of the snapshot

solutions for v, w, and the nonlinear snapshots f(v). The plots of the numerical

solutions for v and w are presented in Figure 4.1. This system has a limit cycle for

each spatial variable x. The solutions v and w are therefore illustrated through plots

of a phase-space diagram in Figure 4.3 for the solutions of the full-order system and

the POD-DEIM reduced system using both POD and DEIM of dimension 5. From

the figure, this reduced-order system captures the limit cycle of the original full-order

system very well. The average relative errors of the solutions of the reduced systems

and the average CPU time (scaled with the CPU time from sparse full-order system)

for each time step from different dimensions of POD and DEIM are presented in

Figure 4.4.

89

Figure 4.1: Numerical solutions v and w from the original FD system (dim 1024) of F-N system

(4.1)–(4.4).

0 20 40 60 80 100
10
−20

10
−10

10
0

10
10

Singular values of the snapshots

Singular Val of v
Singular Val of w
Singular Val of f(v)

Figure 4.2: The singular values of the 100 snapshot solutions for v, w, and f(v) from the full-order

FD discretization of the F-N system.

0

0.5

1

−0.5

0

0.5

1

1.5

0

0.05

0.1

0.15

0.2

x

Phase−Space diagram of reduced system(POD=5/DEIM=5)

v(x,t)

w
(x

,t
)

 Full1024

 POD5/EIM5

−0.5 0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

v(x,t)

w
(x

,t
)

Phase−Space diagram of reduced system(POD=5/DEIM=5)

 Full1024

 POD5/EIM5

Figure 4.3: Left: Phase-space diagram of v and w at different spatial points x from the FD system

(dim 1024) and the POD-DEIM reduced systems (dim 5). Right: Corresponding projection of the

solutions at different values of x onto the v-w plane.

Solution v of Full system (dim= 1024) r ·r·
·········:

1.5

,;:;- 1

* 0.5

0

O 0

90

0 20 40 60 80 100
10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

POD dim

A
v

e
ra

g
e

 r
e

la
ti

v
e

 E
rr

o
r

Error DEIM (periodic FN):(1/n
t
)sum

t
||y
FD

(t) −y
DEIM
(t)||/||y

FD
(t)||

DEIM 1

DEIM 3

DEIM 5

DEIM 10

DEIM 20

DEIM 30

DEIM 40

DEIM 50

DEIM 60

DEIM 70

DEIM 80

DEIM 90

DEIM 100

 POD

0 20 40 60 80 100
10
−2

10
−1

10
0

10
1

k (POD dim)

ti
m

e
 (

s
e

c
)

CPU time (scaled) for each semi−backward Euler iteration

DEIM1

DEIM10

DEIM20

DEIM30

DEIM40

DEIM50

DEIM60

DEIM70

DEIM80

DEIM90

DEIM100

POD

Full:n=1024(dense)

Full:n=1024(sparse)

Figure 4.4: Left: Average relative errors from the POD-DEIM reduced system (solid lines) and

from POD reduced systems (dashed line) for the F-N system. Once the dimension of DEIM reaches

40, the approximation errors from the POD-DEIM and POD reduced systems are indistinguishable.

Right: Average online CPU time (scaled with the CPU time of the full-sparse system) in each time

step of semi-implicit Euler method.

4.2 A Nonlinear 2-D Steady State Problem

This section illustrates an application of the POD-DEIM method to a nonlinear

parametrized PDE in a 2-D spatial domain (from [38]):

−∇2u(x, y) + s(u(x, y);µ) = 100 sin(2πx) sin(2πy), (4.19)

s(u;µ) =
µ1

µ2

(eµ2u − 1), (4.20)

where the spatial variables (x, y) ∈ Ω = (0, 1)2 and the parameters are µ = (µ1, µ2) ∈

D = [0.01, 10]2 ⊂ R
2, with a homogeneous Dirichlet boundary condition.

---e-----
b"'-....------f----<>--t----l ---<>­

--e-
' ">-~~~~--,.__.,_ __ _, --+-----e---.......

----,.,,._ _--4.._ ~----..... ---l --

-a-

-+-

91

4.2.1 Model Reduction of the FD Discretized System

Central finite differences will be used to construct a spatial discretization of the steady

state equations, then Newton’s method will be applied to solve for the solution at

each given pair of parameter µ = (µ1, µ2).

Let 0 = x0 < x1 < · · · < xnx < xnx+1 = 1 and 0 = y0 < y1 < · · · < yny < yny+1 =

1 be equally spaced points on the x-axis and y-axis for generating the grid points

on the domain Ω, and let n := nxny be the dimension of the discretized full-order

system. Let uij denote an approximation of the solution u(xi, yj) for i = 1, . . . , nx,

j = 1, . . . , ny and let △x = 1/(nx+1), △y = 1/(ny +1), so that the standard central

finite difference approximation gives

∇2u ≈ ui−1,j − 2uij + ui+1,j

(△x)2
+
ui,j−1 − 2uij + ui,j+1

(△y)2
.

Define u = [u11, u21, . . . , unx1︸ ︷︷ ︸
y=y1

, u12, u22, . . . , unx2︸ ︷︷ ︸
y=y2

, . . . , u1ny , u2ny , . . . , unxny︸ ︷︷ ︸
y=yny

]T ∈ R
n to

be the unknown vector. By using homogeneous Dirichlet boundary conditions, the

discretized system can be written in the form

b + Au + F(u;µ) = 0, (4.21)

where F(u;µ) = s(u;µ) with s evaluated componentwise at the entries of u and

b = 100 sin(2πX) sin(2πY) ∈ R
n, X = [x1, x2, . . . , xnx︸ ︷︷ ︸, . . . , x1, x2, . . . , xnx︸ ︷︷ ︸]

T ∈ R
n,

Y = [y1, y1, . . . , y1︸ ︷︷ ︸
nx

, . . . , yny , yny , . . . , yny︸ ︷︷ ︸
nx

]T ∈ R
n, with b evaluated componentwise at

92

the vectors X and Y , and

A = −




E B

B E B

.

B E B

B E




∈ R
n×n,

with E =




α β

β α β

.

β α β

β α




, B =




γ

. . .

γ

γ




∈ R
nx×nx ,

for α = − 2

(△x)2
− 2

(△y)2
, β =

1

(△x)2
, γ =

1

(△y)2
.

Notice that the system (4.21) is in a similar form as the steady state parametrized

system given in (2.2) of Chapter 2, and hence the construction of POD and POD-

DEIM reduced systems discussed earlier can be applied to this problem and will not

be repeated the details here. The full-order system, the POD reduced system of

dimension k, and the POD-DEIM reduced system of dimension (k,m), k,m ≪ n,

can be written as:

Full: G(u) := b + Au + F(u;µ) = 0;

POD: G̃(û) := b̂ + Âû + VTF(Vû;µ) = 0; Â = VTAV, b̂ = VTb,

POD-DEIM: Ĝ(û) := b̂ + Âû + BF(V℘û;µ) = 0; B = VTU(PTU)
−1
,V℘ = PTV,

(4.22)

93

where V ∈ R
n×k and U ∈ R

n×m are the POD basis matrices for the solution snap-

shots {u(µj)}ns
j=1 and nonlinear snapshots {F(u(µj);µj)}ns

j=1, respectively, with ns

sampled parameters {µj = (µj1, µ
j
2)}ns

j=1. The matrices Â ∈ R
k×k, b̂ ∈ R

k, B ∈ R
k×m,

V℘ ∈ R
m×k can be pre-computed, stored, and re-used. To solve the full-order system

G(u) = 0 for u and the reduced systems G̃(û) = 0, Ĝ(û) = 0 for û, Newton’s method

will be used, and the iteration updates are given by

Full: u← u− J(u)−1G(u), J(u) := A + diag{F′(u;µ)}

POD: û← û− J̃(û)−1G̃(û), J̃(û) := Â + VTdiag{F′(Vû;µ)}V

POD-DEIM: û← û− Ĵ(û)−1Ĝ(û), Ĵ(û) := Â + B diag{F′(V℘û;µ)}V℘,

(4.23)

where J ∈ R
n×n, J̃ ∈ R

k×k, and Ĵ ∈ R
k×k denote the Jacobian matrices for the

corresponding systems. The computational cost of performing these updates in the

Newton iterations is given in Appendix A. The numerical results will be illustrated

next.

4.2.2 Numerical Results

Newton iterations in (4.23) are applied to solve the full-order system (4.21), as well

as the reduced systems constructed from the POD-Galerkin and POD-DEIM ap-

proaches. The spatial grid points (xi, yj) are equally spaced in Ω for i, j = 1, . . . , 50.

The full dimension is then n = 2500. Figures 4.5 and 4.6 show the singular values

and the first 6 corresponding POD bases of the uniformly selected 144 sampled snap-

shot solutions for (4.19) and of the uniformly selected 144 nonlinear snapshots for

94

(4.20). Figure 4.7 shows the distribution of the first 30 points in Ω selected from

the DEIM algorithm. Figure 4.8 shows that the POD-DEIM reduced system (with

POD and DEIM having dimension 6) can accurately reproduce the solution of the

full-order system of dimension 2500 with error of O(10−3). The average errors and

the average CPU time (scaled with the CPU time from sparse full-order system) for

each Newton iteration of the reduced systems with different dimensions of POD and

DEIM are presented in Figure 4.9. The average CPU times for higher dimensions are

shown earlier in §2.2.6. These errors are averaged over a set of 225 parameters µ that

were not used to obtain the sample snapshots. This suggests that the DEIM-POD

reduced-order system can give a good approximation to the original system with any

value of parameter µ ∈ D .

0 50 100 150
10
−15

10
−10

10
−5

10
0

10
5

Singular Values

Snapshot sols

Snapshot nonlin

Figure 4.5: Singular values of the snapshot solutions u from (4.19) and the nonlinear snapshots

s(u;µ) from (4.20).

95

Figure 4.6: The first 6 dominant POD basis vectors of the snapshot solutions u from (4.19) and

of the nonlinear snapshots s(u;µ) from (4.20).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

DEIM points

x

y

Figure 4.7: First 30 points selected by DEIM

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

x

Full dim=2500,[µ
1
,µ
2
]=[0.3,9]

y

u
(x
,y
;µ
)

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

x

POD6/DEIM6,[µ
1
,µ
2
] = [0.3,9],err: 0.0011115

y

u
(x

,y
;µ
)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Error POD6/DEIM6, [µ

1
,µ
2
] = [0.3,9]

x

y

0

0.2

0.4

0.6

0.8

1

x 10
−3

Figure 4.8: Numerical solution from the full-order system (dim= 2500) with the solution from

POD-DEIM reduced system (POD dim = 6, DEIM dim = 6) for µ = (µ1, µ2) = (0.3, 9). The last

plot shows the corresponding errors at the grid points.

POD bosi•#1 PODbo•is#2

"l / ' . :~!>,,<
-0.0~ o-f~c.~:§._.i..~·-~ 1 1 , ·i \s~~v,

,, - - o 0.$ ~ O.o
yOO y:ox

POD l»•I• #4 POD ba•I• #5

0.1,· ""

ci. ' ·
-
0 1"-,'? ~ P ./

o5'&--Qs
y OD

POD b .. i• #3

POD basl• #6

•

POD (nonlin) #1 POD (nonlinJ #2

:.,I"" .. " ... ";•., OOC. l"" ;

,J 0

-:.1 ~ -005··" . -..:/Jl;; ::;,.1 1 _.
0....,.,.,., O.t> c.,

y Jr. y

POD (nonlln) #4 POD (nonlln\ #S

••

r.·· ;.
1:
1: :

··1·· · ····;·~· .. ; ... ,.
r:···········
I: .

