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Abstract In engineering practice, a nonlinear sys-

tem stable about several equilibria is often studied by

linearizing the system over a small range of operation

around each of these equilibria, and allowing the study

of the system using linear system methods. Theoret-

ically, for operations beyond a small range but still

within the stable regime of an equilibrium, the system

behaves nonlinearly, and can be described and inves-

tigated using the Volterra series approach. However,

there is still no available approach that can systemat-

ically transform the model of a nonlinear system into a

form that can be studied over the whole stable regime

about an equilibrium so as to facilitate the system

study using the Volterra series approach. This trans-

formation is, in the present study, referred to as

nonlinear model standardization, which is the exten-

sion of the well-known concept of linearization to the

nonlinear case. In this paper, a novel approach to

nonlinear model standardization is proposed for

nonlinear systems that can be described by a Nonlinear

AutoRegressive model with eXogeneous input

(NARX) or a nonlinear differential equation (NDE)

model. The proposed approach is then used in three

case studies covering the applications in nonlinear

system analysis, nonlinear system design, and nonlin-

earity compensation, respectively, demonstrating the

significance of the proposed nonlinear model stan-

dardization in a wide range of engineering practices.

Keywords Nonlinear systems � Equilibria � NARX/
NDE model � Frequency domain � Standardization

1 Introduction

The analysis, design, and control of linear systems

have been well-developed and widely applied in

engineering practice [1, 2]. Considering all practical

systems are inherently nonlinear, the extension of

well-established linear approaches to the nonlinear

case has always been a focus of studies in the subject

area of systems and control [3, 4].

Complex dynamic behaviours can emerge from

nonlinear systems which include bifurcation, chaos,

etc. Among these, a unique feature which is not

available with linear systems is that a nonlinear system

can have more than one equilibrium as shown in

Fig. 1, where the motion of a particle represents the
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response of the system. Traditionally, the study of the

behaviours of nonlinear systems as shown in Fig. 1

about each equilibrium is often conducted by using a

linearization procedure to represent the system by

several linear models, with each linear model repre-

senting the original system over a small range of

operation around one equilibrium [5, 6]. Conse-

quently, at each equilibrium, the nonlinear systems

can be studied using a linear system approach [7–9].

For example, based on the piecewise linear model, the

stability issue with nonlinear systems has been

addressed using the Lyapunov functions or Linear

Matrix Inequalities (LMIs) [9].

However, when a nonlinear system operates

beyond a small range but still within the regime about

a stable equilibrium, the system behaves nonlinearly

and cannot be simply represented by a linear model. In

these cases, linearization is often difficult to be applied

to facilitate the study of the system behaviours, and the

nonlinear system around the stable equilibrium can be

represented by a Volterra series model [10] as

illustrated in Fig. 1. The Volterra series theory has

been widely applied to occupy the middle ground in

generality and applicability, linking the activities of

more esoteric mathematical studies and development

of engineering techniques [11].

Compared with linear system theories and methods,

the methods that can be applied for the analysis and

design of nonlinear systems are limited. The pertur-

bation methods are applied to the analysis of nonlinear

oscillators of limited generality [12]. In addition,

researchers often apply subtle mathematics to study

the existence/uniqueness of the stability, controllabil-

ity, and control of nonlinear systems [13] which are

often difficult to be applied in practice. Severe

nonlinearities such as bifurcation and chaos may exist

in nonlinear systems, which can appear outside the

regime in Fig. 1 where the Volterra series works and

have to be addressed case by case using different

methods to avoid uncertain behaviours in engineering

and control system design [14]. However, in practice,

an engineering system often works in a regime around

a stable equilibrium [15] and given an input loading,

there is a need to determine the equilibrium associated

with the input for either system analysis or design [16].

Although linearization approaches have been widely

used for the equilibrium determination, there is still no

method that can be applied to find the equilibrium

when the system works beyond the linear range but

still within the regime of this stable equilibrium. This

is the scenario in many engineering practices where

the system can be represented by a Volterra series

model and studied using the Volterra series approach

of nonlinear systems.

Traditional Volterra series approaches were devel-

oped for nonlinear systems stable at zero equilibrium

[17], and it is relatively straightforward to extend the

application of the Volterra series approach to nonlin-

ear systems stable around a nonzero equilibrium [18].

As a result, the representation of a nonlinear system

around a stable equilibrium using a Volterra series can

be considered to be an extension of the well-applied

linearization to the nonlinear case. This, in the present

study, is referred to as nonlinear model

standardization.

Many nonlinear engineering problems related to

nonzero equilibria have been reported [19–21], and

can be investigated by using a standardized nonlinear

model. For example, Zhu et al. [19] studied the pre-

distortion issue with the radio frequency power

amplifier of a wideband wireless communication

system using the Volterra series approach and a

nonlinear model standardized about zero equilibrium.

It has been found in Sekhar [21] that the gravities of

beam structures can significantly affect the crack

detection results, which can, as demonstrated in Case

Study 1 in this paper, be addressed by nonlinear model

standardization. Compared to the widely applied

linearization, nonlinear model standardization is much

more complicated and difficult because the superpo-

sition principle does not apply any more in nonlinear

cases.

Some researchers have considered the nonlinear

model standardization for the analysis of specific

nonlinear systems [22–26]. For example, the work in

[25] and [26] studied the frequency domain analysis of

nonlinear systems having nonzero direct current (DC)

components. A recursive algorithm was used to

determine a Volterra series representation associated

with each equilibrium affected by the DC component.

This work makes a significant contribution to the

nonlinear model standardization but have two prob-

lems. First, the recursive algorithm is too complicated

to implement. Second, there is no consideration of the

fact that zero DC component in nonlinear systems can

also produce nonzero equilibria.

In order to address these problems with existing

methods, in the present study, a novel approach to
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nonlinear model standardization is proposed for

nonlinear systems that can be described by a Nonlinear

AutoRegressive models with eXogeneous (NARX)

input [27] or a Nonlinear Differential Equation (NDE)

model [28]. The key idea is to apply the Nonlinear

Output Frequency Response Functions (NOFRFs)

[29] to determine the stable equilibrium associated

with a nonlinear system’s operational conditions of

concern. Then, the NARX/NDE model of the system

is standardized such that the system can be investi-

gated using the Volterra series approach around this

equilibrium. The NOFRFs is an extension of the linear

system frequency response function (FRF) to the

nonlinear case [29].

In the derivation of the new nonlinear model

standardization approach, the NARX/NDE models

with a DC terms [24–26] are considered to take a large

class of nonlinear systems into account. The DC term

in the model representation is not necessarily to be

nonzero, which is a key difference compared to the

studies in [25, 26]. The new approach is then applied in

three case studies which are concerned with the

analysis of gravity effects on the detection of cracks in

beams, the design of an Auxetic foam structure, and

the compensation of nonlinear distortions in engineer-

ing systems, respectively. These results demonstrate

the significance of the proposed method in a range of

engineering practices.

2 Nonlinear systems with non-zero equilibria

Consider nonlinear systems that can be represented by

a NARX model with a DC component [25, 27]

y kð Þ ¼
XM

m¼1

Xm

p¼0

XK

k1; kpþq¼1

cp;q k1; � � � ; kpþq

� ��

�
Yp

i¼1

y k � kið Þ
Ypþq

i¼pþ1

u k � kið Þ
#

þ c0;0

ð1Þ

where k is discrete time; u :ð Þ and y :ð Þ are the system

input and output, respectively; M and K are integers;

pþ q ¼ m and
PK

k1;kpþq¼1 ¼
PK

k1¼1 � � �
PK

kpþq¼1 ;

cp;q k1; � � � ; kpþq

� �
are the model coefficients and

c0;0 is a constant.

In nonlinear system (1), assume that there are Ne

different equilibria, which will later on be denoted as

y0 ¼ y0;i
�
�i ¼

�
1; . . .;Neg. Obviously, c0;0¼0 is a nec-

essary condition for the NARX model to be stable at

zero equilibrium.

