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A geometrically exact formulation of cables suffering axis stretching and flexural curvature is
presented. The dynamical formulation is based on nonlinearly viscoelastic constitutive laws for the
tension and bending moment with the additional constitutive nonlinearity accounting for the no-
compression condition. A continuation method, combined with a mixed finite-difference spatial
discretization, is then employed to path-follow the static responses of cables subject to forces
or support displacements. These computations, conducted in the quasistatic regime, are based
on cables with linearly elastic material behaviors, whereas the nonlinearity is in the geometric
stiffness terms and the no-compression behavior. The finite-difference results have been confirmed
employing a weak formulation based on quadratic Lagrangian finite elements. The influence of
the flexural stiffness on the nonlinear static responses is assessed comparing the results with those
obtained for purely extensible cables. The properties of the frequencies of the linear normal modes
of cables with flexural stiffness are also investigated and compared with those of purely extensible
cables.
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1. Introduction

Cables are used in a variety of engineering applications such as in suspension or cable-stayed

bridges, power transmission lines, moorings in ocean engineering, or in aerospace deployable

structures. Cables are effectively employed in long-span structures because they can be easily

engineered and are light-weight structural elements with an outstanding stiffness in the axial

direction and a significantly high strength. However, they do possess limitations due to the lack

of out-of-plane stiffness and very light damping thatmake them often prone to large-amplitude
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vibrations. Another serious limitation is that they cannot resist compression, therefore, they

are always prestressed to resist actions that may produce compression although under severe

dynamic excitations, the low-tension regime is barely unavoidable.

Although a number of works have addressed the problem of modeling the flexural

stiffness in cables, only a few works deal with nonlinear vibrations of general cables in low-

tension regimes. Most of them consider nonlinear vibrations of shallow/taut cables, including

also multiple resonances [1–4]. In [5, 6], a geometrically exact nonlinear model of linearly

elastic nonshallow cables was proposed, and the nonlinear modal characteristics of the free

planar motions were investigated neglecting flexural stiffness as it is commonly done in the

literature. In fact, flexural stiffness appears in modeling cables only when the loosening effect

is considered. When the excitation levels are high, the loss of tension can be such that the

cable suffers local loosening in those segments where the overall tension vanishes and, as

a result, the cable cannot locally sustain loads unless its flexural load-carrying capability is

considered. Most of the times, the flexural rigidity and damping are considered in a cable

model to overcome numerical divergence problems when loosening appears. For instance,

when dealing with the dynamics of submerged cables, some works focus on a general

mechanical formulation for the cable equations (e.g., [7–9]); such equations of motion are then

solved by direct integration schemes. Other works focus on the derivation or modification of

finite-element solution models (e.g., [10]), or even in simplified solution models such as the

lumped mass approach of Chai et al. [11]. Similarly, Wu et al. [12–15] used a model of cables

that includes the linear flexural stiffness contribution, and an approximate strain-displacement

relationship for the elongation, to describe nonlinear vibrations of cables suffering loosening.

Moreover, with the proposed model, the effects of loosening on the nonlinear parametric

responses of taut cables subject to periodic horizontal displacements of the supports were

investigated.

However, the effects of flexural rigidity and viscoelasticity on the nonlinear dynamics

of cables have not been thoroughly investigated, especially when loosening appears. Further-

more, the flexural stiffness has a critical role in stock-bridge dampers used to dissipate energy.

There is a need to have a reliable and accurate mechanical model of cables to assess the global

load-carrying capability under these conditions. There are only a few studies addressing this

challenging modeling problem and they are often based on ad hoc approximations that limit

the physically meaningful dynamic regimes.

In this paper, a nonlinear geometrically exact formulation of cables undergoing axis

stretching and flexural curvature, incorporating a nonlinearly viscoelastic constitutive law and

the no-compression condition, is first presented. The derivation of the mechanical model is

extensively inspired by the seminal work of Antman [16]. Thereafter, the linearization and the

ensuing eigenvalue problem are addressed. Then, the finite-difference computational scheme

is illustrated. Meaningful static responses of cables subject to various loading paths—support

displacements or forces—are investigated in both cable models, here considered, the model

with flexural stiffness and that without flexural resistance.

2. Mechanical formulation for cables with flexural stiffness

In this section, we illustrate the geometrically exact formulation of the equations of motion

of cables suffering axis stretching and bending curvature [16]. Shear deformations are not

considered. Moreover, a planar kinematic model is discussed neglecting out-of-plane bending
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Figure 1: Stress-free configuration B, prestressed configuration B0, and actual configuration B̆ (top). Unit
vectors and rotations of the plane kinematics (bottom left) and internal/external forces in the cable (bottom
right).

and torsion. The prestressed equilibrium is first discussed, then the dynamics around it are

described in the kinematic, dynamic, and constitutive aspects.

2.1. The prestressed cable

The cable is stress-free in the configuration B (Figure 1(a)). This configuration can be any

arbitrary configuration assumed by the cable, for example, on a frictionless horizontal plane
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when it is not subject to forces besides the gravity force. In this state, the internal stresses are

expected to be practically vanishing. In particular, in Figure 1(a), B represents any reference

line along the cable in the stress-free configuration (e.g., the centroidal line) and L is its

undeformed length. Further, we let the arc length, denoted σ, be the coordinate identifying

the material sections of the cable. We consider the fixed Cartesian reference frame (O, e1, e3, e3)

shown in Figure 1(a). When the cable ends are fixed to two points,A and B, and the cable is let

free to hang under the action of gravity, it occupies an equilibrium configuration, here denoted

B0, and considered as the reference configuration for the subsequent dynamic problem. The

arc length in the configuration B0 is denoted s. Let the position vector of the material point P 0

of the cable in the reference configuration B0 be p0. Among the different parameterizations for

p0,we employ σ, and let the Cartesian representation of p0 be p0(σ) := x(σ)e1 + y(σ)e2.

