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Nonlinear Modeling and Bifurcations
in the Boost Converter

Soumitro Banerjee,Member, IEEE,and Krishnendu Chakrabarty

Abstract—Occurrence of nonlinear phenomena like subhar-
monics and chaos in power electronic circuits has been reported
recently. In this paper, we investigate these phenomena in the
current-mode-controlled boost converter. A nonlinear model in
the form of a mapping from one point of observation to the
next has been derived. The map has a closed form even when
the parasitic elements are included. The bifurcation behavior of
the boost converter has been investigated with the help of this
discrete model.

Index Terms—Boost converter, chaos, nonlinear phenomena.

I. INTRODUCTION

I N RECENT times it has been observed that some power
electronic (PE) circuits exhibit deterministic chaos [1]–[3],

and it has been suspected that such phenomena may be
responsible for the unusually high noise in some PE circuits.
Naturally, what was so far branded under the single head
“noise” in PE literature, may actually be due to deterministic
nonlinear phenomena.

It has been demonstrated that current-mode-controlled buck
converter and boost converter are prone to subharmonic behav-
ior and chaos [4]–[6]. Still, very little information is available
today on the parameter domains in which chaotic behavior
may occur, and the possible pathways through which such
systems may enter chaos. The work referred above only
demonstrates the existence of chaotic mode of operation in the
buck converter and the boost converter. Since these converters
have wide industrial application, it becomes necessary to study
the bifurcation phenomena in PE converters to understand the
change of behavior as parameters are varied.

Such studies for the buck converter [7] have recently been
reported. In this paper we present the studies on the bifurcation
behavior of the current-mode-controlled boost converter.

Once it is recognized that the boost converter has nonlinear
behavior, it becomes necessary to develop a nonlinear model of
the system. The method currently in vogue in PE literature, the
state-space averaging technique, does not serve this purpose
and fails to explain the subharmonic modes and chaos in the
boost converter. In view of this problem, [8] used a large-signal
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Fig. 1. Circuit diagram of the boost converter.

analysis of the continuous-time system while [9] proposed
that discrete models should be developed for PE circuits as
mappings of the form

(1)

Such mappings, applied to the state space, would give the state
of the system at aswitching instantin terms of the previous
one. A map-based model would disregard the dynamics be-
tween switching instants but would capture the nonlinearity
since most PE circuits are piecewise linear, with nonlinear
behavior contributed only by the switching discontinuity.

It was found, however, that closed-form expressions for the
map can not be derived for most PE circuits. In such cases,
the map has to be obtained numerically [9]. One welcome ex-
ception is the current-mode-controlled boost converter, where
the mapcan be obtained in closed form. Such a map-based
model for the boost converter was developed in [5] assuming
idealized circuit elements.

When we checked the predictions of this map-based model
against experiment and simulation of the continuous time
model of the experimental setup, we found that the parasitic
elements like the resistance of the inductor and capacitor have
significant effects and their presence should not be ignored in
a realistic model. In this paper we derive the model including
the parasitic elements and show that it still retains a closed
form. We also derive the map when observations are made at
everyclock instant (instead of every switching instant).

0885–8993/98$10.00 1998 IEEE



BANERJEE AND CHAKRABARTY: NONLINEAR MODELING AND BIFURCATIONS 253

(a) (b)

(c)

Fig. 2. (a) Period 1 phase-plane trajectory of the boost converter. Parameter values are:Vin = 42 V, R = 20 
. (b) Period 2 phase-plane trajectory
of the boost converter. Parameter values are:Vin = 35 V, R = 20 
. (c) Chaotic phase-plane trajectory of the boost converter. Parameter values
are: Vin = 20 V, R = 20 
.

A. The Boost Converter

The boost converter circuit (Fig. 1) consists of a controlled
switch , an uncontrolled switch , an inductor , a capacitor

, and a load resistor . The switching is controlled by a
feedback path consisting of a comparator and a flip-flop. The
comparator compares the current through the inductor and a
reference current.

In a boost converter, the output voltage is always higher than
the input voltage. When the controlled switch is turned on, the
current flows through the inductor and energy is stored in it.
When the controlled switch is turned off, the stored energy
in the inductor drops and the polarity of the inductor voltage
changes so that it adds to the input voltage. The voltage across
the inductor and the input voltage together charge the output
capacitor to a voltage higher than the input voltage. We assume
continuous conduction mode (CCM), where the clock period
and the value of the inductor are so chosen that the inductor
current never falls to zero.