I:

• :
·····'.···· · • ········

••• •

POD (nonlin) ~

POD (nonlln) #6

96

0 5 10 15 20
10
−6

10
−4

10
−2

10
0

10
2

k (POD dim)

A
v

g
 E

rr
o

r

Error POD/EIM:(1/n
µ
)sum

µ
||u(µ) −u

EIM
(µ)||

2

DEIM1

DEIM3

DEIM5

DEIM11

DEIM13

DEIM15

DEIM19

POD

0 5 10 15 20
10
−2

10
−1

10
0

10
1

10
2

10
3

k(POD dim)

ti
m

e
 (

s
e
c
)

Normalized Average CPU time for each Newton Iteration

DEIM1

DEIM3

DEIM5

DEIM11

DEIM13

DEIM15

DEIM19

POD

Full2500(sparse)

Full2500(dense)

Figure 4.9: Average error from POD-DEIM reduced systems and average CPU time (scaled) in

each Newton iteration for solving the steady state 2-D problem.

--e----+--......
-+-
--+---

II-"""" • • • II • II

Chapter 5

Application of the POD-DEIM

approach to Nonlinear Miscible

Viscous Fingering in Porous Media

This chapter extends the application of POD-DEIM model reduction technique from

the last chapter to a more complex simulation of nonlinear miscible viscous fingering in

a 2-D porous medium, which is commonly used to describe many important physical

phenomena, such as oil recovery process, chromatographic separation, filtration, and

pollutant dispersion. This chapter demonstrates that this POD-DEIM approach can

provide a vast reduction in complexity arising from nonlinearities, as compared to

that of the POD-Galerkin approach. As a result, simulation times can be decreased

by as much as three orders of magnitude. Specifically, as shown later in this chapter,

97

98

the dynamics of viscous fingering in the full-order system of dimension 15000 can be

captured accurately by the POD-DEIM reduced system of dimension 40, with the

computational time reduced by factor of O(1000). Hence, the procedure presented

here provides a promising model reduction framework for subsequent research on

more extensive nonlinear flow in porous media.

5.1 Introduction

Numerical simulations of nonlinear miscible viscous fingering have been carried out

using various discretization schemes such as finite difference, finite volume, finite

element, discontinuous Galerkin and Pseudo-Fourier spectral methods [86, 87, 34,

47, 45, 59, 84, 75]. The dimension of the discretized system is determined by the

number of grid points in the flow domain. Usually finer grids and smaller time

steps are required to capture the fine structure of the viscous fingering to obtain

numerical solutions with higher accuracy. This results in a significant increase in the

computational time and data storage requirements. Model reduction techniques can

be used to overcome this difficulty.

As noted in the previous chapter, POD can be efficiently used to construct a

problem specific set of basis functions with global support that capture the dominant

characteristics of the system of interest. Fine scale details at grid points are encoded

in this global basis. In the context of fluid flow in porous media, POD with Galerkin

projection has been used as a model reduction procedure in many previous investiga-

99

tions such as [90, 92, 91, 57] for groundwater flow, [42, 56, 29, 17, 16] for immiscible

two-phase (oil-water) reservoir simulation, and [36, 79, 80, 35] for miscible flow for

the enhanced oil recovery (EOR) process. In the case of flows described by linear

governing equations, e.g [90], the POD-Galerkin technique substantially reduces the

computational complexity and simulation time. However, the standard POD alone

may not give this vast reduction in the case of nonlinear flow models, as observed in

[17, 16] for oil-water reservoir simulation.

The efficiency in solving the POD reduced system is limited to the linear and bi-

linear terms, as discussed earlier in previous chapters. In subsurface flow applications,

this limitation was observed in previous works such as [17, 16]. In [17], the missing

point estimation(MPE) [8] was used with a greedy algorithm [9] and a sequential

QR decomposition (SQRD) approach to improve the choice of selected rows in POD

vectors, and a clustering technique was applied to optimize snapshots for POD. A

speedup of 10 was achieved when compared to a specialized solver and up to 700

when compared with a generic solver for the full order system. However, the numerical

results in [17] indicate that to obtain reasonably good accuracy, the number of selected

rows from MPE still had to be relatively large compared to the dimension of the POD

basis (e.g., for the original system of dimension 60000, to obtain average relative error

O(10−2), it is required to use 34 POD basis vectors with 19441 selected rows from

MPE). In subsequent work [16] based on linearization of the governing equations, the

trajectory piecewise-linear (TPWL) approach was applied together with POD and a

100

significant speedup with factor of 200-1000 was achieved. Here, DEIM will be used

for approximating nonlinear terms to improve the POD procedure in the application

of nonlinear miscible flow in porous media.

The formulation of the governing equations describing the nonlinear miscible vis-

cous fingering in a 2-D porous medium, presented here in § 5.2, as well as the FD

discretization scheme are taken from [84]. The matrix form of the full-order sys-

tem and its corresponding reduced-order systems, both from POD and POD with

DEIM are given in § 5.3 and § 5.4. Section 5.4 also discusses a practical method

for computing a POD basis from a sampled set from a high-dimensional subspace.

The numerical results are presented in § 5.5. To illustrate a potential usefulness of di-

mension reduction for parametrized systems, the POD-DEIM approach is also used to

construct a single reduced-order model that can provide an accurate representation of

the original full-order system over the entire specified range of parameter values. The

POD-DEIM approach is also applied to a closely related problem of miscible flow with

viscous fingering induced by a chemical reaction, and is shown to be equally effective

on this problem. Finally, the conclusions and possible extensions for this application

are discussed in § 5.6.

5.2 Governing Equations

A viscous fingering (VF) instability occurs when a less viscous fluid moves through

a porous medium occupied with another more viscous fluid, which leads to the de-

101

velopment of finger-shaped intrusions flowing between the two fluids. An exten-

sive number of studies have been done, both experimentally and numerically, to ob-

serve, investigate, and predict the flow displacement behavior as well as the fingering

mechanisms, such as spreading, shielding, tip splitting, and coalescence (see, e.g.

[86, 87, 34, 47, 45, 59, 84, 75] for more details). The equations of motion given in

[84] are used here to describe the viscous fingering in horizontal flow of an incom-

pressible fluid through a 2-D homogeneous porous medium of length Lx (horizontal)

and width Ly (vertical), with a constant permeability K. The fluid is assumed to be

injected horizontally from the left boundary with a uniform velocity U . Assume that

the porous medium is already occupied by another fluid with higher viscosity than

the injected fluid and that the two fluids are miscible. This flow evolution can be

described by a system of nonlinear coupled equations derived from Darcy’s law with

the conservation laws of mass, momentum, and energy as shown below:

∇ · u = 0 (5.1)

∇P = − µ
K

u (5.2)

∂c

∂t
+ u · ∇c = D∇2c+ f(c), (5.3)

ρcp

[
∂T

∂t
+ u · ∇T

]
= DT∇2T + (−△H)f(c), (5.4)

where f(c) denotes the rate of autocatalytic reaction defined by f(c) = −c(ka +

krc)(c− c1) with constant parameters ka, kr, c1, ρ, cp; u = [u,w]T ∈ R
2 is the velocity

with components in x and y coordinates; P is the pressure; c is the concentration

of the injected fluid; T is the temperature; µ is the viscosity depending on c and

102

T given by µ = µ0e
[−Rcc+RTT], with constant µ0 and constant log-mobility ratios

Rc and RT ; D, DT and △H denote diffusion coefficients and enthalpy, which are

assumed to be constant. This section will follow a common procedure for solving

the system of equations (5.1)-(5.4) by first nondimensionalizing the system and then

converting it into the form of streamfunction and vorticity, which is finally solved

numerically by a discretization scheme (see e.g. [87, 84]). Define a streamfunction

ψ(x, y) so that u = ∂ψ
∂y
, w = −∂ψ

∂x
and define the vorticity ω(x, y) as ω = (∇×u) ·k =

∂w
∂x
− ∂u

∂y
where k = [0, 0, 1]T . The equations (5.1)-(5.4) then can be transformed to

nondimensionalized equations with respect to a moving reference frame in terms of

streamfunction ψ and vorticity ω as:

∇2ψ = −ω (5.5)

ω = −Rc (ψxcx + ψycy + cy) +RT (ψxTx + ψyTy + Ty) (5.6)

∂c

∂t
+ ψycx − ψxcy = ∇2c+ Daf(c), (5.7)

∂T

∂t
+ ψyTx − ψxTy = Le∇2T + sgn(φ)Daf(c), (5.8)

where Rc and RT are constants (log-mobility ratios) determining the effects of con-

centration and temperature to the viscosity; Da (Damköhler number) and Le (Lewis

number) are constant dimensionless parameters; sgn(φ) = 1 for exothermic reactions

and sgn(φ) = −1 for endothermic reactions; ψx = ∂ψ
∂x
, ψy = ∂ψ

∂y
, cx = ∂c

∂x
, cy = ∂c

∂y
,

Tx = ∂T
∂x
, Ty = ∂T

∂y
. The unknowns of these transformed equations (5.5)-(5.8) are

c(x, y, t), T (x, y, t), ψ(x, y, t), ω(x, y, t), for (x, y) ∈ Ω with dimensionless domain

Ω = [0, αPe] × [0,Pe] ⊂ R
2 and constant aspect ratio α := Lx/Ly; and for time

103

t ∈ [0, tf] with (dimensionless) final simulation time tf . Note that the dimensionless

parameter Péclet number Pe, defined as Pe =: ULx/D, determines the ratio of the

rate of convective transport to the rate of diffusive transport; it also represents the

length of the dimensionless flow domain.

The nonlinearities in (5.5)-(5.8) can be defined as:

N(ψ, v) := ψxvx + ψyvy, F (ψ, v) := ψyvx − ψxvy, f(c) := −c(c− 1)(c+ d). (5.9)

In (5.5)-(5.8), periodic boundary conditions are imposed along top-bottom boundaries

for c, T , ψ and Dirichlet boundary conditions are imposed along left-right boundaries

for c, T , ψ. No boundary conditions are required for the vorticity ω, since it is defined

by an algebraic expression. The initial conditions are:

c(x, y, 0) = T (x, y, 0) =





1, x ≤ x̂

0, x > x̂

, (5.10)

for all y ∈ [0,Pe], where x̂ is the interface location (in this chapter, x̂ = αPe/2) and

ψ(x, y, 0) = 0 for all (x, y) ∈ Ω.

5.3 Finite Difference (FD) Discretized System

Central finite differences are used to construct a spatial discretization of equations

(5.5)-(5.8) to obtain a system of nonlinear ODEs (5.11)-(5.14). Then the forward

time integration with a predictor-corrector scheme introduced in [84] is applied to

(5.11)-(5.14) to obtain FD solution at each time step.