The cable stretch is then simply defined as

p0
σ(σ) = ν0(σ)a0(σ), (2.1)

where a0 is the unit vector in the tangential direction to B0; the subscript here and henceforth

will denote partial differentiation with respect to the indicated variable. Consequently, the

stretch is

ν0(σ) =
∣∣pσ(σ)

∣∣ = ds

dσ
. (2.2)

We suppose that the cable flexural rigidity is negligible in the equilibrium B0 under its

ownweight, hence the stress vector representing the contact force that the cable segment σ > σ1

exerts on the cable segment σ < σ1 through the material section at σ1 has a resultant (integrated

on the domain representing the deformed cable material section) referred to as contact force

and denoted n0. On the other hand, the resultant moment is vanishing. This assumption holds

true because under its own weight (uniformly distributed), the cable will assume a funicular

configuration having the tension carrying the weight.

By denoting f 0, the force per unit reference length σ, the local form of the balance of

linear and angular momentum can be written as

n0
σ(σ) + f 0(σ) = o, p0

σ(σ) × n0(σ) = o. (2.3)

The second part of equation (2.3) implies that n0 is in the same direction as p0
σ = ν0a0, that is,

in the direction of the tangent to the deformed configuration B0; hence, n0(σ) = N0(σ)a0(σ),

where N0 denotes the magnitude of the contact force, commonly referred to as the tension.

Moreover, the unit vector a0 can be expressed as

a0 =
p0
σ∣∣p0
σ

∣∣ =
p0
σ

ν0
. (2.4)

The final balance equation is then rewritten as

[N0(σ)a0(σ)]σ + f 0 = o. (2.5)

The constitutive law relating the tensionN0 to the stretch ν0 is introduced in the form

N0(σ) = N̂ 0(ν0, σ). (2.6)
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A few restrictions are imposed on N̂ 0 as N̂ 0(ν0 = 1, σ) = 0, N̂ν > 0. Moreover, for materials

strong in resisting tension, we may require N̂ 0→∞ as ν0→∞.

The governing equilibrium equation is obtained substituting (2.6) into (2.5). The equilib-

rium equation can be projected into the local basis {a0,b0, c0} (with c0 ≡ e3) or the fixed basis

(e1, e2, e3). Using the local basis, accounting for (a0)σ = ν0µ0b0, with µ0 = θ 0
s (the geometric

curvature of B0), and letting f 0 = f 0
1 a

0 + f 0
2 b0 yield

N̂ 0
σ + f0

1 = 0, ν0µ0N̂ 0 + f0
2 = 0. (2.7)

On the other hand, projecting (2.5) into the fixed basis (e1, e2, e3) and accounting for a0 =

cos θ0e1 + sin θ0e2 and b0 = − sin θ0e1 + cos θ0e2 yield

[
N̂ 0cos θ0]

σ
+ b01 = 0,

[
N̂ 0 sin θ0]

σ
+ b02 = 0, (2.8)

where f 0 = b01e1 + b02e2.

The relationships between (cos θ0, sin θ0) and (xσ , yσ , ν
0) can be obtained considering

p0
σ = xσe1 + yσe2 and a0 = cos θ0e1 + sin θ0e2, that is,

cos θ0 =
xσ

ν0
, sin θ0 =

yσ

ν0
. (2.9)

From the fundamental trigonometric identity (sin2 θ0 + cos2 θ0 = 1), the stretch becomes

ν 0 =
√
x2
σ + y2

σ . The solution for the static configuration B0 under the dead loads and, more

specifically, under the action of gravity, is described in the Appendix. We will discuss cables

suspended from two points at the same level (horizontal cables) or at different levels (inclined

cables).

2.2. The dynamic incremental problem

The transformation from the static configuration B0 to the current configuration B̆ is illustrated

next. We let p(s, t) = p0(s)+u(s, t) be the position vector of the point of the cable in B̆ and let the

arc length in B̆ be denoted s̆. We will treat, to start with, the planar problem (see Figure 1(b)).

Hence, let b(s, t) be the unit vector giving the orientation of the cable cross-section in B̆ so that

the cable-fixed basis in B̆ is (a(s, t),b(s, t)) and θ denotes the rotation angle from (a0, b0) to

(a,b). Therefore, the angle that amakes with e1 is θ̆ = θ0 + θ.

The cable total stretch is obtained, by enforcing the shear strain to vanish, as pσ = ν̆a,

where ν̆ = ds̆/dσ = νν0, that is, the product of the initial stretch and the incremental stretch ν.