For example, consider the NARX model

y kð Þ ¼u k � 1ð Þ þ by k � 1ð Þ � 0:5y k � 2ð Þ
� 0:5y3 k � 1ð Þ þ C

ð2Þ

subject to harmonic input

u kð Þ ¼ 0:1 cos xFkDt þ uð Þ ð3Þ

where fs ¼ 1=Dt ¼ 512 Hz; xF ¼ 20 rad=s is the

input frequency; u is the phase of the input with u ¼
0 and u ¼ p representing two different operating

conditions of the system.

Figure 2 shows the output responses of system (2)

in the three different cases of (i)

b ¼ 1; C ¼ 0, u ¼ 0 or p, (ii) (a) b ¼ 2; C ¼ 0, u ¼
0 and (b) b ¼ 2; C ¼ 0; u ¼ p, and (iii)

b ¼ 1; C ¼ 0:1, u ¼ 0 or p.

In Fig. 2, case (i) and case (iii) both have only one

stable equilibrium like a valley in Fig. 1, while case

(ii) has two stable equilibria and one unstable equilib-

rium like a peak in Fig. 1.

When system (1) is stable at zero equilibrium, the

output about zero equilibrium can be represented by a

Volterra serieswith hn s1; . . .; snð Þ being the

y kð Þ ¼
XN

n¼1

yn kð Þ

¼
XN

n¼1

Xþ1

s1¼�1
� � �

Xþ1

sn¼�1
hn s1; . . .; snð Þ

Yn

i¼1

u k � sið Þ

ð4Þ

n th order Volterra kernel of the system. The output

spectrum of system (1) can be described as [16]

Y jxð Þ ¼
XN

n¼1

Yn jxð Þ ¼
XN

n¼1

1
ffiffiffi
n

p
2pð Þn�1

�
Z

x1þ���þxn¼x

Hn x1; � � � ;xnð Þ
Yn

i¼1

U jxið Þdrn; x

ð5Þ

where
R

x1þ���þxn¼x
:ð Þdrn; x represents the integration

over the hyperplane x1 þ � � � þ xn ¼ x; drn; x is the

area of the minute element on the hyperplane;

�pfs �x� pfs, fs ¼ 1=Dt is the sampling frequency;

U jxð Þ and Y jxð Þ are the spectra of the system input

and output, respectively, and
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Hn x1; . . .;xnð Þ ¼
Xþ1

s1¼�1
� � �

Xþ1

sn¼�1
hn s1; . . .; snð Þ

� exp �j x1s1 þ � � � þ xnsnð ÞDtð Þ
ð6Þ

is the n th order generalized frequency response

function (GFRF) of the system, which can be evalu-

ated by using the recursive algorithm in [27] as given

in Appendix 1a.

When system (1) is stable at a nonzero equilibrium,

the output response about the equilibrium can be

represented by the corresponding Volterra series as

[26]

y kð Þ ¼y0 þ
XN

n¼1

yn kð Þ

¼y0 þ
XN

n¼1

Xþ1

s1¼�1
� � �

Xþ1

sn¼�1
hn s1; . . .; snð Þ

Yn

i¼1

u k � sið Þ

ð7Þ

where y0 represents this nonzero stable equilibrium,

hn s1; . . .; snð Þ represents the n th order Volterra kernel
of the system and is dependent on y0, and

Y jxð Þ ¼Y0 jxð Þþ
XN

n¼1

Yn jxð Þ ¼ Y0 jxð Þþ
XN

n¼1

1
ffiffiffi
n

p
2pð Þn�1

�
Z

x1þ���þxn¼x

Hn x1; � � � ;xnð Þ
Yn

i¼1

U jxið Þdrn; x

ð8Þ

where Y0 jxð Þ ¼ y0 x ¼ 0

0 x 6¼ 0

�

,

Yn jxð Þ ¼ 1
ffiffiffi
n

p
2pð Þn�1

�
Z

x1þ���þxn¼x

Hn x1; � � � ;xnð Þ
Yn

i¼1

U jxið Þdrn; x

ð9Þ

andHn x1; � � � ;xnð Þ represents the n th order GFRF of
the system corresponding to equilibrium y0.

The evaluation of the GFRFs Hn x1; � � � ;xnð Þ; n ¼
1; . . .;N was proposed in [25] where the stable equi-

librium y0 needs first to be determined then

Hn x1; � � � ;xnð Þ; n ¼ 1; . . .;N can be evaluated using

a recursive method shown in Appendix 2b.

However, the problemwith this method is that there

is no a mechanism that can be used to determine the

stable equilibrium y0 which is associated with the

system response of concern. In addition, instead of

using the relatively simple traditional recursive algo-

rithm [27] for evaluating the GFRFs of nonlinear

systems at zero equilibrium, a more complicated

recursive algorithm has to be used for each stable equi-

librium assuming that the system stability at these

Unstable equilibria

Linear range

Nonlinear range
 where Volterra

 series works

Stable equilibria

Arbitrary
operating point

Particle

x

y

Fig. 1 An illustration of when a nonlinear system can be

represented by a linear or a nonlinear Volterra series model

where x and y are states of the system

Fig. 2 Output response of a nonlinear system with (i) one

stable zero equilibrium, (ii) one unstable zero equilibrium and

two stable nonzero equilibria, and (iii) one stable nonzero

equilibrium, respectively
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equilibria is already known albeit this is often not

straightforward.

In the present study, these difficulties will be

addressed by proposing a novel approach for nonlinear

model standardization. This approach will transform

the model of a nonlinear system with nonzero

stable equilibria into a model which is stable around

zero equilibrium just as dealing with linear systems

with a nonzero operating point. The transformed

model represents the behaviours of the system under

study with its zero equilibrium associated with the

original nonzero stable equilibrium of the concern for

the system analysis and design using the Volterra

series approach.

Remark 1 Although the above discussions are about

the NARX model of nonlinear systems, all results in

the present study can be applied to the NDE model of

nonlinear systems of the general form as follows.

XM

m¼1

Xm

p¼0

XL

l1; lpþq¼0

cp;q l1; � � � ; lpþq

� �
�
Yp

i¼1

Dliy tð Þ
Ypþq

i¼pþ1

Dliu tð Þ
" #

þ c0;0 ¼ 0

ð10Þ

where D is defined by Dly tð Þ ¼ dly tð Þ
	
dtl, and L is the

maximum order of the differential operator D.

For example, the nonlinear differential equation

€y tð Þ þ 9:8 y tð Þ þ �1

3!
y3 tð Þ þ 1

5!
y5 tð Þ


 �

¼ u tð Þ ð11Þ

is a special case of the NDEmodel (10) withM = 5,

L = 2, and

c1;0 2ð Þ ¼ 1; c1;0 0ð Þ ¼ 9:8; c0;1 0ð Þ ¼ �1;

c3;0 0ð Þ ¼ � 9:8

3!
; c5;0 0ð Þ ¼ 9:8

5!
; else cp;q :ð Þ ¼ 0

3 The principle of nonlinear model

standardization

It is well-known that a linear system stable at a

nonzero equilibrium can be standardized by shifting

the stable equilibrium to zero. For example, the linear

system

y kð Þ ¼ u k � 1ð Þ þ y k � 1ð Þ � 0:5y k � 2ð Þ þ C

ð12Þ

where C 6¼ 0 is a constant can be standardized as

y kð Þ ¼ u k � 1ð Þ þ y k � 1ð Þ � 0:5y k � 2ð Þ ð13Þ

with y tð Þ ¼ y tð Þ þ 2C.

For nonlinear systems, as the superposition princi-

ple cannot be applied, the principle of standardization

is more complicated and can generally be introduced

in Proposition 1 for nonlinear systems described by

NARX model (1).