104

Let 0 = x0 < x1 < · · · < xnx < xnx+1 = αPe and 0 = y0 < y1 < · · · < yny <

yny+1 = Pe be equally spaced points on x-axis and y-axis for generating the grid

points on the dimensionless domain Ω = [0, αPe] × [0,Pe] with dx = αPe/(nx + 1)

and dy = Pe/(ny + 1). Define vectors of unknown variables of dimension n :=

nynx as c(t),T(t), ψ(t), ω(t) ∈ R
n, containing approximate solutions for c(xi, yj, t),

T (xi, yj, t), ψ(xi, yj, t), and ω(xi, yj, t) at grid points (xi, yj) for i = 1, . . . , nx and

j = 1, . . . , ny. The corresponding spatial finite difference discretized system of (5.5)-

(5.8) then becomes a system of nonlinear ODEs coupled with algebraic equations,

which can be written in matrix form as follows. For t ∈ [0, tf],

dc(t)

dt
= −F(ψ(t), c(t)) + [Ac(t) + b] + Daf(c(t)) (5.11)

dT(t)

dt
= −F(ψ(t),T(t)) + Le[AT(t) + b] + sgn(φ)Daf(c(t)) (5.12)

ω(t) = −Rc [N(ψ(t), c(t)) + Ayc(t)] +RT [N(ψ(t),T(t)) + AyT(t)] (5.13)

Aψ(t) = −ω(t), (5.14)

where the nonlinear functions F, N : R
n × R

n → R
n and f : R

n → R
n are defined as

F(ψ, c) = (Ayψ). ∗ (Axc + bx)− (Axψ). ∗ (Ayc), (5.15)

N(ψ, c) = (Axψ). ∗ (Axc + bx) + (Ayψ). ∗ (Ayc), (5.16)

f(c) = −c. ∗ (c− 1). ∗ (c + d), (5.17)

with ‘.∗’ denoting componentwise multiplication as used in Matlab; Ax,Ay,A ∈

R
n×n are (sparse) constant coefficient matrices for discrete first-order and second-

order differential operators; b,bx ∈ R
n are constant vectors reflecting the boundary

105

conditions. In general, the discretized system for this nonlinear VF has to be very

large to capture the fine details of fingers flowing through the domain, especially for

high Péclet number. This, therefore, causes substantial increases in computational

time and memory storage, which may further make it impossible to perform the

simulation in a reasonable computational time. The next section will apply the model

reduction techniques from Chapter 2 to overcome this difficulty.

5.4 Reduced-Order System

As described in Chapter 2, the Proper Orthogonal Decomposition (POD) and Dis-

crete Empirical Interpolation Method (DEIM) are applied to construct a reduced-

order system of the full-order system (5.11)-(5.14) described in the previous section.

Sections 5.4.1 and 5.4.2 give the details of constructing this reduced-order system.

5.4.1 POD reduced system

In this setting, snapshots are the numerically sampled solutions at particular time

steps or at particular parameter values. POD gives an optimal set of basis vectors

that minimize the mean square error from approximating these snapshots and can be

obtained from the singular value decomposition (SVD).

The POD basis here is constructed for each variable separately since they are

governed by distinct physics. Let Ĉ = [c1, . . . , cns] ∈ R
n×ns be the snapshot matrix

for concentration with cj denoting the solution of the FD discretized system at time

106

tj. The POD basis of dimension k for the snapshots {cj}ns
j=1 is the set of left singular

vectors of Ĉ corresponding to the k largest singular values, i.e. columns of V = V̂(:

, 1 : k) ∈ R
n×k for k < rc := rank(Ĉ), where Ĉ = V̂ΣZT is the SVD of Ĉ with

Σ = diag(σ1, . . . , σrc) ∈ R
rc×rc ; σ1 ≥ · · · ≥ σrc > 0 and V̂ ∈ R

n×rc , Z ∈ R
ns×rc

having orthonormal columns. Similarly, let Q, U, W ∈ R
n×k be POD basis matrices

of dimension k for the snapshots {Tj}ns
j=1, {ωj}ns

j=1, and {ψj}ns
j=1.

Then the POD reduced-order system is constructed by applying the Galerkin

projection method to equations (5.11)-(5.14) by first replacing c, T, ω, ψ with their

approximations Vc̃, QT̃, Uω̃, Wψ̃, respectively, for reduced variables c̃, T̃, ω̃, ψ̃ ∈

R
k, and then premultiplying equation (5.11) by VT , equation (5.12) by QT , and

equations (5.13) and (5.14) by UT . The resulting POD reduced system is

dc̃(t)

dt
= −VT F̃1(ψ̃(t), c̃(t)) + [VT AV︸ ︷︷ ︸

=:Ã1

c̃(t) + VT b︸ ︷︷ ︸
=:b̃1

] + DaVT f(Vc̃(t)) (5.18)

dT̃(t)

dt
= −QT F̃2(ψ̃(t), T̃(t)) + Le[QT AQ︸ ︷︷ ︸

=:Ã2

T̃(t) + QT b︸ ︷︷ ︸
=:b̃2

] + sgn(φ)DaQT f(Vc̃(t)) (5.19)

ω̃(t) = −Rc


UT Ñ1(ψ̃(t), c̃(t)) + UT AyV︸ ︷︷ ︸

=:Ã3

c̃(t)


+RT


UT Ñ2(ψ̃(t), T̃(t)) + UT AyQ︸ ︷︷ ︸

=:Ã4

T̃(t)


(5.20)

UT AW︸ ︷︷ ︸
=:Ã5

ψ̃(t) = −ω̃(t), (5.21)

107

where F̃1, F̃2, Ñ1, Ñ2: R
k × R

k → R
n,

F̃1(ψ̃, c̃) = (AyW︸ ︷︷ ︸ ψ̃). ∗ (AxV︸ ︷︷ ︸ c̃ + bx)− (AxW︸ ︷︷ ︸ ψ̃). ∗ (AyV︸ ︷︷ ︸ c̃), (5.22)

F̃2(ψ̃, T̃) = (AyW︸ ︷︷ ︸ ψ̃). ∗ (AxQ︸ ︷︷ ︸ T̃ + bx)− (AxW︸ ︷︷ ︸ ψ̃). ∗ (AyQ︸ ︷︷ ︸ T̃), (5.23)

Ñ1(ψ̃, c̃) = (AxW︸ ︷︷ ︸ ψ̃). ∗ (AxV︸ ︷︷ ︸ c̃ + bx) + (AyW︸ ︷︷ ︸ ψ̃). ∗ (AyV︸ ︷︷ ︸ c̃), (5.24)

Ñ2(ψ̃, T̃) = (AxW︸ ︷︷ ︸ ψ̃). ∗ (AxQ︸ ︷︷ ︸ T̃ + bx) + (AyW︸ ︷︷ ︸ ψ̃). ∗ (AyQ︸ ︷︷ ︸ T̃), (5.25)

f(Vc̃) = −Vc̃. ∗ (Vc̃− 1). ∗ (Vc̃ + d). (5.26)

The coefficient matrices Ã1, . . . , Ã5 ∈ R
k×k and vectors b̃1, b̃2 ∈ R

k defined in (5.18)-

(5.21) for the linear terms of the POD reduced system as well as the coefficient

matrices in the nonlinear functions from (5.22)-(5.26) (i.e. AyW, AxV, AxW, AyV,

AxQ, AyQ ∈ R
n×k grouped by the curly braces) can be precomputed, retained, and

re-used in all time steps. However, performing the componentwise multiplications in

(5.22)-(5.26) and computing the projected nonlinear terms in (5.18)-(5.21):

VT F̃1(ψ̃, c̃), VT f(Vc̃), QT F̃2(ψ̃, T̃), QT f(Vc̃), UT Ñ1(ψ̃, c̃), UT Ñ2(ψ̃, T̃) (5.27)

still have computational complexities depending on the dimension n of the original

system (from both evaluating the nonlinear functions and performing matrix multipli-

cations for projecting on POD bases). The Discrete Empirical Interpolation Method

(DEIM) is used to remove this dependency as shown in the next section.

108

Memory requirements for the POD reduced system

Besides the complexity of the POD-Galerkin technique as discussed in Chapter 2, the

memory storage requirement can also be an issue for the POD reduced system. To

obtain the approximate solution from the POD reduced system, one must store POD

reduced solutions of order O(knt) and POD basis matrices of order O(nk). This can

be much smaller than the required memory space to store O(nnt) of the full-order

solutions when k ≪ nt and k ≪ n. However, coefficient matrices in the POD reduced

system are generally dense and they may require memory space more than those in

the full-order system due to the nonlinear terms. As discussed above, the coefficient

matrices that must be retained while solving the POD reduced system are of order

O(k2) for projected linear terms Ã1, . . . , Ã5 with projected constant vectors b̃1, b̃2;

and O(nk) for the nonlinear terms (5.22)-(5.25). These O(nk) coefficient matrices

are indeed needed to avoid inefficient computation of the prolongation of the reduced

variables back to the original dimension in (5.22)-(5.25) at every time step. The

problem is that memory space of order O(nk) can clearly exceed the O(n) memory

requirement for the sparse coefficient matrices of the full-order system. The DEIM

approximation allows further precomputation so that this required memory space for

coefficient matrices can be reduced, as shown next.

109

5.4.2 POD-DEIM reduced system

The projected nonlinear function in (5.27) can be approximated by DEIM in a form

that enables precomputation so that the computational cost is decreased and inde-

pendent of original dimension n. Evaluating the approximate nonlinear term from

DEIM does not require a prolongation of the reduced state variables back to the orig-

inal high dimensional state approximation, as is required to evaluate the nonlinearity

in the original POD approximation, e.g., for f in (5.26). Only a few entries of the

original nonlinear term corresponding to the specially selected interpolation indices

from DEIM must be evaluated at each time step. The DEIM approximation is given

formally in Definition 2.2.1 and the procedure for selecting DEIM indices is given in

Algorithm 1 from Chapter 2.

DEIM approximation is next applied to each of the nonlinear functions F̃1, F̃2,

Ñ1, Ñ2, and f defined in (5.22)-(5.26). Only DEIM approximation of F̃1 shall be

presented here in detail. Other nonlinear functions can be treated similarly. Let

UF1 ∈ R
n×m, m ≤ n, be the POD basis matrix of rank m for snapshots from the

nonlinear function F1 in (5.15), which can be obtained at the same time as the

solution snapshots. Then UF1 is used to select a set of m DEIM indices, denoted by

~℘F1 = [℘F1
1 , . . . , ℘

F1
m]T . From Definition 2.2.1, the DEIM approximation is then of the

form F̃1 ≈ UF1(PT
F1

UF1)−1F̃m
1 and the projected nonlinear term VT F̃1(ψ̃, c̃) in (5.27)

110

of the POD reduced system then can be approximated as

VT F̃1(ψ̃, c̃) ≈ VTUF1(PT
F1

UF1)−1

︸ ︷︷ ︸
E1

F̃m
1 (ψ̃, c̃), (5.28)

where F̃m
1 (ψ̃, c̃) = PT

F1
F̃1(ψ̃, c̃). By using the fact that F̃1 in (5.22) is a pointwise

function, F̃m
1 : R

k × R
k → R

m can be defined as

F̃m1 (ψ̃, c̃) := (PT
F1

AyW︸ ︷︷ ︸ ψ̃). ∗ (PT
F1

AxV︸ ︷︷ ︸ c̃ + PT
F1

bx︸ ︷︷ ︸)− (PT
F1

AxW︸ ︷︷ ︸ ψ̃). ∗ (PT
F1

AyV︸ ︷︷ ︸ c̃). (5.29)