To calculate the cable incremental stretch ν that arises in the motion from B0 to B̆, we consider

ps = νa. Then, by letting u(s, t) = u(s, t)a0(s, t) + v(s, t)b0 represent the displacement vector

from B0 to B̆, the position vector is p = p0 + u and its gradient becomes ps = p0
s + us = (1 + us −

µ0v)a0 + (vs + µ0u)b0. Consequently,

ν =

√(
1 + us − µ0v

)2
+
(
vs + µ0u

)2
, (2.10)

a =

(
1 + us − µ0v

)
a0 +

(
vs + µ0u

)
b0

ν
. (2.11)
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Moreover,

sin θ =
ps ·b

0

ν
=
vs + µ0u

ν
, cos θ =

ps · a
0

ν
=
1 + us − µ0v

ν
. (2.12)

Dividing the left- and right-hand sides of the two preceding equations and considering the

inverse tangent function yield the incremental angle θ as

θ = tan−1

(
vs + µ0u

1 + us − µ0v

)
. (2.13)

Therefore, the flexural curvature µ is

µ =
dθ

ds
=

1

ν2
[(
vss +

(
µ0u

)
s

)(
1 + us − µ0v

)
−
(
uss −

(
µ0v

)
s

)(
vs + µ0u

)]
. (2.14)

The presentation of the kinematic model is complete once the boundary conditions are

prescribed. For generality, we consider the cable supports lying in the (e1, e2)-plane and being

placed at different levels and immovable under the dead loads, x(0) = p0(0) = o, x(L) = p0(L) =

ℓe1 + he2. On the contrary, the supports prescribe some smooth motions during the dynamic

change of configuration from B0 to B̆.Hence, the time-dependent boundary conditions become

p(0, t) = uA(t) = uA(t)e2, p(L, t) = p0(L) + uB(t) =
(
l + uB(t)

)
e1 + he2. (2.15)

Next, the dynamical aspects of the problem are discussed. We let n̆ = N̆a + H̆b be the

contact force in the cable at s̆, let f be the incremental external forces such that f̆(s, t) = f 0(s) +

f(s, t) indicates the total external force density acting on the cable (per unit reference length s),

and let m̆ be the total flexural moment of the cable at s̆. Please note that here f 0(s) denotes the

force acting in B0, however, referred, for convenience, to the unit reference length s instead of

σ. In the current configuration B̆, the local form of the balance of linear and angular momentum

requires

n̆s(s, t) + f̆(s, t) = ρA0ptt(s, t),

m̆s(s, t) + ps(s, t) × n̆(s, t) = o.
(2.16)

By accounting for ps(s, t) = νa, the balance of angular momentum yields

m̆s + νH̆e3 = o. (2.17)

Further, let N and H be the incremental axial and shear forces such that N̆ = N0 + N and

H̆ ≡ H, since the reactive shear force H0 in B0 is zero. Hence, the total contact force is n̆ =

(N0 + N)a + Hb. Similarly, m is the incremental flexural moment coinciding with the total

flexural moment since the cable flexural stiffness is neglected in the initial static configuration,

therefore, m̆ = m. Since m = Me3, (2.17), solved for H, yields the shear force as H = −Ms/ν.

We can rewrite the equation of motion (2.16) as

(
N̆a −

Ms

ν
b

)

s

+ f 0 + f = ρA0ptt. (2.18)
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By considering the equilibrium in B0, (N0a0)s + f 0 = o, and by letting N̆a = N 0a0 +N0(a−a0)+

Na, the equation of motion (2.18) becomes

(Na)s +
[
N 0(a − a0

)]
s
−

(
Ms

ν
b

)

s

+ f = ρA0ptt. (2.19)

The componential form of (2.19) in the cable-fixed basis (a0,b0) becomes

[(
N 0 +N

)
s
+
Ms

ν

(
µ0 + µ

)]
cos θ −

[(
N 0 +N

)(
µ0 + µ

)
−

(
Ms

ν

)

s

]
sin θ −N 0

s + f1 = ρA0utt,

(2.20)
[(
N 0 +N

)
s
+
Ms

ν

(
µ0 + µ

)]
sin θ +

[(
N 0 +N

)(
µ0 + µ

)
−

(
Ms

ν

)

s

]
cos θ − µ0N 0 + f2 = ρA0vtt,

(2.21)

where f = f1a
0 + f2b

0, ρA0ptt = ρA0utta
0 + ρA0vttb

0.

Suitable nonlinearly viscoelastic constitutive laws for the tension N and the bending

moment M are given in the form

N(s, t) = N̂
(
ν, νt, s

)
, iff ν̆ = ν0ν > 1,

M(s, t) = M̂
(
µ, µt, s

)
.

(2.22)

For materials whose constitutive behavior is linearly viscoelastic also at large strains and

strain rates, the linearized version of the nonlinear constitutive laws can be expressed in the

form

N̂ = EA(ν − 1) +
(
N̂ν̇

)
νt, iff ν̆ = ν0ν > 1,

M̂ = EJµ +
(
M̂µ̇

)
µt.