Proposition 1 The NARX model (1) of nonlinear

systems can be described in the following standard

form.

y kð Þ ¼
XM

m¼1

Xm

p¼0

XK

k1; kpþq¼1

Xp�1

r¼0

X

j1;jp�r¼1;

j1\���\jp�r

p
cp;q k1; . . .; kpþq

� �
yr0�

2

6
6
6
6
4

�
Yp�r

i¼1

y k � kji
� � Ypþq

i¼pþ1

u k � kið Þ
#

ð14Þ

where pþ q ¼ m,

y kð Þ ¼ y kð Þ � y0 ð15Þ

and y0 ¼ y0;i
�
�i ¼ 1; . . .;Ne

� �
are obtained from

finding the real roots of the equation

XM

p¼1

cp;0y
p
0 þ c0;0 ¼ 0 ð16Þ

cp;0 ¼
�1 p ¼ 1
PK

k1;kp¼1

cp;0 k1; . . .; kp
� �

p� 2

8

<

:
ð17Þ

Proof of Proposition 1 Proposition 1 can be proved

by substituting

y kð Þ ¼ y0 þ y kð Þ ð18Þ

into NARXmodel (1) and letting the constant terms on

both sides of the equation identical. The results will

show

XM

p¼1

XK

k1;kp¼1

cp;0 k1; . . .; kp
� �

y
p
0 � y0 þ c0;0 ¼ 0 ð19Þ

123

Nonlinear model standardization for the analysis and design 2557



with the real roots being y0;i; i ¼ 1; . . .;Ne.

Remark 2 For the NDE model (10) of nonlinear

systems, the standardized model about a stable zero

equilibrium can be obtained as.

XM

m¼1

Xm

p¼0

XL

l1; lpþq¼0

Xp�1

r¼0

X

j1;jp�r¼1;

j1\���\jp�r

p
cp;q l1; . . .; lpþq

� �
yr0�

2

6
6
6
6
4

�
Yp�r

i¼1

Dlji y tð Þ
Ypþq

i¼pþ1

Dliu tð Þ
#

¼ 0

ð20Þ

where y0 is obtained from the solutions to (16)

representing a stable nonzero equilibrium of system

(10) with

cp;0 ¼ cp;0 0; . . .; 0ð Þ ð21Þ

given in Eq. (17).

For example, the NARX model (2) in the cases of

(ii) and (iii) can be transformed into a standard form

with zero equilibrium as follows.

Substituting (18) into (2) yields

y kð Þ þ y0 ¼u k � 1ð Þ þ b� 1:5y20
� �

y k � 1ð Þ
� 0:5y k � 2ð Þ � 1:5y0y

2 k � 1ð Þ � 0:5y3 k � 1ð Þ
þ �0:5y30 þ b� 0:5ð Þy0 þ C
� �

ð22Þ

Let y0 be the solution to equation

�0:5y30 þ b� 1:5ð Þy0 þ C ¼ 0 ð23Þ

Equation (22) can be written as

y kð Þ ¼u k � 1ð Þ þ b� 1:5y20
� �

y k � 1ð Þ
� 0:5y k � 2ð Þ � 1:5y0y

2 k � 1ð Þ � 0:5y3 k � 1ð Þ
ð24Þ

In case (ii) of NARX model (2) with C ¼ 0, (23)

becomes

�0:5y30 þ 0:5y0 ¼ 0 ð25Þ

yielding y0 ¼ 0; �1; In case (iii) of NARX model (2)

with C ¼ 0:1, (23) becomes

�0:5y30 � 0:5y0 þ 0:1 ¼ 0 ð26Þ

yielding y0 ¼ 0:1928.

Consequently, substituting y0 thus evaluated into

(22), the NARX model of nonlinear system (2) can be

standardized as,

y kð Þ ¼

u k � 1ð Þ þ 0:5y k � 1ð Þ � 0:5y k � 2ð Þ
þ1:5y2 k � 1ð Þ � 0:5y3 k � 1ð Þ

y0 ¼ �1

u k � 1ð Þ þ 2y k � 1ð Þ � 0:5y k � 2ð Þ
�0:5y3 k � 1ð Þ

y0 ¼ 0

u k � 1ð Þ þ 0:5y k � 1ð Þ � 0:5y k � 2ð Þ
�1:5y2 k � 1ð Þ � 0:5y3 k � 1ð Þ

y0 ¼ 1

8

>>>>>>>>><

>>>>>>>>>:

ð27Þ

for case (ii), and

y kð Þ ¼u k � 1ð Þ þ 0:9442y k � 1ð Þ
� 0:5y k � 2ð Þ � 0:2892y2 k � 1ð Þ ;
� 0:5y3 k � 1ð Þ

y0 ¼ 0:1928

ð28Þ

for case (iii). It is worth pointing out that as y0 ¼ 0 is

not a stable equilibrium in case (ii), the standard form

of NARX model (2) corresponding y0 ¼ 0 in (27) is

not valid.

It can be seen that although a standard form of

nonlinear system description can be obtained follow-

ing the principle introduced above, the stability of

each equilibrium y0 of the original system has to be

determined first. More importantly, given the system

response of concern to a specific input, which standard

model form needs to be used for the required system

analysis is an important question to answer. Many

methods are available for the determination of whether

a nonlinear system is stable or not around an equilib-

rium, which include, for example, the Routh–Hurwitz

method [30, 31] and the Lyapunov method [32], the

describing function method [33], the bounded input

bounded output approaches [34], etc. But, even if the

stable equilibria with the original system have been

found out by using one of these methods, there is still

no a systematic method that can be used to determine

which stable equilibrium should literally be used to

transform the original model into a standard form that

can then be used for the required system analysis.

In order to address this issue, a NOFRFs-based

approach is proposed in the next section. The approach

will first find the stable equilibrium with the original

system of concern for the considered analysis, and

then produce the standard model form with respect to

this stable equilibrium of the system following the
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general principle introduced above. Generally speak-

ing, the advantage of studying dynamic systems in the

frequency rather than time domain is that the fre-

quency-domain methods transform the study of

differential equations to the study of much simpler

algebraic equations. It will be seen in the following

studies that the NOFRFs-based frequency-domain

representation of the response of a nonlinear system

can significantly facilitate the revelation of the system

operating point, the linear response, and the higher-

order nonlinear responses, providing an effective

approach for the evaluation of the equilibrium of

concern and determination of a standardized model for

the system.

4 The NOFRFs-based approach to nonlinear

model standardization

4.1 The NOFRFs of nonlinear systems

The NOFRFs was proposed by Lang et al. [29] for the

analysis of nonlinear systems and has found applica-

tions including fault detection [35, 36] and system

analysis [37]. For nonlinear systems stable at zero

equilibrium, the NOFRFs is defined as

Gn jxð Þ ¼ Yn jxð Þ
Un jxð Þ ;

n ¼ 1; . . .; N
x 2 X

�

ð29Þ

where Yn jxð Þ and Un jxð Þ are the spectrum of the n th

order output of the system and the spectrum of the

system input raised to n th order, un kð Þ, respectively;
Xn is the frequency support of Un jxð Þ where

Un jxð Þ 6¼ 0, which can be determined using the

results about the output frequencies of nonlinear

systems [17].

For the nonlinear systems which are stable at a

specific equilibrium y0 6¼ 0, the output spectrum can

be represented using the NOFRFs as

Y jxð Þ ¼Y0 jxð Þþ
XN

n¼1

Yn jxð Þ

¼Y0 jxð Þ þ
XN

n¼1

Gn jxð ÞUn jxð Þ
ð30Þ

where

�Gn jxð Þ ¼
�Yn jxð Þ
Un jxð Þ ;

n ¼ 1; . . .; N
x 2 Xn




ð31Þ

is the n th order NOFRF of the nonlinear system

associated with equilibrium y0.

Moreover, it can readily be shown that the NOFRFs

associated with a nonzero equilibrium as defined in

(31) has the following properties:

(1) Let a be a nonzero constant and Gn jxð Þ the n th
order NOFRF computed for U jxð Þ. Then, the n
th order NOFRF computed for aU jxð Þ are the

same as Gn jxð Þ.
(2) The frequency support of Gn jxð Þ, Yn jxð Þ and

Un jxð Þ, i.e. the frequency range where these

functions of frequency are well-defined, are the

same.

It is worth noting that the above discussions about

the NOFRFs are valid for both the NARX and NDE

model of nonlinear systems.