Each of the m-by-k coefficient matrices and the m-vector grouped by the curly brack-

ets in the above equation, as well as E1 := VTUF1(PT
F1

UF1)−1 ∈ R
k×m from (5.28),

can be precomputed and re-used at all time steps, so that the computational complex-

ity of the approximate nonlinear term (5.28) is independent of the full-order dimension

n. Finally, the POD-DEIM reduced system is of the form:

dc̃(t)

dt
= −E1F̃

m
1 (ψ̃(t), c̃(t)) + [Ã1c̃(t) + b̃1] + DaE2f(P

T
f Vc̃(t)) (5.30)

dT̃(t)

dt
= −E3F̃

m
2 (ψ̃(t), T̃(t)) + Le[Ã2T̃(t) + b̃2] + sgn(φ)DaE4f(P

T
f Vc̃(t)) (5.31)

ω̃(t) = −Rc
[
E5Ñ

m
1 (ψ̃(t), c̃(t)) + Ã3c̃(t)

]
+RT

[
E6Ñ

m
2 (ψ̃(t), T̃(t)) + Ã4T̃(t)

]
(5.32)

Ã5ψ̃(t) = −ω̃(t), (5.33)

where F̃m
2 , Ñm

1 , Ñm
2 , can be defined analogously to F̃m

1 , and E2, . . . ,E6 ∈ R
k×m

can be obtained in a similar manner from other nonlinear functions as for E1. The

equations (5.30) and (5.31) used the fact that f is also a componentwise function,

i.e., f(cj) = [f(c)]j, which implies PT
f f(Vc̃(t)) = f(PT

f Vc̃(t)) where Pf is defined

111

analogously to PF1 . Note that pre-multiplying PT
f to V is equivalent to selecting

rows of V corresponding to DEIM indices, and hence the matrix multiplication for

PT
f V need not be performed explicitly. Hence, it is only required to store an m-vector

of DEIM indices for each of the nonlinear functions, instead of the matrix PF1 or Pf .

Memory storage requirement for the POD-DEIM reduced system

As in the case of the POD reduced system, to recover the approximate solution

from the POD-DEIM reduced system, it is required to store reduced solutions of

order O(knt) and POD basis matrices of order O(nk). The precomputed coeffi-

cient matrices that one must retain are of order O(k2) for the projected linear terms

Ã1, . . . , Ã5 ∈ R
k×k, with the projected constant vectors b̃1, b̃2 ∈ R

k; O(m) for the

DEIM indices; and O(mk) for the nonlinear terms, E1, . . . ,E6 ∈ R
k×m and the m-

by-k matrices inside the nonlinear functions such as the ones for F̃m
1 in (5.29). This

memory requirement is clearly less than the one for the POD reduced system and is

independent of the original dimension n. These precomputed coefficient matrices al-

low a substantial reduction in computational complexity, which now depends on only

the dimensions k of POD and m of DEIM (but not n). DEIM therefore improves

the efficiency of the POD approximation and achieves a complexity reduction of the

nonlinear term with a complexity proportional to the number of reduced variables.

This efficiency reflects in the speedup of simulation time presented in § 5.5.

112

Remark on the computation of a POD basis

To compute a POD basis for a snapshot matrix in R
n×ns , when the spatial dimension

n of the discretization is much larger than the number of snapshots ns, it may not

be efficient to use the SVD directly. In particular, let Y be the n-by-ns matrix of

snapshots with n≫ ns. In this case, the POD basis is commonly obtained from the

eigenvalue decomposition of the smaller matrix YTY ∈ R
ns×ns . However, the round-

off error from matrix multiplication for constructing YTY can affect the resulting

POD basis. Alternatively, as suggested in [3], an efficient procedure for computing

the SVD of Y is to first perform the QR factorization of Y, and then compute the SVD

of the (smaller) ns-by-ns matrix R where Y = QR is the QR decomposition of Y with

Q ∈ R
n×ns denoting a matrix with orthonormal columns and R ∈ R

ns×ns denoting an

upper triangular matrix. Let R = UΣVT be the SVD of R. Then the SVD of Y is

finally given by Y = (QU)ΣVT and the POD basis can be obtained from the columns

of QU. To preserve the numerical stability for the case n≫ ns, QR factorization of

Y can be computed by a Gram-Schmidt process with reorthogonalization algorithm

[26]. This approach also makes it possible to update the POD basis when additional

snapshots are included.

5.5 Numerical Results

This section presents three numerical experiments. The first one considers the POD-

DEIM reduced system for a set of fixed parameters. The second one considers the

113

reduced system that can be used for various values of the Péclet number in a certain

range. The last one considers miscible flow with viscous fingering induced by a simple

chemical reaction. For all these cases, in addition to the initial condition for c given

in § 5.2, random noise between 0 and 1 is added at each grid point on the interface to

trigger the instability in reasonable computing time as done in many investigations

such as [87, 34, 84]. The accuracy in all numerical cases is measured by the (2-norm)

average relative error, Ec, defined as

Ec :=
1

nt

nt∑

j=1

‖cj − crj‖2
‖cj‖2

,

where cj ∈ R
n denotes the solution for concentration of the full-order system at time

tj; crj := Vc̃j ∈ R
n with c̃j ∈ R

k being the solution from a reduced system (POD or

POD-DEIM) at time tj; and POD basis matrix V ∈ R
n×k for c.

5.5.1 Fixed Parameters

The system (5.5)-(5.8) is solved numerically using a finite difference scheme from

[84]. This section considers the isothermal case (constant temperature: RT = 0).

The parameters used here are Rc = 3; RT = 0; a = 2; Pe = 250; Le = 1; Da = 0.01;

d = 0.1. The number of spatial grid points is 150 on the x-axis and 100 on the y-axis.

The dimension of the full-order system is then 15000.

The singular values of 250 solution snapshots and nonlinear snapshots are shown

in Figure 5.1. In Figure 5.2, the solutions for concentration from the POD-DEIM

reduced system (5.30)-(5.33), with POD and DEIM of dimension 40, are shown with

114

the corresponding ones from the full-order system and also the corresponding absolute

errors at the grid points. This figures shows that POD-DEIM reduces more than 300

times in dimension and reduces the computational time by factor of O(103) with

O(10−3) error as shown in Table 5.1.

From the error plot in Figure 5.3, each POD-DEIM error curve (solid line) initially

decreases as the dimension of the POD basis increases, then the error stagnates once

a certain dimension of POD basis is reached. The stagnation may result when the

DEIM approximation error exceeds the POD approximation error, and in this case

DEIM accuracy does not improve further even by increasing the dimension of the POD

basis. On the other hand, for a fixed dimension of POD basis, the errors from POD-

DEIM reduced systems decrease as the dimension of DEIM increases, but they do

not get lower than the POD errors. That is, once the DEIM error is essentially equal

to the POD error, no further reduction of DEIM error is possible through increasing

the dimension of the DEIM approximation. The error plots also indicate an optimal

choice of DEIM dimension for a given POD dimension (and vice versa), which is the

‘corner’ of each curve. However, these error curves are not known in advance and

hence cannot be used to determine the reduced dimension in practice. The plot of the

CPU time in Figure 5.3 used in computing the POD reduced system clearly reflects

the dependency on the dimension of the original full-order system. Figure 5.3 and

Table 5.1 show a significant improvement in computational time of the POD-DEIM

reduced system from both the POD reduced system and the full-order system.

115

0 50 100 150 200 250
10

−10

10
−5

10
0

10
5

Singular Values of Solution Snapshots

c

ψ
ω

0 50 100 150 200 250
10

−10

10
−5

10
0

10
5

Singular Values of Nonlinear Snapshots

F

N

f

Figure 5.1: Singular values of the solution snapshots and the nonlinear snapshots.

Figure 5.2: Concentration plots of the injected fluid (from the left half) at time t = 100 and

t = 250 from the full-order system of dimension 15000 and from the POD-DEIM reduced system

with both POD and DEIM having dimension 40 (fixed parameters).

[J [J

e: FD 15000 (I= 100, Pe250J e : POD40/OE.IM40 (1 = 100, Pe250)

1 00 200 300 400 100 200 300 400 100 200 .JOO 400
X X

c: FD 15000 Ct= 250, Pe250) Error lcFCI_CC>EIMl:P0040/DEIM40,t = 260

200

150

1 00 200 300 ~00 100 200 300 400 100 200 300 400
X X X

116

Dimension Avg Rel Error of c CPU time (sec) ∼Ratio CPU time

Full 15000 (FD) - 2.138× 103 1

POD20 5.597× 10−3 1.206× 102 1/18

POD20/DEIM20 2.041× 10−2 9.225× 10−1 1/2318

POD40 4.066× 10−4 2.442× 102 1/9

POD40/DEIM40 2.045× 10−3 1.275 1/1677

Table 5.1: Average relative error (2-norm) of the solution for the concentration c and CPU time of

the full-order system, POD reduced system, and POD-DEIM reduced system with Pe = 250 (fixed

parameters) with the ratios of the CPU time normalized by the time of full-order system.

20 40 60 80 100

10
−3

10
−2

10
−1

POD dim

A
v

e
ra

g
e

 r
e

la
ti

v
e

 E
rr

o
r

Error (1/n
t
)sum

t
||y

FD
(t) −y

DEIM
(t)||/||y

FD
(t)||

DEIM25

DEIM40

DEIM50

DEIM60

DEIM80

DEIM100

DEIM250

POD

(a)

0 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

POD dim

ti
m

e
 (

s
e

c
)

CPU time

DEIM25

DEIM40

DEIM50

DEIM60

DEIM80

DEIM100

DEIM250

POD

Full

(b)

Figure 5.3: (a) Average relative errors of y = [c;ψ;ω]: defined as E := 1

nt

∑nt

j=1

‖yj−yr
j‖2

‖yj‖2

, from

the POD-DEIM reduced system compared with the ones from the POD reduced system. (b) CPU

time of the full system, POD reduced system, and POD-DEIM reduced system.

--e-

l ~~---e--&---e--_J :::::

-----+-
:-...--------,-----1 -

,,,,

--e-

,,,, ,,,,

I --e-----------..... - - .J --+-,,,,,,,,,,,,,,,,,,,
,,,, -----,,.,,, ,,,,,,,,,,, ,, :::!:

--e-

117

5.5.2 Varying Péclet number: Pe ∈ [110, 120]

Consider the same numerical setup as for the previous case in Section 5.5.1, except

that this numerical experiment is now interested in the parameter Pe in the interval

[110, 120]. The POD basis used for approximating the solution space is constructed

from 398 snapshots taken from two full-order FD systems corresponding to Pe =

110 and 120 (199 snapshots are uniformly selected in time t ∈ [0, 200] from each

system). The resulting POD-DEIM reduced system can be used to approximate

systems with arbitrarily parameter Pe in the interval [110, 120]. To demonstrate the

effectiveness of this reduced system, consider the solutions of the VF system with

parameter Pe = 115 which was not used in constructing the POD bases of this POD-

DEIM reduced system as shown in Figure 5.4 for concentration from the POD-DEIM

reduced system with POD of dimension 30 and DEIM of dimension 50, as well as the

corresponding absolute error at the grid points when compared with the full-order

system of dimension 15000. The corresponding average relative error is O(10−3) for

this 300 times reduction in dimension. An envisioned use of this reduction is to

conduct many different simulations with various settings of the Péclet number. To

illustrate the potential to drastically reduce simulation time without loss of accuracy,

consider this miscible flow system with different Péclet numbers ranging across the

entire interval [110, 120]. Specifically, 11 simulations will be conducted corresponding

to Pe = 110, 111, . . . , 119, 120. As expected, the POD-DEIM approach significantly

reduced the total simulation time from 2.33 hours for the full system to roughly 13

118

seconds with accuracy O(10−3) as shown in Table 5.3. The POD reduced model

hardly reduced the computation time by comparison, e.g., from Table 5.3, the POD

system of dimension 30 reduces computational time only by a factor of 5, while the

POD-DEIM system (POD=30, DEIM=50) reduces it roughly by factor of 700.