There are two states of the circuit depending on whether
the controlled switch is open or closed. When switch is
closed, the current through the inductor rises and any clock
pulse arriving during that period is ignored. The switch
opens when reaches the reference current . When switch

is open, the current falls. The switch closes again upon
the arrival of the next clock pulse.

The system is governed by two sets of linear differential
equations pertaining to theon andoff states of the controlled
switch. The output voltage and the inductor current are
taken as state variables. During the “on” period the equations
are

(2)

(3)

And the state equations during “off” period are

(4)

(5)

where the parasitic elementsand are the resistance of the
inductor and capacitor, respectively. The switching between
the two sets of equations is governed by the above feedback
process.

A few experimentally observed trajectories in the phase-
plane (the inductor current versus output voltage) is shown in
Fig. 2. The nominal values of the fixed parameters are
mH, F, , , and
clock frequency 500 Hz. Three cases are shown: period 1 (for
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Fig. 3. Time plot of output voltage and inductor current of the boost
converter with clock pulses.

V), period 2 (for V), and chaos (for
V).

II. THE MAP-BASED MODEL FOR THEBOOST CONVERTER

In this section, we first derive an expression for the mapping
from one switching instant to the next in the space formed
by and . It would hold under the following assumptions.

1) The value of the inductor and the switching frequency
are so chosen that there is no discontinuous conduction.

2) The value of the capacitance is so chosen that the output
voltage does not go below the input voltage at any
part of the cycle.1

Fig. 3 shows the typical behavior of the state variables along
with the clock pulses. We take the closure of the control switch
as . At this time let the initial conditions be and

.
The switch turns off when the current in the inductor

reaches reference current . The on-time can be calcu-
lated from (2) by integration

(6)

The final value of is obtained by integrating the capacitor
discharge (3)

(7)

and should not be less than if the model is to
remain valid.

When switch is off, substitutingand from (5) into (4)
we get a second-order differential equation ofin the form

(8)

1If this condition is violated,i temporarily exceedsI
ref

at the beginning
of the off period. The model would fail if the next clock pulse arrives while
i is still greater thanI

ref
.

where

If the clock period is , then will count the clock
pulses in the on period. The remainder part of it multiplied by

will give the time of switching off after the last clock pulse.
Since the next switch on takes place at the arrival of the very
next clock pulse, the off period is given by

(9)

The general solution of the linear nonhomogeneous differen-
tial equation (8) is the sum of the solution of the corresponding
homogeneous equation and a particular solution.

The particular solution is given by putting a final value
in (8) after all derivative quantities become zero. So

The solution of the homogeneous equation has three differ-
ent functional forms depending on the roots of the character-
istic equation

Case 1. : In this case, the two roots are real and
distinct, and the solution of (8) is

(10)

Putting the initial condition for off condition, we get

Let the output voltage at the next switchon instant be ,
the current . These are obtained as

(11)

(12)
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Case 2. : In this case the solution of (8) is

(13)

where

And the mapping from one switching instant to another is
given by

(14)

(15)

Case 3. : In this case, the oscillatory solution of
the linear nonhomogeneous equation (8) is

(16)

where

and the initial conditions give

The mapping is given by

(17)

(18)

Thus, and are given explicitly as functions of
and in all the three cases.

Out of the three possibilities, the third one giving an
oscillatory solution is the most important from a practical point
of view. The normal design procedures, based on obtaining
CCM and low output voltage ripple, usually give parameter
values which satisfy this condition. If the parasitic elements

and are ignored, the condition for oscillatory solution
becomes

Since this condition contains the value of load resistance, a
boost converter can change from oscillatory mode to nonoscil-
latory mode during operation. Therefore, this mode must be
included in the model of the system.

The condition for the different types of behavior divides
the parameter space into two parts, and Case 2 occurs for
specific combinations of parameters representing a surface in
the parameter space. This condition has been included for
the sake of completeness. The mapping for Case 2 would
have importance if one considers the change of behavior as
a parameter is varied smoothly across the condition surface,
such as when obtaining a bifurcation diagram. For practical
purposes, however, this condition would have little importance
since a parameter combination falling exactly on the condition
surface would be very unlikely.