4.2 The NOFRFs-based nonlinear model

standardization

It can be seen from Proposition 1 that the key to

nonlinear model standardization is to find the

stable equilibrium which is y0 associated with the

system operating condition of concern. However, as

discussed in Sect. 3, the existing method provides no a

systematic way to achieve this. It is known from the

Volterra series representation (8) that using the

spectrum U jxð Þ of the system input which is associ-

ated with the system operational condition of concern,

the corresponding stable equilibrium can be deter-

mined as y0 ¼ Y0 jxð Þ
�
�
x¼0

. Then, Proposition 1 can be

used to find the standard nonlinear model which is

valid around equilibrium y0 ¼ Y0 0ð Þ. Based on this

observation, a procedure for nonlinear model stan-

dardization is proposed as follows.

Step 1 Evaluate all equilibria of the nonlinear

system under study

According to Proposition 1, denote y kð Þ ¼ y kð Þ þ
y0 such that the standardized NARX model can be

formulated as (14), and then determine the equilib-

ria of the nonlinear system by finding the solutions

to Eq. (16), y0;i; i ¼ 1; . . .;Ne.

Step 2 The NOFRF-based evaluation of the

stable equilibrium of concern
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Determine an estimate for the specific stable equi-

librium y0 of the system, which is associated with

the considered system operational condition repre-

sented by a specific input u kð Þ.
Evaluate the responses of the system to N�N þ 1

inputs u ið Þ kð Þ ¼ aiu kð Þ; i ¼ 1; . . .;N, where ai; i ¼
1; . . .;N are constants. From (30), it is known that

the system responses to these inputs at zero

frequency are

Y ið Þ 0ð Þ ¼ y0 þ
XN

n¼1

aniGn 0ð ÞUn 0ð Þ; i ¼ 1; . . .;N

ð32Þ

where Un jxð Þ is the spectrum of the system input

u kð Þ raised to n th order. Equation (32) can further

be written in a matrix form as Yx¼0 ¼ Ux¼0Gx¼0,

where

Yx¼0 ¼ Y 1ð Þ 0ð Þ; � � � ; Y Nð Þ 0ð Þ
h iT

; Ux¼0

¼
1 a1U1 0ð Þ � � � aN1 UN 0ð Þ
..
. ..

. . .
. ..

.

1 aNU1 0ð Þ � � � aN
N
UN 0ð Þ

2

6
4

3

7
5

and

Gx¼0 ¼ y0; G1 0ð Þ; � � � ; GN 0ð Þ
� T

Consequently, the system NOFRFs at x ¼ 0 can be

evaluated as:

Gx¼0 ¼ U
T

x¼0Ux¼0

h i�1

U
T

x¼0Yx¼0 ð33Þ

and y0 can then be obtained as

y0 ¼
1; 0; :::; 0
|fflfflffl{zfflfflffl}

N

2

6
4

3

7
5Gx¼0 ð34Þ

Step 3Determine the standardized NARXmodel for

systems analysis

Find y0;j from y0;1; . . .; y0;Ne
obtained in Step 1 such

that y0;j 	 y0. Replace y0 with y0;j in Eq. (14)

obtaining the standardized NARX model, which is

stable at the zero equilibrium and is associated with

the system operational condition of concern.

4.3 Two examples

4.3.1 Example 1

Consider nonlinear system (2) with b ¼ 2; C ¼ 0 and

subject to the loading input (3) with u ¼ 0 and apply

the proposed model standardization to the system

following the three steps procedure as follows.

Step 1 Denote y kð Þ ¼ y kð Þ þ y0, the equilibria of

the system can be obtained as y0;1 ¼ �1, y0;2 ¼ 0 and

y0;3 ¼ 1 by solving Eq. (25).

Step 2 The NOFRFs representation of the output

spectrum of the system at zero frequency, i.e. Eq. (32)

can, in this case, be written as

Y 0ð Þ ¼y0 þ G2 0ð ÞU2 0ð Þ þ G4 0ð ÞU4 0ð Þ
þ G6 0ð ÞU6 0ð Þ

ð35Þ

when up to the 6th (N ¼ 6) order nonlinearity of the

system is taken into account.

From the system responses to the inputs

u ið Þ kð Þ ¼ aiu kð Þ, i ¼ 1; . . .; 4 with

a1; a2; a3; a4½ � ¼ 0:8; 1:0; 1:1; 1:2½ �, where u kð Þ is

as given in (3) with u ¼ 0 and following the algorithm

described by Eqs. (32)-(34), the stable equilibrium of

the system of concern was obtained as y0 ¼ 0:9977.
Step 3 Considering that y0;3 ¼ 1 	 y0 ¼ 0:9977,

substituting y0 ¼ 1 into Eq. (22) yields the standard-

ized NARX model

y kð Þ ¼u k � 1ð Þ þ 0:5y k � 1ð Þ � 0:5y k � 2ð Þ
� 1:5y2 k � 1ð Þ � 0:5y3 k � 1ð Þ

ð36Þ

Remark 3 Note that the NOFRFs is developed based

on the Volterra series representation and can be used to

represent the dynamics of a nonlinear system around a

stable equilibrium when the system is subject to an

input representing the loading conditions of concern

[28, 37]. The procedure proposed above is to deter-

mine the stable equilibrium of a nonlinear system

associated with the operating condition represented by

the loading input u kð Þ. Therefore, the values of ai; i ¼
1; . . .;N in the procedure are taken at and around 1 so

as to use the system operational data around the

considered operating condition to find the stable equi-

librium of concern.

Remark 4 In practice, a nonlinear system can have

multi-equilibria but the system usually works around
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one of these equilibria. In this case, only one

equilibrium is the operating point of interest while

others are not. In theory, the stable equilibrium

obtained by using the NOFRFs is the same as the

equilibrium obtained by (16). However, due to trun-

cation error in the NOFRF evaluation, the evaluated y0
cannot be directly applied to replace y0 in (14) but can

provide a valuable guidance about which equilibrium

should be used to standardize the nonlinear model.

4.3.2 Example 2

Figure 3 shows a particle with mass m moving on a

circle which is an example of the nonlinear systems

illustrated in Fig. 1.

The motion of the particle is nonlinear and can be

represented by the nonlinear model

mr€x tð Þ þ mg sin x tð Þ½ � ¼ f tð Þ ð37Þ

where f tð Þ is a loading force applied on the particle,

while x tð Þ is the angular displacement of the particle

representing the output response of the system.

The equilibria of the system are the solutions to

equation sin x½ � ¼ 0, which are given by x0 ¼ 2kxp

(stable equilibria) and x0 ¼ 2kx þ 1ð Þp (unstable equi-

libria) for kx ¼ 0; 1; . . ..

Now, consider the case where

m ¼ 1 kg; r ¼ 1 m; g ¼ 9:8 m
	
s2

and apply the proposed nonlinear model standard-

ization to find a standardized model for system (37)

associated with loading force

f tð Þ ¼ cos 10ptð Þ

as follows.

Step 1 Evaluate the equilibria of nonlinear system

(37) producing x0 ¼ 2kxp and x0 ¼ 2kx þ 1ð Þp,
kx ¼ 0; 1; . . .;

Step 2 Collect the system output response to inputs

aif kð Þ; i ¼ 1; . . .; 4

respectively, with

a1; a2; a3; a4½ � ¼ 0:8; 1:0; 1:1; 1:2½ �

These output responses are generated using Eq. (37)

under initial conditions of x 0ð Þ ¼ 2p; _x 0ð Þ ¼ 0 and

as shown in Fig. 4.

The application of the NOFRFs-based evaluation to

the applied loading inputs and corresponding output

responses shown in Fig. 4 yields

Y0 0ð Þ ¼ 6:2831 	 2p

indicating the equilibrium associated with the

considered system operating condition is.

x0 ¼ 2p.