(2.23)

The constitutive law for N̆ is nonlinear in the sense that, because the cable cannot resist

compression, in those segments of the cable where ν̆ ≤ 1, the total tension vanishes, that is,

N̆ = N0 + N̂ = 0. When a total loss of tension occurs, the cable does not undergo any local

length changes, hence letting ν̆ = ν0ν = 1 yields the incremental stretching in terms of the

prestretching, that is, ν = 1/ν0. In the corresponding cable subdomains, the balance equations

are accordingly modified putting N̆ = 0 and ν̆ = 1. Hence,

−
[
N 0a0

]
s
−

(
Ms

ν
b

)

s

+ f = ρA0ptt. (2.24)

The strain-displacement relationships (2.10) and (2.14) are substituted into the

constitutive equations (2.22) and these, in turn, are substituted, along with (2.12), into the

equations of (2.20) and (2.21) delivering the final governing equations of motion in the

unknown displacements u and v.
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We finally nondimensionalize the equations of motion introducing the followin nondi-

mensional quantities:

s∗ =
s

ℓ
, u∗ =

u

ℓ
, v∗ =

v

ℓ
, t∗ =

√
H0

ρA0ℓ2
t,

µ0∗ = ℓµ0, µ∗ = lµ, f∗ =
ℓf

H0
, k =

EA0

H0
,

N0∗ =
N0

H0
, N∗ =

N

H0
, M∗ =

M

ℓH0
, Λ =

EJ0

ℓ2H0
.

(2.25)

By dropping the star for notational simplicity and by neglecting the dissipative parts of

the incremental dynamic tension and moment, the nondimensional equations of motion, for

linearly elastic cables, become

N 0
s

[
1 + us − µ0v

ν
− 1

]
−N 0(µ0 + µ

)(vs + µ0u

ν

)

+ k

[
νs

1 + us − µ0v

ν
− (ν − 1)

(
µ0 + µ

)(vs + µ0u

ν

)]

+ Λ

[(
µ0 + µ

)(µs

ν

)(
1 + us − µ0v

ν

)
+

(
µss

ν
−
νsµs

ν2

)(
vs + µ0u

ν

)]
+ f1 = utt,

(2.26)

N 0
s

[
vs + µ0u

ν

]
+N 0

[(
µ0 + µ

)1 + us − µ0v

ν2
− µ0

]

+ k

[
(ν − 1)

(
µ0 + µ

)(1 + us − µ0v

ν
+ νs

vs + µ0u

ν

)]

+ Λ

[(
µ0 + µ

)(µs

ν

)(
vs + µ0u

ν

)
+

(
µsνs

ν2
−
µss

ν

)(
1 + us − µ0v

ν

)]
+ f2 = vtt,

(2.27)

where the stretch ν and the curvature µ are expressed by (2.10) and (2.14). On the other hand,

the equations of motion in the case of a total decompression, with a linearly elastic material,

become

ν0
2(
µ0 + µ

)(
1 + us − µ0v

)
(Λµ)s + ν0

(
vs + µ0u

)[
ν0(Λµ)s

]
s
−N 0

s + f1 = utt,

ν0
2(
µ0 + µ

)(
vs + µ0u

)
(Λµ)s − ν0

(
1 + us − µ0v

)[
ν0(Λµ)s

]
s
− µ0N 0 + f2 = vtt.

(2.28)

3. The linearization and vibration eigenvalue problem

The linearization of (2.19) can be systematically obtained once we introduce a small parameter,

denoted ǫ, which suitably quantifies the deviations from the prestressed configuration B0. We
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neglect the dissipative parts of the tension and bending moment and the forcing. We assume

ν = ν(ǫ), µ = µ(ǫ), N̂ = N̂(ν(ǫ)), M̂ = M̂(µ(ǫ)), us = us(ǫ), a = a(ǫ) as continuously

differentiable functions of ǫ. Further,

ν(0) = 1, µ(0) = 0, N̂
(
ν(0)

)
= 0, M̂

(
µ(0)

)
= 0,

a(0) = a0, b(0) = b0, us(0) = o.

(3.1)

Therefore, the elastic parts of the tension and flexural moment can be expanded in series of ǫ

as

N̂
(
ν(ǫ)

)
a(ǫ) = ǫEA0ν1a

0 +O
(
ǫ 2),

M̂
(
µ(ǫ)

)
s

ν(ǫ)
b(ǫ) = ǫ

(
EJ0µ1

)
s
b0 +O

(
ǫ 2), (3.2)

where ν1 = νǫ(0) and µ1 = µǫ(0) denote the first-order part of the stretch and the curvature (i.e.,

containing only linear terms in us). On the other hand, the geometric part of the internal force,

expanded in series of ǫ, yieldsN0(a(ǫ) − a0) = N0a1 +O(ǫ 2), where a1 = aǫ(0) is the first-order

deviation of a from a0. By retaining only first-order terms in the expansion of the equations of

motion, we obtain the linearized equations of motion

(
EA0ν1a

0)
s
+
(
N0a1

)
s
−
((
EJ0µ1

)
s
b0)

s
= ρA0utt. (3.3)

To calculate ν1, µ1, and a1, we consider (2.10), (2.14), and (2.11), and by differentiating them

with respect to ǫ and by setting ǫ = 0, we obtain

ν1 = us − µ0v, µ1 = vss + µ0
su + µ0us, a1 =

(
vs + µ0u

)
b0. (3.4)

The first-order variation of a can be alternatively obtained from a = cos θ(ǫ)a0 + sin θ(ǫ)b0 =

a0+ǫθ1b
0+O(ǫ2), where the first-order variation of θ, given by (2.13), is θ1 = vs+µ

0u. Therefore,

[
EA0

(
us − µ0v

)]
s
+ µ0

[
EJ 0

(
vss + µ0

su + µ0us

)]
s
− µ0N0

(
vs + µ0u

)
= ρA0utt,

µ0
[
EA0

(
us − µ0v

)]
−
[
EJ 0

(
vss + µ0

su + µ0us

)]
ss
+N0

s

(
vs + µ0u

)
+N0

(
vs + µ0u

)
s
= ρA0vtt.