Figure 5.4: Concentration plots of the injected fluid at time t = 50, 100, 200 from the POD-DEIM

reduced system with POD and DEIM having dimensions 30 and 50, with the corresponding absolute

error at the grid points when compared with the full-order system of dimension 15000 (Péclet number

Pe = 115).

5.5.3 Miscible Viscous Fingering Induced by Chemical Re-

action

This section considers a system from [34] that describes miscible flow with viscous

fingering induced by a simple chemical reaction A + B → C, which occurs at the

interface of the reactants A and B, producing a product C. The system of governing

equations is in a similar form to the one presented in Section 5.2 and given by the

,;; POD30/DEIM60, Pe 116. t = 60 ,;; POD30/DEIM60. Pe116, I= 100

. . X

Error; 1c0
~

0 e•M1 • Pe11 G .t = 60 Error: id'0 _,,oeo•,, Pe116 ,I= 100 Error: id'0
.,,

0
•

111
,, Pe116 ,I= 200

50 100 1:"in ,no so 100 150 ,no

119

Dimension Avg Rel Error of c CPU time (sec) Ratio CPU

Full 15000 (FD) - 7.384× 102 1

POD30 5.907× 10−3 1.338× 102 1/6

POD30/DEIM30 3.133× 10−2 0.843 1/876

POD30/DEIM50 7.395× 10−3 0.909 1/812

POD50 5.910× 10−3 2.434× 102 1/3

POD50/DEIM50 8.579× 10−3 1.150 1/642

Table 5.2: Average relative error (2-norm) of the concentration c and CPU time (sec) for solving

the full-order system, POD reduced system, and POD-DEIM reduced system with Péclet number

Pe = 115, which is arbitrary chosen from the interval [110, 120], with the ratios of the CPU time

normalized by the time of the full-order system.

Dimension Avg Rel Error Avg CPU time CPU time 11 runs Ratio CPU

Full 15000 (FD) - 7.384× 102 8.402× 103 1

(∼ 2.3 hrs)

POD30 3.958× 10−3 1.351× 102 1.486× 103 1/6

POD30/DEIM30 3.164× 10−2 0.858 9.440 1/890

POD30/DEIM50 6.016× 10−3 0.924 10.169 1/826

POD50 3.773× 10−3 2.452× 102 2.697× 103 1/3

POD50/DEIM50 5.550× 10−3 1.154 12.692 1/662

Table 5.3: Average relative error (2-norm) of c and CPU time (sec) for solving 11 runs: Pe =

110, 111, . . . , 120, with the ratios of the CPU time normalized by the time of the full-order system.

120

convection-diffusion-reaction equations as shown in [34]. Let a, b, c be the concen-

trations of the two reactants A and B and of the product C; and DA, DB, DC be

constant diffusion coefficients of A, B, C, with viscosity µ(c) := µ0e
R(c/c0), where R

is the log-mobility ratio. When R > 0, a more viscous product C is produced at the

interface and the less viscous reactant pushes the more viscous product as shown in

Figure 5.5. The numerical technique presented in Section 5.2 is used for this experi-

ment. The dimensionless parameters (additional to the previous cases) are the ratios

of the diffusion coefficients of A and B: δA = DA/DC , δB = DB/DC .

The numerical results presented here use parameters: R = 3, Pe = 250, Le = 1,

Da = 1, d = 0.1, δA = 1, δB = 5, with aspect ratio α = 3. Periodic boundary

conditions are used in both x and y coordinates. Initially, the reactant B is sand-

wiched between the reactant A. Figure 5.5 illustrates the concentrations of A, B and

C in a 2-D homogeneous porous medium at time t = 500. Similar to previous nu-

merical cases, it shows that the POD-DEIM reduced model with POD and DEIM of

dimension 30 and 40 can accurately capture the VF dynamics of the full-order system

having dimension 15000 with substantially less CPU time, i.e., O(1000) reduction, as

shown in Table 5.4. Note that this system is more complex than the previous cases

due to the number of variables, as well as the nonlinear reaction terms. This type

of nonlinear system is influenced by various parameters (e.g., Pe, δA, δB, Da) and

the parametric study therefore becomes an important tool and a common method for

analyzing the dynamics of this system as done in [34]. Hence, the POD-DEIM is a

121

Figure 5.5: Concentration plots in the flow domain of reactants A, B and the product C from

the reaction A + B → C at time t = 500 from the POD-DEIM reduced system with POD and

DEIM having dimensions 30 and 40, with the corresponding absolute errors at the grid points when

compared to the full-order system of dimension 15000 (fixed parameters).

promising technique for improving the efficiency of the simulation for this parametric

study.

5.6 Conclusions and Remarks

The model reduction technique combining POD with DEIM has been shown to be

efficient for capturing the dynamics in the VF simulation with substantial reduction

in dimension and computational time. The failure to decrease complexity with the

standard POD technique was clearly demonstrated by the comparative computational

times shown in, e.g., the plot of CPU time in Figure 5.3. DEIM was shown to be very

effective in overcoming the deficiencies of POD with respect to general nonlinearities

in VF simulation. The preliminary numerical results in the previous section provide

250

200

150

100

50

a: POD30/DEIM40, t=SOO

200 400 600

b: POD30/DEIM40, t=SOO

:: u
' '

250

200

150

100

50

00

200 400 600

b: Error, t=SOO

200 400 600
r

..

c: A+B->C, POD30/DEIM40, t=SOO
250

200

150

100

50

00

250

200

150

100

50

00

0.4

0.2

~

0.6

20-0- - 4-00-.,L......,-60_0__._ O

c: Error, t=SOO

200

. '

'

e ~
400 600

..
x10

8

6

4

122

Dimension Avg Rel Error of concentrations CPU time (sec) Ratio CPU

Full 15000 (FD) - 1.699× 103 1

POD10 4.561× 10−3 1.757× 102 1/10

POD10/DEIM10 8.255× 10−3 1.612 1/1054

POD20 9.131× 10−4 3.057× 102 1/6

POD20/DEIM20 3.267× 10−3 1.970 1/862

POD30 4.006× 10−4 4.435× 102 1/4

POD30/DEIM40 8.382× 10−4 2.567 1/661

POD40 3.162× 10−4 6.325× 102 1/3

POD40/DEIM40 4.867× 10−4 2.791 1/609

Table 5.4: Average relative error (2-norm) of the solution for the concentrations a, b, c of the

reactants A, B, and the product C and CPU time of the full-order system, POD reduced system,

and POD-DEIM reduced system (fixed parameters) with the ratios of the CPU time normalized by

the time of the full-order system.

123

a promising extension of the POD-DEIM approach to speed up the VF simulations

in parametric study.

Note that, in Section 5.5.2, the variation of Péclet number is only considered in a

relatively small range. It is possible to consider varying multiple parameters at the

same time with a larger range for each of them as done in, e.g., [27, 39]. The framework

presented here can still be used with only minor modifications. In general, the quality

of the sampled snapshots can affect the efficiency of the POD-DEIM approximation.

In this chapter, the snapshots are selected uniformly over the sampled space. It

is possible to apply more efficient algorithms for selecting snapshots, such as those

proposed in [15, 60, 41]. While this possibility has not been considered here, I hope to

investigate this, as well as the other issues discussed above. These issues still remain

as challenging research topics and will be left for future work.

Chapter 6

Conclusions and Future Work

This thesis developed a model reduction technique for general large-scale nonlinear

ODE systems by combining POD with DEIM, as described in Chapter 2. DEIM was

demonstrated to overcome the deficiencies of POD with respect to general nonlin-

earities. An error bound for the DEIM approximation of a nonlinear vector-valued

function was proposed in Lemma 2.2.3, showing the obtained approximation to be

nearly optimal. The state space error bounds of the POD-DEIM reduced systems for

the ODEs with Lipschitz continuous nonlinearities were derived in Chapter 3. The

analysis was particularly relevant to ODE systems arising from spatial discretizations

of parabolic PDEs. These error bounds were considered in both continuous and dis-

crete settings, and they were derived through a standard approach using logarithmic

norms, as well as through an application of generalized logarithmic norms [81]. The

conditions under which the reduction error is uniformly bounded were also discussed.

124

125

The resulting error bounds in the L2-norm reflect the approximation property of the

POD based scheme through the decay of the corresponding singular values. These

bounds clearly explain the stagnation of the errors observed in the numerical results

shown in Chapters 4 and 5 (see e.g., Figs 4.4, 4.9, 5.3). Moreover, for some simple

problems, these bounds can be used for determining a suitable dimension (k,m) for

the POD-DEIM approximation, as illustrated in Appendix B.

The numerical results in Chapter 4 illustrate that the POD-DEIM approach not

only gives an accurate reduced system that is substantially smaller than the original

system with a general nonlinearity, but it also preserves the steady state behavior

(e.g., the limit cycle) of the original system. The average errors for the POD-DEIM

approach in Figures 4.4 and 4.9 show that the accuracy of the approximation depends

on the dimensions of both POD and DEIM. An application of POD-DEIM approach

to two-phase miscible flow in 2-D porous media presented in Chapter 5 was demon-

strated to be efficient for capturing the complex dynamics of the original system,

with substantial reduction in dimension and computational time. The failure to de-

crease complexity with the standard POD technique was clearly demonstrated by the

comparative computational times shown in, e.g., the plot of CPU time in Figure 5.3.

Current and Future Research

• Adaptive POD basis: Due to the data-dependent nature of the POD basis,

the POD-DEIM approach generally cannot be expected to give good approx-

126

imations for systems with parameters lying outside the sampling parameter

domains from which the POD basis is constructed. One possible way to handle

this issue is to develop an adaptive framework that incorporates the scheme for

efficiently updating the POD basis to improve the accuracy of the reduced-order

systems.

• Extending error and stability analysis: The error analysis given in Chap-

ter 3 mainly provides the theoretical insight into the factors contributing to

the accuracy of the POD-DEIM technique for a certain class of nonlinear dy-

namical systems. It therefore still remains to perform sensitivity and stability

analysis, as well as to extend this error analysis to a boarder class of nonlin-

ear parametrized problems. It is also important to investigate an alternative

error estimate that is useful in practice, in the sense that it can be efficiently

computed in addition to accurately predicting the error.

• Constructing a POD-DEIM reduced system for a nonlinear model

using snapshots from linear or linearized models: The POD basis is

generally derived from a set of sampled solution trajectories (snapshots) from

the original large-scale nonlinear systems. These snapshots therefore could be

very expensive to obtain. To reduce this computational cost, the corresponding

simplified linear or linearized models could be used instead to generate these

snapshots. This idea is shown to be promising through preliminary results

obtained from its application on a model of polymer dynamics.

127

It is important to emphasize the future investigation of the stability issue for the

POD-DEIM approach, as listed above. Recently, this issue has come to the forefront

in some practical large-scale problems. I hope that the error analysis given in this

thesis, particulary in the generalized setting of logarithmic Lipschitz constant [82],

will give a good starting point for this investigation.