Step 3 The standardized model of the system is

therefore obtained as

mr€x tð Þ þ mg sin x tð Þ½ � ¼ f tð Þ ð38Þ

where x tð Þ ¼ x tð Þ � 2p. Apply the polynomial

expansion

sin x tð Þ½ � ¼ x tð Þ þ �1

3!
x3 tð Þ þ 1

5!
x5 tð Þ þ � � � ð39Þ

up to the fifth order, the standardized model (38) can

then be represented in the form of NDE model (10)

as

Operating
point

r

y

mg

o z

x(t)

f(t)

mg

f(t)

Fig. 3 A particle moving on a circle

0 1 2 3 4 5
6.28

6.282

6.284

6.286

3
1.1α =

2
1.0α =

1
0.8α =

Time /s

O
u

tp
u

t /
ra

d

4
1.2α =

Fig. 4 Output responses of system (37) to loading inputs of

concern
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mr€x tð Þ þ mg x tð Þ þ �1

3!
x3 tð Þ þ 1

5!
x5 tð Þ


 �

¼ f tð Þ

ð40Þ

In the following, three case studies will be used to

demonstrate the application of the proposed nonlin-

ear model standardization to address different

engineering problems.

5 Case studies

5.1 Case study 1–Application to the detection

of cracks in beam structures

The detection of cracks in beam structures has been

widely investigated by researchers [38, 39].

A NOFRFs-based approach to the detection of cracks

in beams has recently been proposed to exploit

nonlinearities induced by cracks to find locations

[35, 36] and to evaluate severities [21, 40] of cracks in

beam structures. It has been demonstrated that,

compared to traditional crack detections using system

output spectra, the NOFRFs-based indices are more

sensitive to crack defects [21, 40].

There are two different experimental setups for the

detection of cracks in a beam which, as shown in

Fig. 5, are (a) vertical setup and (b) horizontal setup,

respectively. In previous studies [35], both setups were

used but the effects of gravity on the analysis were

ignored. This is acceptable in some cases, but for

beams with a large length–width ratio and small

stiffness, the gravity effects may change the operating

point of the system and significantly affect the analysis

and hence the results of crack detection [41]. In this

case study, the proposed nonlinear model standard-

ization method is applied to take the effects of gravity

of a beam structure into account and the NOFRFs

based approach is then used to detect cracks in the

beam. The objective is to demonstrate how to apply

the proposed nonlinear model standardization to

resolve a significant structural integrity evaluation

problem.

Under vertical setup as shown in Fig. 5a, the effects

of gravity G can be ignored since it does not affect the

horizontal vibration of the beam.

For example, consider a beam system represented

by an NDE model as [21]

€y tð Þ þ 2nx0 _y tð Þ þ x2
0y tð Þ þ kn2y

2 tð Þ � kn4y
4 tð Þ

¼ u tð Þ
ð41Þ

where n¼0:2, x0 ¼ 120p rad=s, and u tð Þ ¼cos xFtð Þ
are the damping ratio, natural frequency, and input of

the system, respectively. kn2 and kn4 are the parameters

directly related to the crack characteristics in the beam

with kn4 ¼ 1� 1016 and kn2 varied over the range of

kn2 ¼ 0 : 0:5 : 10f g � 109 to represent different sever-

ities of cracks in the beam.

Obviously, (41) has zero equilibrium and is,

therefore, already a standardised model. Conse-

quently, the variation of the NOFRFs of the system

with the changes of kn2 over the range of kn2 ¼
0 : 0:5 : 10f g � 109 can directly be determined from

the system’s input output data using the algorithm in

[21] to detect and quantify the severity of cracks in the

beam. The results are as shown in Fig. 6.

Under horizontal setup as shown in Fig. 5b, how-

ever, the effects of gravity have to be considered and

the beam system should be described as

€y tð Þ þ 2nx0 _y tð Þ þ x2
0y tð Þ þ kn2y

2 tð Þ � kn4y
4 tð Þ � FG

¼ u tð Þ
ð42Þ

where FG ¼ 0:88 is the normalized beam gravity.

Because the equilibrium of the beam system model

(42) is not zero, the model has to be standardized first

then the NOFRFs approach can be applied to the input

output data of the standardized model for crack

detection as shown in [21].

It is worth noting that the cracked beammodels (41)

and (42) are widely used to represent nonlinear

Fig. 5 Experimental setup for detection of cracks in beams.

a Vertical setup; b Horizontal setup
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dynamics in cracked beam structures known as the

‘‘second-order super-harmonics’’ [41].

For example, when kn2 ¼ 2� 108, following the

three steps proposed in Sect. 4, the standardization of

nonlinear model (42) is conducted as follows.

Step 1 Denote y tð Þ ¼ y tð Þ þ y0. According to

Proposition 1, model (42) can be standardized as

€�y tð Þ þ 1:421� 105 þ 4� 108y0 � 4� 1016y30
� �

�y tð Þ
þ 1:508� 102 _�y tð Þ þ 2� 108 � 6� 1016y20

� �
�y2 tð Þ

� 4� 1016y0 �y
3 tð Þ � 1� 1016 �y4 tð Þ ¼ u tð Þ

ð43Þ

The equilibria y0;1; . . .; y0;Ne
are evaluated by solv-

ing equation

�1�1016y40 þ 2� 108y20 þ 1:421� 105y0 � 0:88 ¼ 0

ð44Þ

yielding Ne ¼ 2,

y0;1 ¼ 2:6797� 10�4 and y0;2 ¼ 6:1389� 10�6

ð45Þ

Step 2 The output spectrum of the standardized

model at zero frequency can be represented using

the NOFRFs up to eighth order (N ¼ 8) as

Y 0ð Þ ¼ y0 þ
X4

i¼1

G2i 0ð ÞU2i 0ð Þ ð46Þ

where only even order NOFRFs are involved

because the constraint x1 þ � � � þ xn ¼ 0 with

xi ¼ �xF ; i ¼ 1; . . .; n should be satisfied [29].

Evaluating the NOFRFs and y0 in (46) from the

system responses to inputs u tð Þ ¼ a cos xFtð Þ with
a ¼ 0:8 : 0:1 : 1:2f g and xF ¼ x0 yields

y0 ¼ 6:1393� 10�6 ð47Þ

Step 3 By comparing the equilibria in (45) and the

evaluated y0 in (47), the stable equilibrium associ-

ated with the system operating condition repre-

sented by input u tð Þ ¼ cos xFtð Þ is found to be

y0 ¼ y0;2 ¼ 6:1389�10�6 	 y0. Thus substituting

y0 ¼ y0;2 ¼ 6:1389� 10�6 into (45) yields the

standardized nonlinear model

€�y tð Þ þ 1:508� 102 _�y tð Þ þ 1:3962� 105 �y tð Þ
� 3:4375� 107 �y2 tð Þ � 2:5� 1012 �y3 tð Þ
� 1� 1016 �y4 tð Þ ¼ u tð Þ

ð48Þ

Repeating Step 1 to Step 3 for

kn2 ¼ 0 : 0:5 : 10f g � 109, respectively, produce

21 standardized nonlinear models of the beam in

the case of horizontal setup under 21 different crack

severities. The NOFRFs of the standardized models,

denoted as Gn jxð Þ are then evaluated using the

algorithm proposed in [21] from the input and

output data of the standardized model (48). The

results are also shown in Fig. 6.

When the cantilever beam is tested under vertical

setup, the gravity does not need to be considered and

the model is already standardized. In this case, the

second order NOFRF magnitude G2 j2xFð Þj j
increase linearly and monotonously with the

increase in kn2 and the magnitude of the first order

NOFRF G1 jxFð Þj j is a constant.When the cantilever

beam is tested under horizontal setup, however, the

gravity can significantly change the profile of the

NOFRFs: the magnitude of the first order NOFRF

G1 jxFð Þ
�
�

�
� monotonously decreases with the

increase in kn2, but the magnitude of the second

order NOFRF G2 j2xFð Þ
�
�

�
� is almost a constant when

kn2 increases. These observations indicate that the

second order NOFRF should be used for the

detection and quantification of cracks when the

cantilever beam is tested under vertical setup, while

the first-order NOFRF should be used when the

cantilever beam is tested under horizontal setup. In

addition, the results also show that when beams are

tested under horizontal setup, the proposed

Fig.6 Change of the NOFRFs with the increase in kn2
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nonlinear model standardization is necessary for the

application of the NOFRFs approach to the detec-

tion of cracks.