(3.5)

In nondimensional form,

[
k
(
us − µ0v

)]
s
+ µ0

[
Λ
(
vss + µ0

su + µ0us

)]
s
− µ0N 0

(
vs + µ0u

)
= utt,

µ0k
(
us − µ0v

)
−
[
Λ
(
vss + µ0

su + µ0us

)]
ss
+N0

s

(
vs + µ0u

)
+N 0

(
vss + µ0

su + µ0us

)
= vtt.

(3.6)

3.1. The cable elastogeometric parameters

The linear as well as nonlinear free motions of linearly elastic nonshallow cables without

flexural stiffness depend on two parameters [5] related to their geometric and elastic stiff-

nesses, namely, γ and k, contrary to shallow cables [1] whose linear motions depend solely
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on Irvine’s elastogeometric parameter λ. Irvine’s parameter combines the two characteristic

parameters of nonshallow cables according to λ2 := γ2k/ηe with ηe =
∫η0

0
sec2 θ0ds, η0 =

L/ℓ. For cables suffering stretching and bending in the plane and made of a linearly elastic

material, the independent governing parameters are three, namely, (γ, k,Λ) or, equivalently,

(γ, λ,Λ).

Wediscuss inmore detail the cable parameters pointing out their mechanical significance

and pertinent ranges of variation. The region of admissible elastic stiffness k in the (γ, λ)-plane

was discussed in [5] considering the isostiffness curves according to the definition of Irvine’s

parameter. The boundaries of the admissible region correspond to k1 = 5 · 102 and k3 = 5 · 104,

respectively. These values were determined considering that k = E/S0 and S0 = H0/A0

denotes the engineering tensile stress at the mid-span section. Hence, the minimum k1 is

attained when S0 is maximum, here taken as the yielding tensile strength Sy. Because typical

working tensile stresses are around 5–10% of Sy, a reasonable value of k is of the order of 103.

However, by considering lower tensile stresses in the static configuration, values of k of the

order of 104 can be reasonably reached.

By assuming a typical circular cross-section, J0 = (A0)2/(4π), hence the nondimensional

flexural stiffness becomes Λ = kA0/(4πℓ2). Further, it is γ = ρgℓ/S0 and k = E/S0. Hence, by

considering the following as design data: (i) the sag ℓ, (ii) the material properties (ρ, E), and

(iii) the working tensile stress S0, the parameters γ and k (or λ) are accordingly determined

and are independent of A0 whereas Λ depends on k, ℓ, and A0. Therefore, considering iso-k

curves, the nondimensional flexural stiffness parameter Λ remains constant only if the cable

cross-sectional areas do not vary.

4. Computational scheme: finite-difference versus finite elements

We employ a finite-difference discretization method to path-follow the nonlinear static

solutions of (2.26) and (2.27)with f1 and f2 being time-independent and being applied through

a loading device with a sufficiently slow rate, that is, in a quasistatic fashion. The boundary

conditions atA and B prescribe the displacements and the bending moments. In particular, the

six boundary conditions are as follows:

u(0) = uA, v(0) = vA, u
(
η0
)
= uB, v

(
η0
)
= vB, M(0) = M

(
η0
)
= 0. (4.1)

By considering a grid with n points including the boundary points A and B, the interior

points are n − 2. At the interior points, we enforce the two balance equations, with an ensuing

number of 2(n − 2) field equations. Overall, the number of equations is 2(n + 1). If the problem

is fully formulated in the displacement components (u, v), then the unknowns would be 2n

leading to an overconstrained system of nonlinear equations. The problem is circumvented

by employing a standard mixed approach (in the sense that it is neither the displacement nor

the force method) consisting in taking as unknowns the displacement (u, v) and the bending

moment M resulting into 3n unknowns. The bending moment, treated as unknown in the

balance equations, has to satisfy the constitutive equation which is added explicitly as an

independent equation. Therefore, the overall number of equations comprises the 3(n − 2) field

equations to which the six boundary conditions are to be added, resulting into a system of 3n

equations in 3n unknowns.
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Therefore, the field equations read
[
N0

s +
(
k(ν − 1)

)
s
+
Ms

ν

(
µ0 + µ

)]
cos θ

−

[(
N0 + k(ν − 1)

)(
µ0 + µ

)
−

(
Ms

ν

)

s

]
sin θ −N0

s + f1 = 0,

[
N0

s +
(
k(ν − 1)

)
s
+
Ms

ν

(
µ0 + µ

)]
sin θ

+

[(
N0 + k(ν − 1)

)(
µ0 + µ

)
−

(
Ms

ν

)

s

]
cos θ − µ0N0 + f2 = 0,

M −Λ
1

ν2

[(
vss +

(
µ0u

)
s

)(
1 + us − µ0v

)
−
(
uss −

(
µ0v

)
s

)(
vs + µ0u

)]
= 0.

(4.2)

To enhance the accuracy of the finite-difference scheme, we employed a five-point

scheme [17] based on an equidistant point grid which can be written, considering the first-

order space derivative, as follows:

1

12 ×Δ

⎡
⎢⎢⎢⎢⎢⎣

−25 48 −36 16 −3

−3 −10 18 −6 1

1 −8 0 8 −1

−1 6 −18 10 3

3 −16 36 −48 25

⎤
⎥⎥⎥⎥⎥⎦
, (4.3)

where Δ = si − si−1 denotes the distance between two adjacent points of the grid.