In addition to the items given above, other possible future research includes: incor-

porating the POD-DEIM technique with higher-order numerical scheme; developing

simulation software based on the POD-DEIM procedure integrated with existing ODE

solvers for different classes of nonlinear dynamical systems; combining DEIM with

other projection-based model reduction techniques such as Krylov-based approxima-

tion methods; and applying this method to other applications such as optimization

and uncertainty analysis. The extensions discussed in this section will allow a boarder

impact on model reduction for practical large-scale nonlinear problems.

Bibliography

[1] D. Amsallem, J. Cortial, K. Carlberg, and C. Farhat. A method for interpolating

on manifolds structural dynamics reduced-order models. International Journal

for Numerical Methods in Engineering, 80(9):1241–1258, 2009.

[2] D. Amsallem and C. Farhat. An interpolation method for adapting reduced-

order models and application to aeroelasticity. AIAA Journal, 46(7):1803–1813,

2008.

[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-

baum, S. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK Users’

Guide Third Edition. SIAM, 1999.

[4] A. C. Antoulas, D. C. Sorensen, and S. Gugercin. A survey of model reduction

methods for large-scale systems. Contemporary Mathematics, 280:193–219, 2001.

[5] P. Astrid. Fast reduced order modeling technique for large scale LTV systems. In

Proceedings of the 2004 American Control Conference, volume 1, pages 762–767,

30June- 2July 2004.

128

129

[6] P. Astrid. Reduction of process simulation models: a proper orthogonal decompo-

sition approach. PhD thesis, Department of Electrical Engineering, Eindhoven

University of Technology, November 2004.

[7] P. Astrid and S. Weiland. On the construction of pod models from partial

observations. In CDC-ECC 05 44th IEEE Conference on Decision and Control

and 2005 European Control Conference, pages 2272–2277, Dec 2005.

[8] P. Astrid, S. Weiland, K. Willcox, and T. Backx. Missing point estimation

in models described by proper orthogonal decomposition. In CDC 43rd IEEE

Conference on Decision and Control, volume 2, pages 1767–1772, Dec 2004.

[9] P. Astrid, S. Weiland, K. Willcox, and T. Backx. Missing point estimation in

models described by proper orthogonal decomposition. IEEE Transactions on

Automatic Control, 53(10):2237–2251, Nov 2008.

[10] Z. Bai. Krylov subspace techniques for reduced-order modeling of large-scale

dynamical systems. Applied Numerical Mathematics, 43(1-2):9–44, 2002.

[11] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. An ‘Empirical Interpo-

lation’ Method: Application to Efficient Reduced-Basis Discretization Of Partial

Differential Equations. Comptes Rendus Mathematique, 339(9):667–672, 2004.

[12] T. Bechtold, M. Striebel, K. Mohaghegh, and E. J. W. ter Maten. Nonlinear

Model Order Reduction in Nanoelectronics: Combination of POD and TPWL.

PAMM, 8(1):10057–10060, 2008.

130

[13] R. Bellman. The stability of solutions of linear differential equations. Duke Math.

J., 10(4):643–647, 1943.

[14] T. Bui-Thanh, M. Damodaran, and K. Willcox. Aerodynamic Data Reconstruc-

tion and Inverse Design using Proper Orthogonal Decomposition. AIAA Journal,

42(8):1505–1516, August 2004.

[15] T. Bui-Thanh, K. Willcox, and O. Ghattas. Model Reduction for Large-Scale

Systems with High-Dimensional Parametric Input Space. SIAM J. Sci. Comput,

30(6):3270–3288, 2008.

[16] M. A. Cardoso and L. J. Durlofsky. Linearized reduced-order models for subsur-

face flow simulation. Journal of Computational Physics, 229(3):681–700, 2010.

[17] M. A. Cardoso, L. J. Durlofsky, and P. Sarma. Development and application of

reduced-order modeling procedures for subsurface flow simulation. International

Journal for Numerical Methods in Engineering, 77(9):1322–1350, 2009.

[18] K. Carlberg and C Farhat. A low-cost, goal-oriented compact proper orthogonal

decomposition basis for model reduction of static systems. International Journal

for Numerical Methods in Engineering, 2010.

[19] S. Chaturantabut. Dimension Reduction for Unsteady Nonlinear Partial Dif-

ferential Equations via Empirical Interpolation Methods. Master’s thesis, Rice

University, 2008.

131

[20] Y. Chen. Model Order Reduction for Nonlinear Systems. Master’s thesis, Mas-

sachusetts Institute of Technology, 1999.

[21] Y. Chen and J. White. A Quadratic Method for Nonlinear Model Order Reduc-

tion. In Technical Proceedings of the 2000 International Conference on Modeling

and Simulation of Microsystems, pages 477–480, 2000.

[22] D. S. Clark. Short proof of a discrete Gronwall inequality. Discrete Applied

Mathematics, 16(3):279 – 281, 1987.

[23] S. J. Cox and L. Ji. Discerning ionic currents and their kinetics from in-

put impedance data. Bulletin of Mathematical Biology, 63:909–932, 2001.

10.1006/bulm.2001.0250.

[24] G. Dahlquist. Stability and error bounds in the numerical integration of ordinary

differential equations. Transactions of the Royal Institute of Technology 130,

Stockholm, Sweden, 1959.

[25] G. Dahlquist. 33 years of numerical instability, part i. BIT Numerical Mathe-

matics, 25:188–204, 1985. 10.1007/BF01934997.

[26] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Reorthogonaliza-

tion and Stable Algorithms for Updating the Gram-Schmidt QR Factorization.

Mathematics of Computation, 30(136):772–795, 1976.

132

[27] S. Deparis and G. Rozza. Reduced basis method for multi-parameter-dependent

steady navier-stokes equations: Applications to natural convection in a cavity.

Journal of Computational Physics, 228(12):4359 – 4378, 2009.

[28] N. Dong and J. Roychowdhury. Piecewise polynomial nonlinear model reduction.

pages 484–489, Los Alamitos, CA, USA, 2003. IEEE Computer Society.

[29] J.F.M. Van Doren, R. Markovinović, and J. D. Jansen. Accelerating iterative

solution methods using reduced-order models as solution predictors. Computa-

tional Geosciences, 10:137–158, 2006.

[30] J. L. Eftang, D. J. Knezevic, and A. T. Patera. An hp certified reduced basis

method for parametrized parabolic partial differential equations. Mathematical

and Computer Modelling of Dynamical Systems (to appear), 2010.

[31] R. Everson and L. Sirovich. Karhunen-Loeve procedure for gappy data. Journal

of the Optical Society of America A, 12:1657–1664, August 1995.

[32] F.Ebert. A note on pod model reduction methods for daes. Preprint 06-364

(Matheon),Inst. f. Mathematik, TU Berlin, 2006.

[33] D. Galbally, K. Fidkowski, K. Willcox, and O. Ghattas. Non-linear model reduc-

tion for uncertainty quantification in large-scale inverse problems. International

Journal for Numerical Methods in Engineering, 81(12):1581–1608, 2010.

133

[34] T. Gérard and A. De Wit. Miscible viscous fingering induced by a simple A+B →

C chemical reaction. Physical Review E (Statistical, Nonlinear, and Soft Matter

Physics), 79(1), 2009.

[35] R. Gharbi, F. Qasem, and N. Smaoui. Characterizing Miscible Displacements in

Heterogeneous Reservoirs Using the KL Decomposition. Petroleum Science And

Technology, 21(5,6):747–776, 2003.

[36] R Gharbi, N Smaoui, and E.J. Peters. Prediction of unstable fluid displacements

in porous media using the karhunen-loève decomposition. In Situ, 21(4):331–356,

1997.

[37] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in matlab: design

and implementation. SIAM J. Matrix Anal. Appl., 13(1):333–356, 1992.

[38] M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera. Efficient Reduced-Basis

Treatment of Nonaffine and Nonlinear Partial Differential Equations. Mathemat-

ical Modelling and Numerical Analysis, 41(3):575–605, 2007.

[39] M. A. Grepl and A. T. Patera. A posteriori error bounds for reduced-basis

approximations of parametrized parabolic partial differential equations. M2AN,

39(1):157–181, 2005.

[40] T. H. Gronwall. Note on the derivatives with respect to a parameter of the

solutions of a system of differential equations. The Annals of Mathematics,

20(4):292–296, 1919.

134

[41] B. Haasdonk and M. Ohlberger. Adaptive basis enrichment for the reduced basis

method applied to finite volume schemes. In Proc. 5th International Symposium

on Finite Volumes for Complex Applications,June 08–13, Aussois, France, 2008.

[42] T. Heijn, R. Markovinović, and J.D. Jansen. Generation of low-order reservoir

models using system-theoretical concepts. SPE Journal, 9:202–218, 2004.

[43] C. Homescu, L. R. Petzold, and R. Serban. Error estimation for reduced-order

models of dynamical systems. SIAM Journal on Numerical Analysis, 43(4):1693–

1714, 2005.

[44] C. Homescu, L. R. Petzold, and R. Serban. Error estimation for reduced-order

models of dynamical systems. SIAM Review, 49(2):277–299, 2007.

[45] M. N. Islam and J. Azaiez. Fully implicit finite difference pseudo-spectral method

for simulating high mobility-ratio miscible displacements. International Journal

for Numerical Methods in Fluids, 47(2):161–183, 2005.

[46] K. Ito and S. S. Ravindran. A Reduced Order Method for Simulation and Control

of Fluid Flows. Journal of Computational Physics, 143(2):403–425, 1998.

[47] Jim Douglas , Jr. Finite difference methods for two-phase incompressible flow in

porous media. SIAM Journal on Numerical Analysis, 20(4):681–696, 1983.

135

[48] K. Kunisch and S. Volkwein. Control of the Burgers Equation by a Reduced-

Order Approach Using Proper Orthogonal Decomposition. J. Optim. Theory

Appl., 102(2):345–371, 1999.

[49] K. Kunisch and S. Volkwein. Galerkin Proper Orthogonal Decomposition Meth-

ods for Parabolic Problem. Numerische Mathematik, 90(1):117–148, November

2001.

[50] K. Kunisch and S. Volkwein. Galerkin Proper Orthogonal Decomposition

Methods for a General Equation in Fluid Dynamics. SIAM J. Numer. Anal.,

40(2):492–515, 2002.

[51] K. Kunisch and S. Volkwein. Proper Orthogonal Decomposition for Optimality

Systems. Mathematical Modelling and Numerical Analysis, 42(1):1–23, 2008.

[52] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution

of Large-scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods.

SIAM, 1998.

[53] C. F. Van Loan. The sensitivity of the matrix exponential. SIAM Journal on

Numerical Analysis, 14:971–981, 1977.

[54] L. Machiels, Y. Maday, I. B. Oliveira, A. T. Patera, and D. V. Rovas. Output

bounds for reduced-basis approximations of symmetric positive definite eigen-

value problems. Comptes Rendus de l’Acadmie des Sciences - Series I - Mathe-

matics, 331(2):153 – 158, 2000.

136

[55] Y. Maday, A. T. Patera, and G. Turinici. A priori convergence theory for reduced-

basis approximations of single-parameter elliptic partial differential equations. J.

Sci. Comput., 17(1-4):437–446, 2002.