It may be noted that the mapping derived here can locate
only the peaks of the output voltage waveform. It maps the
state of the system from one switch-on instant to the next and
not in synchronism with the clock frequency. This map-based
model can be used to predict the behavior of the system under
different parameter combinations.

There is another way of representing the boost converter
as a map—by sampling it in synchronism with the clock. The
map-based model for this case would contain an “if” statement.

If , the values of and at the next clock instant
are given by

(19)

(20)

If , the equations derived for and under
Cases 1, 2, and 3 hold, with .

III. B IFURCATION PHENOMENA OF THE BOOST CONVERTER

The operation of the boost converter can be seen from
two points of view. Since the clock pulse has an externally
determined periodicity, one can identify the system periodicity
as the number of clock pulses in a period of the output
waveform. This is how one analyzes a nonautonomous sys-
tem. On the other hand, if one is concerned only with the
observable state variables, one can define the periodicity as
the repetitive behavior of the output waveform as seen in
the phase space. One can thus view the system also as an
autonomous system. In the first case, one would sample the
system at the frequency of the clock pulse and obtain the
Poincare section. The periodicity would be determined from
this. We call it the “stroboscopic sampling.” In the second
case, one would identify the peaks of the output waveform of
one of the variables, and determine the periodicity from that
data. Since this is the same as sampling it at the switch-on
instants, we call it the “switch-on sampling.” In Section II,
we derived the map-based model for these cases. We present
here the bifurcation diagrams obtained from both these points
of view.

The map-based model provides a fast and easy way of
obtaining the bifurcation diagrams. We iterate the map starting
from any initial condition, say (0, 0), and eliminate the initial
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Fig. 4. Bifurcation diagram of the boost converter with input voltage as parameter: (a) stroboscopic sampling, (b) switch-on sampling, and (c) spectrum
of the maximal Lyapunov exponent.

transient to obtain the asymptotic behavior of the system. We
then vary a system parameter and plot about 500 consecutive
values of one of the system variables against each parameter
value. If the system is periodic, all the points would fall at
the same position and we would see just one point for that
parameter value. Higher periodicities would appear as the
number of dots equal to the periodicity of the system. And for
chaos (period infinity) we would get a smudge of dots, none of
them falling on the other. In such a bifurcation diagram, one
can clearly see the change of behavior as a parameter is varied.

There are six major parameters in the system: the input volt-
age, load resistance, inductance, capacitance, reference current,
and clock frequency. In addition, there are the parasiticsand

. Since this is a dc circuit, the load is assumed to be purely
resistive.

It may be noted that if the clock period is much less
than the time constant , the fluctuation in the load
voltage is very small and the system becomes effectively one-
dimensional. Therefore, in order to illustrate the bifurcation
behavior of the derived two-dimensional map, we have chosen
the parameters such that is comparable to .

In the following sections, bifurcation diagrams for variation
of the above parameters are presented. One parameter is varied
at a time with the others fixed at some nominal value. It
is obvious that the bifurcation structures are dependent on
these nominal parameter settings. However, since there are

six parameters in the system, it is impossible to present
these diagrams for all possible parameter values. We therefore
present only a few typical cases.

A. as the Bifurcation Parameter

The bifurcation diagram of the boost converter with input
voltage as parameter is shown in Fig. 4. Fig. 4(a) shows the
bifurcation diagram for stroboscopic sampling and Fig. 4(b)
shows bifurcation diagram for the switch-on sampling.
Fig. 4(c) shows the corresponding Lyapunov spectrum. Input
voltage is varied from 7 to 50 V with a step of 0.1 V with
other parameters fixed at , F,
mH, A, , , and clock frequency
500 Hz.

The boost converter shows period-doubling cascade from
period 1 to chaos as input voltage isdecreasedfrom 50 V.
The first bifurcation takes place at 34.9 V where the period 1
bifurcates to period 2. The period 2 behavior again bifurcates
to period 4 behavior at 24.4 V.

It may be noted that the two diagrams start to show
difference as input voltage is decreased below 24.3 V. This
happens when a pulse arrives during the on time before the
current reaches . At this time there are four clock pulses
in a cycle, though the orbit in the phase space is period 3.