For the chosen n-point grid, we have 3n equations, each expressed as a function of
[(
ui−2, ui−1, ui, ui+1, ui+2

)
,
(
vi−2, vi−1, vi, vi+1, vi+2

)
,
(
Mi−2,Mi−1,Mi,Mi+1,Mi+2

)]
(4.4)

and the external force term fi, where i is the index associated to the grid point. Out of the six

boundary conditions, four equations are kinematic, namely, u0 = uA, un = uB, v0 = vA, vn =

vB, two of them are mechanical, M0 = Mn = 0. Further, mention must be made of the fact that

the discretization at the two points adjacent to the boundary points is not clearly centered.

The problem is solved step-by-step employing a zeroth-order path-following scheme

where the Newton-Raphson iterative scheme is exploited at each load step to find the new

solution point. The procedure was implemented in MATHEMATICA [18]. At each load step,

the external force is increased by Δfi and the solution point of the preceding step is used as

the initial guess in the updated load step; in this sense, the continuation procedure is based on

a zeroth-order predictor. At the end of each load step, the determined solution is expected to

satisfy the balance equations ensuring that the pointwise remainders are below a prescribed

numerical tolerance.

The same analyses have been conducted employing COMSOL [19]. COMSOL Mul-

tiphysics allows to approximate partial-differential equations of various kinds via a finite

element procedure. The number of quadratic Lagrangian finite elements was set to 7680 in

all calculations, for a total number of 76 805 degrees of freedom, and the tolerance was fixed

to 10−6. The high number of finite elements was not strictly needed, it was chosen in all

calculations for accuracy reasons. A close agreement between the finite difference-based (with

number of grid points greater than or equal to 30) and finite element-based results has been

found and it is such that only the outcomes of COMSOL are reported next.
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5. Illustrative examples of nonlinear static responses

It is of interest to investigate into the differences exhibited by the nonlinear structural responses

of cables possessing flexural stiffness and those of cables whose flexural stiffness is neglected.

The objective is to assess the extent of the bending stiffness contribution within the context of

static loading processes. It is clear, however, that the most significant effects are expected to be

exhibited in dynamic regimes, especially near resonances and instabilities.

In this section, we present some illustrative examples of nonlinear responses to three

different loading scenarios. All loading cases are selected so as to induce a gradual loss of

tension that enhances the bending moment contribution. The first case features a horizontal

cable, lying under its own weight between two points at the same level. A constant uniformly

distributed vertical upward load is applied over a central region of the cable. In the other two

cases, the loading path is a prescribed incremental displacement of the right support to the left

so as to loosen the cable. We consider both a horizontal and an inclined cable.

Two different cables are considered in the numerical computations and they have the

following nondimensional governing parameters: η0 = 1.09615, γ = 1.5, k = 1.10 · 104, Λ =

4.43 · 10−4, for the horizontal cable, and γ = 0.47, k = 3.70 · 10 3, Λ = 1.40 · 10−4, for the inclined

cable. These parameters correspond to a steel cable whose initial length is L = 142.5m for the

first configuration whose span is l = 130m, Young’s effective modulus is E = 100GPa; its cross-

sectional area and moment of inertia are A0 = 8 · 10−3m2 and J 0 = 5.1 · 10−6m4, respectively.

The height of the inclined cable is h = 30m and its initial length is L = 136.4m.

In all loading scenarios, we determine the cable response curves, depicting variations

of the vertical displacement of a control point (point C whose arc length coordinate is s =

1/3L) with the magnitude of the force or support displacement. In particular, the loading

path is discretized into NL steps so that, by indicating with fNL
the load magnitude at the

end of the loading path and with fj the magnitude at the jth step, we let αj = fj/fNL
be

the load multiplier. We monitored the configurations and state of stress at three given load

steps, namely, α = 1/3, 2/3, 1. For each of those three states, the tension, shear force, and

flexural moment distributions along the cable are analyzed so as to point out the influence

of the flexural rigidity throughout a comparison of the results with those obtained using the

standard model that neglects the flexural stiffness.

5.1. Horizontal cable subject to an upward vertical load

The first case is that of a horizontal cable, shown in Figure 2, subject to an upward vertical load,

distributed over a small region centered about the midspan whose length is Δs = 0.1873η0.

The nondimensional load amplitude is varied in the range [0.03, 12]. Because the force per

unit reference length has been nondimensionalized with respect to mg/γ, and γ = 1.5; the

maximum load is fNL
= 8mg and the resultant load becomes F = 8mg(Δsℓ), which is about

3/2W, where W = mgL0 is the total weight of the cable. The loading process is discretized into

NL = 400 load steps with a resulting load step Δf = 0.02993.

The response curve in Figure 2 shows a softening behavior of the cable control point in

both models. We further note that the curve representing the model with flexural stiffness is

globally above the curve obtained with the standard cable model as it is to be expected since

the cable with flexural stiffness is clearly stiffer than the purely extensible cable. This difference

in behaviors is exhibited neither at the beginning nor at the end of the loading path whereas
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Figure 2: Response curves of the horizontal cable: variation of the vertical displacement of the control point
C with the load magnitude obtained with the flexural stiffness (solid line) and without (dashed line).

the most prominent difference is appreciated when α = 2/3, that is, when the upward load is

nearly equal the weight of the cable.