[56] R. Markovinović and J. D. Jansen. Accelerating iterative solution methods using

reduced-order models as solution predictors. International Journal for Numerical

Methods in Engineering, 68(5):525–541, 2006.

[57] J. McPhee and W. W.-G. Yeh. Groundwater management using model reduction

via empirical orthogonal functions. Journal of Water Resources Planning and

Management, 134(2):161–170, 2008.

[58] M. Meyer and H. G. Matthies. Efficient model reduction in non-linear dynamics

using the karhunen-love expansion and dual-weighted-residual methods. Com-

putational Mechanics, 31:179–191, 2003. 10.1007/s00466-002-0404-1.

[59] M. Mishra, M. Martin, and A. De Wit. Differences in miscible viscous fingering

of finite width slices with positive or negative log-mobility ratio. Physical Review

E (Statistical, Nonlinear, and Soft Matter Physics), 78(6), 2008.

[60] N. C. Nguyen. A posteriori error estimation and basis adaptivity for reduced-

basis approximation of nonaffine-parametrized linear elliptic partial differential

equations. J. Comput. Phys., 227(2):983–1006, 2007.

137

[61] N. C. Nguyen, A. T. Patera, and J. Peraire. A “Best Points” Interpolation

Method for Efficient Approximation of Parametrized Functions. Int. J. Numer.

Meth. Engng, 73:521–543, 2007.

[62] N. C. Nguyen and J. Peraire. An efficient reduced-order modeling approach for

non-linear parametrized partial differential equations. International Journal for

Numerical Methods in Engineering, 76:27–55, 2008.

[63] N. C. Nguyen, G. Rozza, and A. T. Patera. Reduced basis approximation and

a posteriori error estimation for the time-dependent viscous burgers equation.

Calcolo, 46(3):157–185, June 2009.

[64] A. K. Noor and J. M. Peters. Reduced Basis Technique for Nonlinear Analysis

of Structures. AIAA J., 19:455–462, 1980.

[65] H. G. Park and M. Zak. Model reconstruction using POD method for gray-box

fault detection. Aerospace Conference, 2003. Proceedings. 2003 IEEE, 7:3087–

3093, 8-15, 2003.

[66] P. S. Peterson. The Reduced-Basis Method for Incompressible Viscous Flow

calculations. SIAM J. Scientific and Statistical Computing, 19:777–786, 1989.

[67] J. R. Phillips. Projection frameworks for model reduction of weakly nonlinear

systems. In DAC ’00: Proceedings of the 37th Annual Design Automation Con-

ference, pages 184–189, New York, NY, USA, 2000. ACM.

138

[68] S. Prajna. POD Model Reduction with Stability Guarantee. Decision and Con-

trol. 42nd IEEE Conference, 5:5254–5258, Dec. 2003.

[69] C. Prud’homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera,

and G. Turinici. Reliable real-time solution of parametrized partial differential

equations: Reduced-basis output bound methods. Journal of Fluids Engineering,

124(1):70–80, 2002.

[70] M. Rathinam and L. R. Petzold. A new look at proper orthogonal decomposition.

SIAM Journal on Numerical Analysis, 41(5):1893–1925, 2003.

[71] M. Rewienski and J. White. A trajectory piecewise-linear approach to model

order reduction and fast simulation of nonlinear circuits and micromachined

devices. Computer-Aided Design, International Conference, page 252, 2001.

[72] M. Rewienski and J. White. A trajectory piecewise-linear approach to model

order reduction and fast simulation of nonlinear circuits and micromachined de-

vices. Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-

actions, 22(2):155–170, Feb 2003.

[73] M. Rewienski and J. White. Model order reduction for nonlinear dynamical

systems based on trajectory piecewise-linear approximations. Linear Algebra

and its Applications, 415(2-3):426–454, 2006. Special Issue on Order Reduction

of Large-Scale Systems.

139

[74] M. J. Rewieński. A Trajectory Piecewise-Linear Approach to Model Order Re-

duction of Nonlinear Dynamical Systems. PhD thesis, Massachusetts Institute

of Technology, 2003.

[75] B. Riviere and M.F. Wheeler. Miscible displacement in porous media. Com-

putational Methods in Water Resources, Developments in Water Science, pages

907–914, 2002.

[76] A. Rocsoreanu, C.and Georgescu and N. Giurgiteanu. The FitzHugh-Nagumo

Model: Bifurcation and Dynamics. Springer, 2000.

[77] C. W. Rowley. Model Reduction for Fluids, using Balanced Proper Orthog-

onal Decomposition. International Journal of Bifurcation and Chaos (IJBC),

15(3):997–1013, 2005.

[78] C. W. Rowley, T. Colonius, and R. M. Murray. Model Reduction for Compress-

ible Flows using POD and Galerkin Projection. Physica D: Nonlinear Phenom-

ena, 189(1-2):115– 129, 2004.

[79] N. Smaoui and A. A. Garrouch. A new approach combining Karhunen-Love

decomposition and artificial neural network for estimating tight gas sand per-

meability. Journal of Petroleum Science and Engineering, 18(1-2):101 – 112,

1997.

140

[80] N. Smaoui and R. Gharbi. Modelling Miscible Fluid Displacements in Porous

Media Using Karhunen-Loéve Decomposition and Artificial Neural Networks.

Applied Mathematical Modelling, 24:657–675, 2000.

[81] G. Söderlind. Bounds on nonlinear operators in finite-dimensional Banach spaces.

Numerische Mathematik, 50:27–44, 1986. 10.1007/BF01389666.

[82] G. Söderlind. The logarithmic norm. history and modern theory. BIT Numerical

Mathematics, 46:631–652, 2006. 10.1007/s10543-006-0069-9.

[83] T. Ström. On logarithmic norms. SIAM Journal on Numerical Analysis,

12(5):741–753, 1975.

[84] S. Swernath and S. Pushpavanam. Viscous fingering in a horizontal flow through

a porous medium induced by chemical reactions under isothermal and adiabatic

conditions. The Journal of Chemical Physics, 127(20), 2007.

[85] D. B. Szyld. The Many Proofs of an Identity on the Norm of Oblique Projections.

Numerical Algorithms, 42:309–323, 2006.

[86] C. T. Tan and G. M. Homsy. Stability of miscible displacements in porous media:

Rectilinear flow. Physics of Fluids, 29(11):3549–3556, 1986.

[87] C. T. Tan and G. M. Homsy. Simulation of nonlinear viscous fingering in miscible

displacement. Physics of Fluids, 31(6):1330–1338, 1988.

141

[88] S. Utku, J. L. M. Clemente, and M. Salama. Errors in reduction methods.

Computers & Structures, 21(6):1153–1157, 1985.

[89] A. Verhoeven. Redundancy Reduction of IC Models by Multirate Time-

Integration and Model Order Reduction. PhD thesis, Department of Mathematics

and Computer Science, Eindhoven University of Technology, 2008.

[90] P. T. M. Vermeulen, A. W. Heemink, and C. B. M. Te Stroet. Reduced models for

linear groundwater flow models using empirical orthogonal functions. Advances

in Water Resources, 27(1):57 – 69, 2004.

[91] P. T. M. Vermeulen, A. W. Heemink, and J. R. Valstar. Inverse modeling of

groundwater flow using model reduction. Water Resour. Res., 41:W06003, 2005.

[92] P. T. M. Vermeulen, C. B. M. Te Stroet, and A. W. Heemink. Model inversion

of transient nonlinear groundwater flow models using model reduction. Water

Resour. Res., 42:W09417, 2006.

[93] K. Veroy, D. V. Rovas, and A. T. Patera. A posteriori error estimation for

reduced-basis approximation of parametrized elliptic coercive partial differential

equations: ‘convex inverse’ bound conditioners. ESAIM: Control, Optimisation

and Calculus of Variations, 8:1007–1028, 2002.

[94] S. Volkwein. Model reduction using proper orthogonal decomposition. Lecture

note, April 2008. http://www.uni-graz.at/imawww/volkwein/POD.pdf.

142

[95] K. Willcox. Unsteady flow sensing and estimation via the gappy proper orthog-

onal decomposition. Computers & Fluids, 35(2):208–226, 2006.

[96] K. Willcox and J. Peraire. Balanced model reduction via the proper orthogonal

decomposition. AIAA Journal, 40(11):2323–2330, 2002.

Appendix A

Computational Complexity Details

Additional details on computational complexity in Section 2.2.6 of Chapter 2 will

be presented here. Tables A.1 and Table A.2 give the computational complexity

for each iteration when solving (2.60) by the forward Euler method and (2.61) by

Newton’s method, respectively. The corresponding plots of these tables are shown in

Figures A.1 and A.3. Note that each plot in Figures A.1 to A.4 is scaled so that the

value of the Flops or the CPU time for the sparse full-order system (sparse coefficient

matrix A) is equal to 1. Note also that α(p) denotes the Flops for evaluating the

nonlinear function F at p components and αd(p), used in Table A.2, denotes the

Flops for evaluating derivative of the nonlinear function F at p components. When

F evaluates at its input vector componentwise, α(p) and αd(p) are linear in p. In this

case, the computational complexities for evaluating one forward Euler time step and

performing one Newton iteration of the full-order system, the POD reduced system,

143

144

and the POD-DEIM reduced system are shown in the last columns of Table A.1 and

Table A.2, respectively.

Although the forward (explicit) Euler method may not be the best approach due

to the step limiting stability issue, its cost per iteration is typical of other explicit

methods, and hence it is suitable for illustration purposes. An implicit scheme would

require solution of a nonlinear system at each time step. The computational com-

plexity for each Newton iteration is shown in Table A.2. In practice, the CPU time

may not be directly proportional to these predicted Flops, since there are many other

factors that might affect the CPU timings [37] . However, this analysis does reflect

the relative computational requirements and may be useful for predicting expected

relative computational times and performance enhancements possible with DEIM.

When A ∈ R
n×n represents the discretization of a linear differential operator, it

is usually sparse. Then, from Table A.1, the sparsity of A can be employed, so that

the total complexity for each iteration of the full-order system becomes O(n) instead

of O(n2). Similarly, from Table A.2, the total complexity becomes O(n2) instead

of O(n3). In this case, the total complexity of the POD reduced system can be

higher than the complexity of the full-order system as shown in Figures A.1 and A.3.

For example, the results in Figure A.3 for the steady-state problem with dimension

of the (sparse) full-order system n = 2500, indicate that roughly when k = 50 or

nk2 = n2, the computational time of the POD reduced system starts to exceed the

computational time of the full-order system. This follows from Table A.2 that the

145

complexity O(k3 + nk2) for POD reduced system is equivalent to the complexity

O(n2) for the sparse full-order system when k2 ≈ n.

This inefficiency of the POD reduced system indeed occurs in the actual compu-

tation as shown in Figures A.2 and A.4. From Figure A.2, for the unsteady nonlinear

system, the CPU time of the POD reduced system used for computing each time step

exceeds the CPU time for the original system as soon as its dimension reaches 30.

The same phenomenon happens for the POD reduced system of the steady-state prob-

lem as shown in Figure A.4, which illustrates the (scaled) CPU time of the highly

nonlinear 2-D steady state problem introduced in Chapter 4. The corresponding

POD-DEIM reduced system with both POD and DEIM having dimension 15 is order

O(100) faster than the original system with O(10−4) accuracy. On the other hand,

the POD reduced system of dimension 15 gives only O(10) reduction in CPU time

from the original system, with roughly the same order of accuracy as the POD-DEIM

reduced system. These demonstrate the inefficiency of the POD reduced system that

has been remedied by the introduction of DEIM.