As is reduced below 21.8 V, the system enters chaos.
This is confirmed by the fact that the maximal Lyapunov ex-
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Fig. 5. Bifurcation diagram of the boost converter with load resistance as parameter: (a) stroboscopic sampling, (b) switch-on sampling, and (c) spectrum
of the maximal Lyapunov exponent.

ponent becomes positive [Fig. 4(c)]. There are small periodic
windows in the chaotic region, which also exhibit period-
doubling cascade. The periodic windows embedded in the
chaotic zone has a sequence of periods 3–6 in the voltage
range of 15.7–15 V and periods 4–8 in the zone of 11.7–11.6
V. The first periodicities in these windows show period-adding
cascade.

In Fig. 4(a), a staircase like structure appears in the chaotic
region. The number of stairs increases with the decrease of
input voltage. Two stairs are observed from 24.7 to 15.6 V.
With decreasing input voltage, there is an increase of size of
the attractor. As size of the attractor increases it captures one
more clock pulse at 15.02 V, thus making the number of stairs
three. This continues up to 11.42 V. Similarly four stairs are
observed from 11.41 to 9.94 V, five from 9.93 to 8.85 V, and
six from 8.84 to 8 V and so on.

B. as the Bifurcation Parameter

The bifurcation diagram of the boost converter with load
resistance as parameter is shown in Fig. 5. The load resistance
is varied from 8 to 50 with a step of 0.1 while other
parameters fixed at input voltage 30 V, reference current
4 A, capacitance 120 F, inductance 27 mH, and clock
frequency 500 Hz. Bifurcation and chaos are observed when
load resistance is increased. Period 1 behavior is observed from

Fig. 6. Blowup of a portion of the chaotic region in Fig. 5, with inductor
current as the observed variable.

8 to 13.3 . Period 1 bifurcates to period 2 at 13.4. This
period 2 region exists up to 31.6. Up to period 2 region both
the cases (i.e., stroboscopic and switch-on sampling) behave
in the same way. At 31.7 , the period 2 bifurcates to period
3 in the switch-on sampling and period 4 in the stroboscopic
sampling. Starting from 31.7 , one can observe four clock
pulses in a complete cycle while in the output waveform the
same state repeats after three loops. This behavior continues
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Fig. 7. Bifurcation diagram of the boost converter with reference current as parameter: (a) stroboscopic sampling, (b) switch-on sampling, and (c)
spectrum of the maximal Lyapunov exponent.

up to load resistance of 37.6 and then goes through period-
doubling cascade to enter chaos.

A blowup of the chaotic region with as observed variable
is shown in Fig. 6. It shows that there are periodic windows
that show period-adding cascade, and the width of the windows
becomes progressively smaller at higher periodicities. Detailed
analysis of such phenomena from bifurcation theory is beyond
the scope of this paper and will be presented in a separate
paper [10].

C. as the Bifurcation Parameter

The bifurcation diagram of the boost converter with refer-
ence current as parameter is shown in Fig. 7. The reference
current is varied from 1.4 to 7 A with a step of 0.01 A with
other parameters fixed at input voltage 30 V, load resistance
20 , capacitance 120 F, inductance 27 mH, and clock
frequency of 500 Hz. These diagrams show clear period-
doubling bifurcations at 3.46 and 4.94 A. At 5 A, the two
viewpoints exhibit a difference as one clock pulse appears in
every cycle that does not cause a switching. Chaotic behavior
starts from 5.51 A and has periodic windows at higher values
of reference current.

D. Inductance as the Bifurcation Parameter

The bifurcation diagram of boost converter with inductance
as parameter is shown in Fig. 8. The inductance is varied from
1 to 30 mH with step of 0.1 mH and other parameters fixed
at load resistance 20, input voltage 20 V, capacitance 120

F, reference current 4 A, and clock frequency of 500 Hz.
Period 1 behavior is observed from 1 to 4.3 mH. Period 1
bifurcates to period 2 at 4.4 mH which lasts up to 11.4 mH. It
is interesting to note that the two lines corresponding to period
2 behavior cross at around 6 mH, and at that point the system
exhibits a period 1 behavior.

The period 4 region starts at 11.5 mH. After a very narrow
region lasting up to 11.6 mH, the two diagrams begin to differ.
Thereafter, the behavior is period 3 in the switch-on sampling
and period 4 in the stroboscopic sampling. Chaotic behavior
starts at 18 mH following a period-doubling cascade.