Figure 3 shows the cable configurations at various load magnitudes, the initial static

configuration B0 (catenary configuration), two intermediate configurations B̆ when α = 1/3

(F ≃ 1/2W) and α = 2/3 (F ≃ W) and the final configuration at the maximum load

(F ≃ 3/2W). A region of negative curvatures is localized around the subdomain where the

load is applied upward. In particular, when the load is betweenW and 3/2W, the cable crosses

the horizontal line passing through the supports and the extent of the central segment of the

cable lifted above the horizontal line gradually increases up to the end of the loading pathwhen

it is nearly one third of the cable. At two thirds of the maximum load, the difference introduced

by the flexural stiffness is quite remarkable especially if we consider the displacement of the

midspan point around which we note appreciably different curvatures, sharper in the purely

extensible cable. In Figure 4 (top), we show the tension along the cable whose evolution has

two distinct phases. First, the application of the load tends to decrease uniformly the total

tension in the cable until the load reaches a sufficient value to overcome the weight of the cable

in the central region. At this stage, the curvature is reversed at the midspan and the tension

gradually starts to exhibit sharp decreasing variations thus introducing a lack of uniformity of

distribution. While at the midspan section the curvature (and the bending moment) increases,

the tension tends to vanish; on the other hand, around the midspan, the tension has to balance

part of the total weight of the cable. Concurrently, the shear load exhibits a boundary layer

within the central loaded region, and the magnitude of the jump increases with the load

amplitude. At the peak of the loading path, the bending moment is clearly localized within

the central boundary layer with the peak moment being one order of magnitude higher than

elsewhere in the cable.

5.2. Horizontal and inclined cables subject to support displacements

The right end boundary of the horizontal cable is moved horizontally to the left up to a

nondimensional value of uB = 0.808 (i.e., a dimensional displacement of the considered cable
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Figure 3: Cable configurations under an upward vertical load obtained with the flexural stiffness (solid
lines) and without (dashed lines).
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Figure 4: Tension (top), shear force (middle), and bendingmoments (bottom) of the cable under an upward
vertical load obtained with the flexural stiffness (solid lines) and without (dashed lines).
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Figure 5: Response curves of the horizontal cable: variation of the vertical displacement of the control point
Cwith the support displacement obtained with the flexural stiffness (solid line) and without (dashed line).
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Figure 6: Cable configurations under a prescribed displacement of the support.

of 105m) in NL = 1050 steps. Figure 5 shows the response curve with the prescribed displace-

ment uB on the vertical axis and the displacement of the control point C on the abscissa axis.

Besides, Figure 6 presents the configurations of both cables, with andwithout flexural stiffness,

at the three load steps (α = 1/3, 2/3, 1) and Figure 7 reports the associated tension, shear force,

and bending moment.

During the whole loading path, a decrease of tension and an increase of shear force

and bending moment are observed in the central region as the two boundaries are brought

closer; further, as in the first loading scenario, the decrease becomes even more remarkable

when the curvature is increasing. At the end of the loading path, the central region presents a

tension that is almost close to zero bringing the cable close to a total loss of tension. Further,

the shear force at the boundaries is appreciable. We also note that, as it has already been

pointed out in previous studies, the standard model of purely extensible cables generates

numerical instabilities when the tension levels are too low while the consideration of flexural
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Figure 7: Tension (top), shear force (middle), and bending moments (bottom) of the cable subject to
displacements of the support obtained with the flexural stiffness (solid lines) and without (dashed lines).

stiffness overcomes this problem. Moreover, the close observation of the differences in the

configurations exhibited by the two cables reveals that the flexural stiffness has an appreciable

influence on the equilibrium configuration even in the static regime, and points out the fact

that it cannot be neglected in those segments of the cable where the tension is very low.

To quantify the differences in the state of stress, let us now consider the midspan section

when α = 1, and let S = N/A0 denote the maximum tensile stress for the cable without

flexural stiffness, and let S = N/A0 + M/W0
f
be the tensile stress of the cable with flexural

stiffness (where W0
f

= J0/
√
A/π is the cable bending modulus). Calculating the relative

percent difference between S and S yields a value about 53%which indicates that we would be

led to underestimate the maximum tensile stress by the same amount with the standard cable

model.

In the last loading scenario, the right support of the inclined cable is moved horizontally

to the left up to a nondimensional value of uB = 0.769 (i.e., a dimensional displacement of the

considered cable of 100m) in NL = 1000 steps. Figure 8 shows the response curves whereas

Figure 9 presents the configurations of both cables, with and without flexural stiffness, at the

three load steps (α = 1/3, 2/3, 1), and Figure 10 reports the associated tension, shear force, and
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Figure 8: Response curves of the inclined cable: variation of the vertical displacement of the control point C
with the support displacement obtained with the flexural stiffness (solid line) and without (dashed line).
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Figure 9: Cable configurations under a prescribed displacement of the support.

bending moment. This case is very similar to that of the horizontal cable although this cable is

shallow and quite taut. The final maximum curvature is smaller than in the other case while

the final lowest tension is bigger. It has to be noticed that, in this case, the most stressed region,

on consideration of the shear force and flexural moment, is more shifted to the left due to the

evident asymmetry of the problem.