Traditional solution to the problems relevant to this

case study is to find all possible equilibria of the

system in (45) and then select one of them of concern

for the study. This, however, cannot address the issue

with how to determine the equilibrium associated with

the operational condition when a system is working

under a specific input. This case study demonstrates

that the proposed NOFRFs based approach can

directly determine the operating point of interest of a

beam structure and produce a standardized model to

facilitate the detection of cracks in the beam.

5.2 Case study 2–Application to the design

of an Auxetic foam structure

Auxetic foams are made of materials of negative

Poisson’s ratio and can be used to significantly

dissipate vibration energy [41, 49]. In [42], a NARX

model with parameters of interest for the design of an

Auxetic foam structure was identified based on the

experimental data under sampling frequency fs ¼
100 Hz as

f kð Þ ¼ h1 A;Vð Þy2 kð Þ þ h2 A;Vð Þy k � 1ð Þ
þ h3 A;Vð Þy k � 1ð Þy k � 3ð Þ þ h4 A;Vð Þy2 k � 3ð Þ
þ h5 A;Vð Þy k � 2ð Þ þ h6 A;Vð Þy kð Þ
þ h7 A;Vð Þ þ h8 A;Vð Þy kð Þy k � 1ð Þ

ð49Þ

where y kð Þ and f kð Þ represent the input displacement

(mm) and the output force (N), respectively. A and V

are the design parameters representing the axial and

volume ratio of the foam, and hm A;Vð Þ, m ¼ 1; . . .; 8
are polynomial functions of A and V with their values

under 4 different pairs of A and V shown in Table 1 in

Appendix 2.

Due to vibration energy dissipation properties,

Auxetic foam can be used in a vibration isolation

system as shown in Fig. 7, where u tð Þ is the force

input, y tð Þ is the displacement output, and fout tð Þ
represents the force transmitted to the ground.

The dynamic model of the isolation system in

Fig. 7 is given by

m€y tð Þ þ fout tð Þ ¼ u tð Þ þ mg ð50Þ

where in this case study, m ¼ 5 kg and g ¼ 9:8 m
	
s2.

The NDE model (50) can be discretized to produce

a NARX model

y kð Þ ¼2y k � 1ð Þ � y k � 2ð Þ � Dt2

m
fout k � 1ð Þ

þ Dt2

m
u k � 1ð Þ þ Dt2g

ð51Þ

by substituting the central difference [4]

€y kð Þ ¼ y k þ 1ð Þ � 2y kð Þ þ y k � 1ð Þ
Dt2

ð52Þ

and (49) into (50) with Dt ¼ 1=fs ¼ 0:01 s.

Now, consider design of the manufacturing param-

eters A; Vð Þ of the foam structure when the vibration

isolation system is subject to the harmonic loading

u tð Þ ¼ F0 cos xFtð Þ where F0 ¼ 5 N and

xF ¼ 120 rad=s. In order to conduct the design, as

the first step, the standardized model (51) about a

stable operating equilibrium should be built. The

proposed nonlinear model standardization is, there-

fore, applied to model (51) of the isolation system

following the three standardization steps in Sect. 4 as

follows.

Step 1 Denote y kð Þ ¼ y kð Þ þ y0 and use Proposition

1 to write the standardized model of system (51) as

y kð Þ ¼2y k � 1ð Þ � y k � 2ð Þ

� Dt2

m
f0 k � 1ð Þ þ Dt2

m
u k � 1ð Þ

ð53Þ

where

f0 kð Þ ¼h1 A;Vð Þy2 kð Þ þ h3 A;Vð Þy k � 1ð Þy k � 3ð Þ
þ h2 A;Vð Þ þ y0h3 A;Vð Þ þ y0h8 A;Vð Þ½ �y k � 1ð Þ
þ h4 A;Vð Þy2 k � 3ð Þ þ h5 A;Vð Þy k � 2ð Þ
þ 2y0h1 A;Vð Þ þ h6 A;Vð Þ þ y0h8 A;Vð Þ½ �y kð Þ
þ y0h3 A;Vð Þ þ 2y0h4 A;Vð Þ½ �y k � 3ð Þ
þ h8 A;Vð Þy kð Þy k � 1ð Þ

ð54Þ

Table 1 Equilibria y0= mm under different design parameters

(A,V) (2.13, 5.30) (1.88, 4.67) (1.38, 3.43) (1.13, 2.80)

y0;1 - 6.623 - 6.955 - 7.623 - 8.051

y0;2 - 2.813 - 2.601 - 1.980 - 1.296
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The equilibria of system (51) can be found from the

solutions to equation

h1 A;Vð Þ þ h3 A;Vð Þ þ h4 A;Vð Þ þ h8 A;Vð Þ½ �y20
þ h2 A;Vð Þ þ h5 A;Vð Þ þ h6 A;Vð Þ½ �y0
þ h7 A;Vð Þ þ mg ¼ 0

ð55Þ

The results of the solutions under different sets of

design parameters are shown in Table 2, indicating

that, for each set of design parameters, there are two

equilibria with the nonlinear vibration isolation

system.

Step 2 The NOFRFs representation of the output

spectrum of system (51) at zero frequency can be

written as

Y 0ð Þ ¼ y0 þ
X4

i¼1

G2i 0ð ÞU2i 0ð Þ ð56Þ

when N ¼ 8. From the responses of system (51) to 5

different inputs.

u kð Þ ¼ 5a cos 120kDtð Þ; a ¼
0:8; 0:9; 1:0; 1:1; 1:2f g. (57).

around the operating condition represented by

u kð Þ ¼ 5 cos 120kDtð Þ, the equilibrium y0 corre-

sponding to this operating condition is determined

following Step 2 in Sect. 4.2. The results under four

different sets of design parameters are shown in

Table 3.

Comparing the results in Tables. 2 and 3 shows that

the equilibrium of concern for the design is

y0 	 y0;1.

Step 3 Substituting y0 ¼ y0;1 into (54), yields

f0 kð Þ ¼h1 A;Vð Þy2 kð Þ þ h2 A;Vð Þy k � 1ð Þ
þ h3 A;Vð Þy k � 1ð Þy k � 3ð Þ þ h4 A;Vð Þy2 k � 3ð Þ
þ h5 A;Vð Þy k � 2ð Þ þ h6 A;Vð Þy kð Þ
þ h7 A;Vð Þy k � 3ð Þ þ h8 A;Vð Þy kð Þy k � 1ð Þ

ð58Þ

where hi A;Vð Þ:; i ¼ 1; :::; 8 are as shown in Table 4

in Appendix 2. Thus, the standardized nonlinear

model for the Auxetic foam structure-based vibra-

tion isolation system is now obtained and given by

Eqs. (53) and (58)

Assume that the design is to achieve a vibration

isolation performance defined by the force

transmissibility

T jxð Þ ¼ Fout jxð Þ
U jxð Þ ð59Þ

where Fout jxð Þ is the Fourier Transform of the

output force fout tð Þ, the design problem can be

formulated as follows:

Find A;Vð Þ, such that

T j120ð Þj j � 2 ð60Þ

under the constraint of.

A 2 1:13; 2:13½ � and V ¼ 2:485A ð61Þ

In this design problem, constraint (61) shows that A

and V are linear correlated so that only one of the

two parameters need to be used for the design.

Considering T jxð Þ with x 6¼ 0, there is

T jxð Þ ¼FT fout tð Þ½ �
U jxð Þ ¼ FT u tð Þ þ mg� m€y tð Þ½ �

U jxð Þ

¼1� m jxð Þ2
U jxð Þ Y jxð Þ ¼ 1þ mx2

U jxð Þ Y jxð Þ

ð62Þ

where FT :½ � represents the Fourier Transform.

Moreover, considering hm A;Vð Þ, m ¼ 1; . . .; 8 can

be represented as polynomial functions of A by data

fitting using the results in Table 4 in Appendix 2,

Fig. 7 Auxetic foam structure-based vibration isolation system

Table 2 Zero-order NOFRF under different design parameters

(A,V) (2.13, 5.30) (1.88, 4.67) (1.38, 3.43) (1.13, 2.80)

y0 - 6.596 - 6.923 - 7.589 - 8.014
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both Y jxð Þ and T jxð Þ can be described, using the

associated output frequency response function

(AOFRF) approach proposed in [43] as a complex

valued polynomial function of A with the coeffi-

cients of the polynomial being dependent on both

frequency variable x and the system input.