E. as the Bifurcation Parameter

One has to exercise some caution when using the capac-
itance as the bifurcation parameter. This is because of the
second assumption under which the map was derived. For low
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Fig. 8. Bifurcation diagram of the boost converter with inductance as parameter: (a) stroboscopic sampling, (b) switch-on sampling, and (c) spectrum
of the maximal Lyapunov exponent.

values of the capacitance, the inductor current may shoot above
the reference current for a part of the cycle, and the map-based
model fails. One needs to keep track of the value of, and
if it goes negative the map-based model should not be used.

In order to avoid using two different kinds of models in two
parts of the same bifurcation diagram, we have computed the
bifurcation diagram from the continuous time model of the
system while keeping a check on the continuity of inductor
current. The capacitance was varied from 25 to 200F with a
step of 0.1 F. The input voltage and load resistance are kept
constant at 20 V and 20, respectively, with other parameters
fixed at inductance 27 mH, reference current 4 A, and clock
frequency at 500 Hz. We find that the behavior is chaotic over
the whole parameter range.

F. The Frequency of Clock as the Bifurcation Parameter

To investigate the change of system behavior with clock
frequency, the frequency of the clock is varied from 500 Hz
to 20 kHz with a step of 10 Hz with other parameters fixed at
load resistance 20 , capacitance 120F, inductance 27 mH,
reference current 4 A, and input voltage 30 V. It is found that
the clock frequency does not affect the topological property of
the orbit qualitatively, though there are quantitative changes.

Fig. 9. Parameter space map of the boost converter showing regions of
different periodicities with stroboscopic sampling. Darker shades imply higher
periodicities.

For the parameter values chosen, the system remains chaotic
throughout. This means that it is possible to increase or de-
crease the system frequency while maintaining the topological
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orbital equivalence. The bifurcation diagram is not presented
here for the sake of brevity.

G. The Effect of the Parasitic Elements

The parasitic elements and do not affect the bifurcation
structures but they are found to shift the points at which
bifurcation occurs when other major parameters are varied.
For example, when load resistance is used as the bifurcation
parameter, the period-doubling bifurcation occurs for a lower
value of if the inductor has a parasitic resistance. This
justifies the inclusion of the parasitic elements in the model.

IV. THE PARAMETER SPACE

The boost converter has two parameters namely input volt-
age and load resistance that can vary continuously during
operation. The other parameters like inductance, capacitance
and reference current are generally set at the design stage and
are not assumed to be continuous variables. The boost con-
verter may undergo bifurcations during operation depending on
various combinations of the continuously varying parameters
keeping others constant. It is therefore necessary to study the
bifurcation patterns over the parameter space ofand .

If the two parameters are shown in the two axes, it is not
possible to draw bifurcation diagrams as in the earlier figures.
In that case, it is customary to depict the asymptotic behavior
of the system with a color over a grid of the parameter space.
In order to facilitate reproduction in monochrome, we present
the versus parameter space “map” in Fig. 9, with higher
periodicities depicted with darker gray levels. The darkest
shade implies chaos.

Using such parameter space maps the designer can place
the nominal operating point away from behavior boundaries.

V. CONCLUSIONS

We have presented a discrete model of the boost converter
including the parasitic elements, which can be used to obtain
the evolution of the state variables starting from any initial
condition. Observation of the state can be made at the switch-
on instants or in synchronism with the clock frequency. The
map-based models for both these cases have been derived.

The discrete model enables one to avoid numerical com-
putation of the phase space orbit from the continuous time
model. The map is therefore very useful in quick computation
of system behavior.

It is shown that the boost converter exhibits a rich variety
of bifurcation phenomena. There are both period doubling as
well as period-adding cascades. Moreover the subharmonic
periodicities as multiples of the clock frequency and the
periodicities of the output waveform are different for most
parameter combinations.

So long as there is one clock pulse between two switch-
on instants, the bifurcation diagrams from the points of view
of switch-on sampling and stroboscopic sampling are identical.
They start to differ only when theonperiod contains more than
one clock period. These parameter regions can be identified
from the bifurcation diagrams.

Since a converter’s behavior is expected to be robust against
modest changes in parameters, the present study shows that
there is a necessity of working out the bifurcation patterns
in the parameter space at the design stage to place the nom-
inal operating point away from boundaries marking different
asymptotic behaviors.
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