146

System Computation Complexity
Total Complexity

in forward Euler (1 time step) For linear α(·), αd(·)

Full
y← y + dt(Ay + F(y)) 2n2 + 2n+ α(n) or ◮ Dense A: O(n2)

cn+ α(n) ◮ Sparse A: O(n)

◮ Sparse A

(MATLAB):

c ∼ sparsity of A O(n log(n)) [37]

POD O(k2 + nk)ŷ← ŷ + dt(Âŷ + VT F(Vŷ)) 2k2 + 2k + α(n) + 4nk

POD-DEIM O(k2 +mk)ŷ← ŷ + dt(Âŷ + BF(V~℘ŷ)) 2k2 + 2k + α(m) + 4mk

where B = VT UU−1

~℘ ,

U~℘ = PT U,V~℘ = PT V

Table A.1: Comparison of the computational complexity for each time step of forward Euler

method.

147

0 20 40 60 80 100
10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

k (POD dim)

F
lo

p
s

 (
s

c
a

le
d

)

Flops (scaled) for each Forward Euler Iteration

DEIM1

DEIM10

DEIM20

DEIM30

DEIM40

DEIM50

DEIM60

DEIM70

DEIM80

DEIM90

DEIM100

POD

Full:n=2500 (dense)

Full:n=2500 (sparse)

Full:n=2500 (MATLAB sparse)

O(n
2
)

O(nlog(n))

O(k
2
+nk)

O(n)

O(k
2
+mk)

Figure A.1: Approximate Flops (scaled with Flops for the full-sparse system) for each time step

of forward Euler.

0 20 40 60 80 100
10
−1

10
0

10
1

10
2

k (POD dim)

ti
m

e
 (

s
e

c
)

Test CPU time (scaled) for each forward Euler iteration

DEIM1

DEIM10

DEIM20

DEIM30

DEIM40

DEIM50

DEIM60

DEIM70

DEIM80

DEIM90

DEIM100

POD

Full:n=2500(dense)

Full:n=2500 (sparse)

Figure A.2: Average CPU time (scaled with CPU time for the full-sparse system) for each time

step of forward Euler.

----+-

------+----+-----+--

148

System Computation in Newton iteration Complexity (1 iteration)

Total Complexity

linear α(·), αd(·)

Full

G(y) = Ay + F(y) 2n2 + α(n) + n or cn+ α(n)

J(y) = A + diag{F′(y)} n2 + αd(n) or n+ αd(n) O(n3)

y← y − J(y)−1G(y) O(n3) or O(n2)

Sparse: O(n2)

c ∼ nonzero per row of A

POD O(k3 + nk2)

Ĝ(y) = Âŷ + VT F(Vŷ) 2k2 + α(n) + k + 4nk

Ĵ(y) = Â + VT diag{F′(Vŷ)}V k2 + αd(n) + 4nk + 2nk2

ŷ← ŷ − Ĵ(y)−1Ĝ(y) O(k3)

POD-DEIM

O(k3 +mk2)

Ĝ(y) = Âŷ + BF(V~℘ŷ) 2k2 + α(m) + k + 4mk

Ĵ(y) = Â + B diag{F′(V~℘ŷ)}V~℘ k2 + αd(m) + 4mk + 2mk2

ŷ← ŷ − Ĵ(y)−1Ĝ(y) O(k3)

where B = VT UU−1

~℘ ,

U~℘ = PT U,V~℘ = PT V

Table A.2: Comparison of the computational complexity for each Newton iteration.

149

0 20 40 60 80 100
10
−6

10
−4

10
−2

10
0

10
2

10
4

k (POD dim)

F
lo

p
s

 (
s

c
a

le
d

)

Flops (scaled) for each Newton Iteration

DEIM1

DEIM10

DEIM20

DEIM30

DEIM40

DEIM50

DEIM60

DEIM70

DEIM80

DEIM90

DEIM100

POD

Full:n=2500(dense)

Full:n=2500(sparse)

O(n
3
)

O(n
2
)

O(k
3
+nk

2
)

O(k
3
+mk

2
)

k
2
 ~ n

Figure A.3: Approximate Flops (scaled with Flops for the full-sparse system) for each Newton

iteration from Table A.2.

0 20 40 60 80 100
10
−2

10
−1

10
0

10
1

10
2

10
3

k (POD dim)

ti
m

e
 (

s
e

c
)

Average CPU time (scaled) for each Newton Iteration

DEIM1

DEIM10

DEIM20

DEIM30

DEIM40

DEIM50

DEIM60

DEIM70

DEIM80

DEIM90

DEIM100

POD

Full:n=2500(dense)

Full:n=2500(sparse)

Figure A.4: Average CPU time (scaled with CPU time for the full-sparse system) for each Newton

iteration for solving the steady-state 2D problem.

--+-
--+-
--+-
--e-
-+-----+-
-+-
--e-
--+-
--+-
--e-

--+-
--+-

--+-

--e-

-+-----+-

-+-
--e-
--+-

--+-
--e-

Appendix B

Example: State-space error bounds

The error analysis for the state-space solutions from the POD-DEIM reduced systems

given in Chapter 3 mainly provides theoretical insight into the factors that contribute

to the accuracy of the POD-DEIM technique. In general, these bounds may not be

useful for predicting exact errors (pessimistic bounds). Applications of these bounds

will be considered here through a heuristic linearization approximation.

B.1 Example: POD-DEIM Model Reduction for

Finite Difference System of Burgers’ Equation

Consider again the 1D unsteady Burgers’ Equation:

∂

∂t
y(x, t) = ν

∂2

∂x2
y(x, t)− ∂

∂x

(
y(x, t)2

2

)
x ∈ [0, 1], t ≥ 0 (B.1)

y(0, t) = y(1, t) = 0, t ≥ 0 and y(x, 0) = y0(x), x ∈ [0, 1],

150

151

where y(x, t) is the unknown function of time t and location x ∈ Ω ≡ [0, 1]; ν

is a diffusion coefficient (viscosity parameter); and y0(x) is an initial condition. The

initial condition used here is y0(x) = f(x)−f(0), where f(x) = e−(15(x−0.5))2); ν = 0.1;

t ∈ [0, 1]. Finite difference (FD) approximation for the spatial discretization gives

d

dt
y(t) = νAy(t) + F(y), (B.2)

where A ∈ R
n×n is the discrete Laplace operator; F(y) = −y. ∗ Axy with first-

order discrete differential operator Ax ∈ R
n×n and ‘.∗’ denotes pointwise multiplica-

tion (note: − ∂
∂x

(
y(x,t)2

2

)
= −y(x, t)∂y(x,t)

∂x
). Here the full-order dimension n is 100.

Fig. B.1 shows the solution of the full-order system and the singular values of the

solution snapshots and nonlinear snapshots. The POD-DEIM reduced system is then

constructed as described in Chapter 2. The accuracy of this reduced system is shown

next with the approximate state error bounds from Chapter 3.

0 20 40 60 80 100
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Singular values (# snapshots=100)

y

F(y)

Figure B.1: Solution of Burgers’ equation from full-order FD system and the singular values of

100 snapshots

1 '

»0.5

Sol of Full System (FD):dim = 100

,,,,,···

,,,,,····

·······r

,,,, ···':···, ..

: '•,

152

B.2 Numerical Results on Approximate State-Space

Error bounds

It is possible to compute realistic error bounds based on the derivation in Chapter 3

by using linearization and estimating the Jacobian (to avoid the exponential term).

Fig. B.2 shows some preliminary results of these approximate error bounds for dif-

ferent reduced dimensions k, m for POD and DEIM. This result illustrates that the

error bounds provided in this thesis can be used to determine a suitable1 dimension

(k, m) for the POD-DEIM reduced system.

0 10 20 30 40 50
10

−15

10
−10

10
−5

10
0

10
5

dim POD

E
rr

o
r

Error and error bouund(approx) :||Y
full

 −Y
reduced

||
F
, #Snapshots=100

DEIM3 (exact)

DEIM3 (bound)

DEIM5 (exact)

DEIM5 (bound)

DEIM10 (exact)

DEIM10 (bound)

DEIM15 (exact)

DEIM15 (bound)

DEIM20 (exact)

DEIM20 (bound)

DEIM25 (exact)

DEIM25 (bound)

DEIM30 (exact)

DEIM30 (bound)

DEIM40 (exact)

DEIM40 (bound)

DEIM50 (exact)

DEIM50 (bound)

POD (exact)

POD (bound)

Figure B.2: Exact errors and approximate error bounds at 100 time steps for POD and POD-

DEIM reduced systems constructed from POD bases of all 100 solution snapshots.

1Ideally, for a given level of accuracy, it is desirable to use the optimal dimension (k,m) which

can be selected from the “kinks” or “knees” of the error curves.

~:::···'''' ·•·'' , , , ... '' ·• ... , , , '' ... '
•' ,;,

•' •'

' :: ,,,
'• ,1 ::::: :::::::1 :::: ::::::: :

---&-

· · ·O · ·

-+­
" ·I>"

-+-
'"*" -+-
···~··
-+-..... ,

--+-
.. ,+ ..

-e-
·D, -.. ,,c .. ,

---&-

···O·· -·­.. , ...

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Motivation and Goal
	Existing Techniques
	Techniques for Constructing Reduced Basis
	Techniques for Nonlinearities

	Thesis Outline and Scope

	Nonlinear Model Reduction via Discrete Empirical Interpolations
	Problem Formulation
	Proper Orthogonal Decomposition (POD)
	Complexity Issue of the POD-Galerkin Approach

	Discrete Empirical Interpolation Method (DEIM)
	DEIM: Algorithm for Interpolation Indices
	Error Bound for DEIM
	Numerical Examples of the DEIM Error Bound
	Application of DEIM to Nonlinear Discretized Systems
	Interpolation of General Nonlinear Functions
	Computational Complexity

	A State-Space Error Estimate for POD-DEIM Reduced Systems
	Problem formulation
	Error analysis of POD-DEIM reduced system
	Error bounds in ODE setting
	Error bounds in discrete setting

	Analysis based on generalized logarithmic norm
	Error bounds in continuous ODE setting
	Error bounds in discretized ODE setting

	Conclusion

	Model Problems/Numerical Examples
	The FitzHugh-Nagumo (F-N) System
	Full Order Model of FD Discretized System
	A POD-Galerkin Reduced Order Model
	Reduced-Order Model from POD-DEIM Method
	Numerical Results

	A Nonlinear 2-D Steady State Problem
	Model Reduction of the FD Discretized System
	Numerical Results

	Application of the POD-DEIM approach to Nonlinear Miscible Viscous Fingering in Porous Media
	Introduction
	Governing Equations
	Finite Difference (FD) Discretized System
	Reduced-Order System
	POD reduced system
	POD-DEIM reduced system

	Numerical Results
	Fixed Parameters
	Varying Péclet number: Pe [110, 120]
	Miscible Viscous Fingering Induced by Chemical Reaction

	Conclusions and Remarks

	Conclusions and Future Work
	Bibliography
	Computational Complexity Details
	Example: State-space error bounds
	Example: POD-DEIM Model Reduction for Finite Difference System of Burgers' Equation
	Numerical Results on Approximate State-Space Error bounds