For example, a third-order AOFRF representation of

the force transmissibility T jxð Þ at x ¼ 120 rad=s

can be obtained using Eq. (62) by evaluating the

AOFRF representation of the standardized model

output spectrum Y jxð Þ as
T j120ð Þ ¼ �6:574þ 7:614ið Þ þ 11:553� 14:391ið ÞA

þ �6:014þ 10:715ið ÞA2 þ 0:786� 2:389ið ÞA3

ð63Þ

From (63), how T j120ð Þj j varies with the changes of
A can be determined. The result is shown in Fig. 8.

Figure 8 shows that a solution to the optimization

problem (60) and (61) can be found as

A ¼ 1:45; V ¼ 3:60 ð64Þ

A comparison of the output force under the optimal

design and the output force under

A;Vð Þ ¼ 2:00; 4:97ð Þ, a different choice of the

design parameters, is also shown in Fig. 8, indicat-

ing that the system under the optimal design does

perform better.

This case study demonstrates how the operating

point of the Auxetic foam-based vibration isolation

system is evaluated using the NOFRFs approach,

based on which the standardized model of the system

can be determined for the analysis and design. Again,

this is difficult to be achieved using the traditional

method by simply finding all possible equilibria.

5.3 Case study 3–Application to the compensation

for system nonlinearity

Compensation for system nonlinearity has been

widely considered in electrical and optical communi-

cation systems [19, 44] including, for example, the

compensation for pre-distortion in the radio frequency

power amplifier in wireless communication systems

[19]. The purpose of the nonlinearity compensation is

to eliminate the unwanted nonlinear effects of a

system on signals passing through the system [44], so

that original signals can correctly be restored from the

system outputs. The Volterra series approach is one of

the most powerful techniques in nonlinearity com-

pensation [45], by which, nonlinear distortions can be

reduced by using a cascaded inverse system as shown

in Fig. 9a. In Fig. 9a, H represents the nonlinear

system that induces nonlinear distortions on input

signal u kð Þ, and Q is the inverse of system H that can

be determined using the Volterra series approach and

used to compensate for the nonlinear distortions [46].

If nonlinear system H is stable at zero equilibrium,

its inverse system Q can be determined by first

determining the GFRFs Hn x1; � � � ;xnð Þ; n ¼
1; . . .;N of system H from the algorithm in Appendix

1a and then finding the corresponding inverse of

Hn x1; � � � ;xnð Þ; n ¼ 1; . . .;N from [47]. The basic

principle can be summarized as follows.

The output spectrum of system H in Fig. 9a can be

represented by the Volterra series using (5) as

Y jxð Þ ¼
XN

n¼1

Yn jxð Þ ¼
XN

n¼1

1
ffiffiffi
n

p
2pð Þn�1

�
Z

x1þ���þxn¼x

Hn x1; � � � ;xnð Þ
Yn

i¼1

U jxið Þdrn; x

ð65Þ

and the output spectrum of the compensating system Q

can be represented as

Fig. 8 AOFRF representation of the force transmissibility and

the output forces under the optimal and a different design

123

2566 Y.-P. Zhu et al.



Z jxð Þ ¼
XN

n¼1

Zn jxð Þ ¼
XN

n¼1

1
ffiffiffi
n

p
2pð Þn�1

�
Z

x1þ���þxn¼x

Qn x1; � � � ;xnð Þ
Yn

i¼1

Y jxið Þdrn; x

ð66Þ

Substituting (65) into (66) yields

Z jxð Þ ¼Q1 xð ÞY jxð Þ þ 1

2
ffiffiffi

2
p

p

Z

x1þx2¼x

Q2 x1; x2ð Þ

� Y jx1ð ÞY jx2ð Þdr2; x þ � � �

¼Q1 xð ÞH1 xð ÞU jxð Þ þ 1

2
ffiffiffi
2

p
p
Q1 xð Þ

�
Z

x1þx2¼x

H2 x1; x2ð ÞU jx1ð ÞU jx2ð Þdr2; x

þ 1

2
ffiffiffi

2
p

p

Z

x1þx2¼x

Q2 x1; x2ð ÞH1 x1ð ÞH1 x2ð Þ

� U jx1ð ÞU jx2ð Þdr2; x þ � � �
ð67Þ

For the purpose of compensating for system

nonlinearities, in (67), letting all higher order terms

of U jxð Þ be zeros yields
Q1 xð ÞH1 xð Þ ¼ 1

Q1 xð ÞH2 x1; x2ð Þ þ Q2 x1; x2ð ÞH1 x1ð ÞH1 x2ð Þ ¼ 0

..

.

8

><

>:

ð68Þ

so that the compensating system Q can be deter-

mined by solving (68) for

Qn x1; � � � ;xnð Þ; n ¼ 1; . . .;N.
However, when nonlinear system H has several

stable equilibria, before the procedure above can be

applied, the model of the nonlinear system needs to be

standardized about the equilibrium associated with the

input signal to be processed. The standardization

involves, as shown in Fig. 9b, determining the system

stable equilibrium associated with the input signal to

process, and evaluating the GFRFs of the compensat-

ing system Q corresponding to the determined equi-

librium. In the following, the nonlinear model

standardization will be applied to system (2) to

demonstrate how to apply the proposed nonlinear

model standardization to address the problem of

compensation for the nonlinearities in the system over

two different stable equilibria, which are y0 ¼ y0;3 ¼ 1

and y0 ¼ y0;1 ¼ �1, respectively. In case (ii) of

system (2) and under the operating condition (a)

where u kð Þ ¼ 0:1 cos 20kDt þ uð Þ with u ¼ 0, the

standardized model can be obtained, using the pro-

posed method, as given by Eq. (36) with

y0 ¼ y0;3 ¼ 1. Under the operating condition (b)

where u kð Þ ¼ 0:1 cos 20kDt þ uð Þ with u ¼ p, the

standardizedmodel can be obtained in the same way as

y kð Þ ¼u k � 1ð Þ þ 0:5y k � 1ð Þ � 0:5y k � 2ð Þ
þ 1:5y2 k � 1ð Þ � 0:5y3 k � 1ð Þ

ð69Þ

where y0 ¼ y0;1 ¼ �1.

Under operating condition (a), the standardized

model (36) needs to be used for compensation for the

system nonlinearity following the procedure proposed

in [43] as briefly introduced above and illustrated in

Fig. 9b while under operating condition (b) the stan-

dardized model (69) needs to be used instead.

It is worth noting that the compensated result can be

significantly distorted if a wrong standardized model

is used. For example, under operating condition (a)

where u kð Þ ¼ 0:1 cos 20kDtð Þ, the correct standardized
model is (36) and the system’s first and second order

GFRFs can be determined from (36) as

H1 x1ð Þ ¼ exp �jx1Dtð Þ
1� 0:5 exp �jx1Dtð Þ þ 0:5 exp �j2x1Dtð Þ

H2 x1;x2ð Þ ¼ � 1:5H1 x1 þ x2ð ÞH1 x1ð Þ
� H1 x2ð Þ exp �j x1 þ x2ð ÞDtð Þ

8

>>>>>><

>>>>>>:

ð70Þ

The GFRFs of the corresponding compensating

system Q can then be determined as

Q1 x1ð Þ ¼ H
�1

1 x1ð Þ
Q2 x1;x2ð Þ ¼ �H2 x1;x2ð ÞH�1

1 x1ð Þ
�H

�1

1 x2ð ÞQ1 x1 þ x2ð Þ

8

>><

>>:

ð71Þ

Fig. 9 An illustration of compensation for system nonlinearity,

where a Compensation for system nonlinearity around zero

stable equilibrium, and b Compensation for system nonlinearity

around nonzero equilibrium
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Consequently, the compensated signal z kð Þ can be

obtained from the inverse Fourier transform of its

spectrum

Z jxð Þ 	Q1 xð ÞY jxð Þ

þ 1

2
ffiffiffi
2

p
p

Z

x1þx2¼x

Q2 x1; x2ð ÞY jx1ð ÞY jx2ð Þdr2; x

ð72Þ

as shown in Fig. 10.