6. Natural frequencies of cables with flexural stiffness

This section discusses concisely the vibration behavior of cables without flexural stiffness, in

shallow and nonshallow regimes, with respect to the behavior of cables with flexural stiffness.

To this end, variations of the lowest natural frequencies with Irvine’s parameter λ are here

reported. In Irvine’s theory of shallow cables and in the generalized theory described in

[5], the free motions of cables only depend on the two parameters (γ, λ) which completely
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Figure 10: Tension (top), shear force (middle), and bending moments (bottom) of the cable subject to
displacements of the support obtained with the flexural stiffness (solid lines) and without (dashed lines).

characterize the geometric and elastic properties of linearly elastic cables. Taking into account

the flexural stiffness introduces a new elastogeometric parameter, Λ. In Figure 11, variations of

the lowest natural frequencies with λ/π are shown as obtained with the two relevant models,

with incorporation of the flexural stiffness (solid lines) and without flexural stiffness (dashed

lines). We consider three different regimes: shallow cables with γ = 0.1, transition cables with

γ = 0.75, and nonshallow cables with γ = 1.5. In Figure 11 (top), in the case of shallow cables

(γ = 0.1), differences between the two models are not easily detectable except mild differences

for λ > 0.7π.On the other hand, for nonshallow cables (γ = 1.5), we clearly observe a deviation

of the loci of the eigenfrequencies to higher values with increasing λ. As a matter of a fact,

flexural stiffness effects are expected to be more significant for cables with larger cross-section

areas, that is, in our case, those corresponding to larger values of λ. Here, the assumed data

are γ (that defines the geometric stiffness) and E, Young’s modulus. At the same time, higher

modes present a number of curvature variations, hence a number of nodes, greater than the

lower modes so that the flexural rigidity is expected to impact the frequencies of the higher

modes as it can be seen in Figure 11. Furthermore, the increase of the natural frequencies due

to the flexural stiffness effects do not seem to generate new crossovers.
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Figure 11: Variation of the lowest natural frequencies with λ/π obtained with the flexural stiffness (solid
lines) and without (dashed lines) when γ = 0.1, 0.75, 1.5, respectively.

7. Concluding remarks

A geometrically exact formulation of cables undergoing axis stretching and flexural curvature

has been proposed. The model, in its general form, is suitable to treat more general cable

regimes, such as the loosening regime whereby a local loss of tension occurs.

The equations of motion have been formulated for cables with nonlinearly viscoelastic

constitutive laws and general loading conditions. The particular case of cables with a linearly

elastic constitutive law has been then considered in the numerical calculations conducted

on horizontal and inclined cables by employing a path-following scheme with two different

discretizations: a finite-difference approach and a finite element formulation. In particular,

low-tension regimes have been investigated, and the flexural stiffness influence on shallow

and nonshallow cable behaviors has been studied outlining its importance in the structural

response in the mentioned low-tension regime.

The most remarkable loading case, presented in this paper, is relative to a displacement

of the right support moved toward the left support. It has been shown that an underestimation

of the maximum tensile stress of about 50% would be reached were we to employ the

crude model of purely extensible cables. Although the probability of such a phenomenon is
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low in civil engineering applications since the displacements are expected to be small, the

extreme scenarios here reproduced can certainly concern mooring cables or cables in tethered

space applications. In addition, consideration of the flexural stiffness is important to correctly

evaluate the fatigue life of cables.

Modeling linearly elastic cables with flexural stiffness has led to a new independent

parameter, denoted Λ, which represents the ratio between the flexural and the geometric

stiffnesses. The presence of flexural stiffness modifies the loci of the higher frequencies at

higher stiffnesses, especially in nonshallow cables.

More in-depth investigations are needed to correctly unfold the cables behavior near

instabilities or in the fully developed post-critical scenarios (galloping, parametric reso-

nance,. . ., etc.) whereby loosening phenomena and nonlinear viscoelasticity within the

boundary layers are expected to play a critical role on the response.

Appendix

The static configuration B0

The static configuration under the cable ownweight is obtained integrating (2.8)with the inex-

tensibility constraint ν0 = 1 which yields σ = s. By introducing the following nondimensional

variables and parameters:

γ =
mgℓ

H0
, β =

mgℓ

V 0
, (A.1)

and integrating the equilibrium equations yields

x(s) =
1

γ

[
sinh−1

(
γ

β
+ γs

)
− sinh−1

(
γ

β

)]
,

y(s) =
1

γ

[√
1 +

(
γ

β
+ γs

)2
−

√
1 +

(
γ

β

)2]
,

(A.2)

where H0 is the horizontal projection of the tension at the left support, the star was

dropped, and sinh−1 denotes the inverse function of sinh. The boundary conditions give two

transcendental equations in the unknowns γ and β. For instance, for horizontal cables, the

compatibility condition becomes

η0 γ

2
= sinh

(
γ

2

)
. (A.3)

Typically, η0 is known (the initial cable length as well as the span), hence the compatibility

equation is solved for γ. On the other hand, in the case of inclined cables, imposing the

boundary conditions yields the following transcendental equations:

√
1 +

(
γ

β
+ γη0

)2
−

√
1 +

(
γ

β

)2
=
γh

ℓ
,

1

γ

[
sinh−1

(
γ

β
+ γη0

)
− sinh−1

(
γ

β

)]
= 1.

(A.4)
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