Figure 10 shows that the nonlinear distortion

induced by system (2) can be well compensated by

using the inverse of the standardized model (36),

producing a compensated signal such that z kð Þ ¼ u kð Þ.
However, if the standardized model under the given

operational condition is wrongly chosen as model

(69), the compensated signal will be significantly

distorted in both amplitude and phase as shown in

Fig. 11. These results demonstrate the important role

of the proposed nonlinear model standardization for

the compensation for system nonlinearity, which has

applications in many engineering systems.

It is worth noting that there are many approaches

that can be used to study nonlinear compensation, and

most of these approaches were developed based on the

Volterra series representation [44–46, 48]. However,

none of these studies have tried to discuss the multi-

equilibria issue as these approaches are mainly

focused on nonlinearity compensation around a known

stable equilibrium [24, 25]. This case study raises the

possible multi-equilibria problem with nonlinearity

compensation and demonstrates how to apply the

proposed approach to resolve this issue.

6 Conclusions

Linearization has been widely applied to study non-

linear systems over a small range about a stable equi-

librium. In order to conduct the analysis, design and

control of nonlinear systems over a wider range of

operation, the Volterra series theory of nonlinear

systems is often applied. This needs to transform the

original model of nonlinear systems into a form that

can be studied using the Volterra series approach. This

transformation is referred to as nonlinear model

standardization which can be considered to be an

extension of the concept of linearization. In the present

study, a novel and systematic approach has been

developed to conduct the model standardization for

nonlinear systems that can be represented by a NARX/

NDE model of nonlinear systems. The approach

involves the evaluation of the system’s stable equilib-

rium under the operating condition of interest, and the

determination of a standardized nonlinear model about

this equilibrium.

The results extend the well-known linearization

concept to the nonlinear case to produce a nonlinear

model about a stable equilibrium of concern such that

the Volterra series and associated approaches for

nonlinear systems can be applied for the system

analysis and design.

Three case studies have been used to show how to

apply the proposed nonlinear model standardization to

address different engineering problems including the

detection of cracks in beams, the design of Auxetic

foam structure for vibration isolation, and

Fig. 11 Compensation for nonlinearity of system (2) about

equilibrium y0 ¼ y0;1 ¼ �1 using incorrect standardized model

(69)

Fig. 10 Compensation for nonlinearity of system (2) about

equilibrium y0 ¼ y0;3 ¼ 1 using correct standardized model (36)
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compensation for system nonlinearities. These

demonstrate the significance of the proposed nonlinear

model standardization in a wide range of engineering

practices.
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Appendix 1

(a) The GFRFs Hn x1; � � � ; xnð Þ of the NARX model

(1) can be evaluated by using algorithm [27]:

1�
XK

k1¼1

c1;0 k1ð Þ exp �j x1 þ � � � þ xnð Þk1Dtð Þ
" #

Hn x1; � � � ; xnð Þ

¼
XK

k1; kn¼1

c0;n k1; � � � ; knð Þ exp �j x1k1 þ � � � þ xnknð ÞDtð Þ

þ
Xn�1

q¼1

Xn�q

p¼1

XK

k1; kpþq¼1

cp;q k1; � � � ; kpþq

� �
Hn�q;p x1; � � � ; xn�q

� ��

� exp �j xn�qþ1kpþ1 þ � � � þ xnkpþq

� �
Dt

� �

þ
Xn

p¼2

XK

k1; kp¼1

cp;0 k1; � � � ; kp
� �

Hn;p x1; � � � ; xnð Þ
� 

ð73Þ

where

Hn;p x1; � � � ; xnð Þ ¼
Xn�ðp�1Þ

i¼1

Hi x1; � � � ; xið Þ

�Hn�i;p�1 xiþ1; � � � ; xnð Þ exp �j x1 þ � � � þ xið ÞkpDt
� �

Hn;1 x1; � � � ; xnð Þ ¼ Hn x1; � � � ; xnð Þ
� exp �j x1 þ � � � þ xnð Þk1Dtð Þ

8

>>>>>>><

>>>>>>>:

ð74Þ

(b) The GFRFs Hn x1; � � � ; xnð Þ of the NARX

model with a constant term (5) can be evaluated by

introducing H0 in algorithm (A1) and (A2) as [25]:

Table 3 hm A;Vð Þ under different parameters of A and V

A;Vð Þ h1 A;Vð Þ h2 A;Vð Þ h3 A;Vð Þ h4 A;Vð Þ

(2.13, 5.30) - 24.78 71.22 - 0.35 0.52

(1.88, 4.67) - 19.10 51.28 0.43 - 0.06

(1.38, 3.43) - 10.71 33.09 - 0.73 0.35

(1.13, 2.80) - 10.33 25.26 0.67 - 0.31

A;Vð Þ h5 A;Vð Þ h6 A;Vð Þ h7 A;Vð Þ h8 A;Vð Þ

(2.13, 5.30) 1.43 - 168.66 - 234.68 14.63

(1.88, 4.67) - 0.50 - 129.39 - 194.87 10.60

(1.38, 3.43) - 2.78 - 77.67 - 118.63 6.23

(1.13, 2.80) - 0.19 - 67.08 - 101.74 5.53

Table 4 hm A;Vð Þ under different parameter of A and V

A;Vð Þ h1 A;Vð Þ h2 A;Vð Þ h3 A;Vð Þ h4 A;Vð Þ

(2.13, 5.30) - 24.78 - 23.36 - 0.35 0.52

(1.88, 4.67) - 19.10 - 25.43 0.43 - 0.06

(1.38, 3.43) - 10.71 - 8.84 - 0.73 0.35

(1.13, 2.80) - 10.33 - 24.66 0.67 - 0.31

A;Vð Þ h5 A;Vð Þ h6 A;Vð Þ h7 A;Vð Þ h8 A;Vð Þ

(2.13, 5.30) 1.43 62.68 - 4.57 14.63

(1.88, 4.67) - 0.50 62.57 - 2.16 10.60

(1.38, 3.43) - 2.78 38.12 0.23 6.23

(1.13, 2.80) - 0.19 54.73 - 0.40 5.53
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�
XM

p¼1

XK

k1;kp¼1

cp;0 l1; � � � ; lp
� �

H
p�1
0

2

4

�
Xp

i¼1

exp �j x1 þ � � � þ xnð ÞkiDtð Þ
#

Hn x1; � � � ; xnð Þ

¼
XK

k1; kn¼1

c0;nðk1; � � � ; knÞ exp �j x1k1 þ � � � þ xnknð ÞDtð Þ

þ
Xn�1

q¼1

Xn�q

p¼1

XK

k1; kpþq¼1

cp;q k1; � � � ; kpþq

� �
Hn�q;p x1; � � � ; xn�q

� ��

� exp �j xn�qþ1kpþ1 þ � � � þ xnkpþq

� �
Dt

� �

þ
Xn

p¼2

XK

k1; kp¼1

cp;0 k1; � � � ; kp
� �

H


n;p x1; � � � ; xnð Þ

h i

ð75Þ

where H0 is determined from the equilibrium y0, and

H


n;p x1; � � � ; xnð Þ ¼

Xp�2

c¼0

H
c
0

Xn�1

i¼1

Hi x1; � � � ; xið Þ

�Hn�i;p�c�1 xiþ1; � � � ; xnð Þ exp �j x1 þ � � � þ xið Þkp�cDt
� �

Hn;p x1; � � � ; xnð Þ ¼
Xn

i¼0

Hi x1; � � � ; xið Þ

�Hn�i;p�1 xiþ1; � � � ; xnð Þ exp �j x1 þ � � � þ xið ÞkpDt
� �

Hn;1 x1; � � � ; xnð Þ ¼ Hn x1; � � � ; xnð Þ
� exp �j x1 þ � � � þ xnð Þk1Dtð Þ

8

>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð76Þ

Appendix 2

The parameters of the Auxetic foam structure model

(49) and the standardized system model (53) under the

constraint of V ¼ 2:485A are shown in Tables 3 and 4,

respectively,
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