& HAL

open science

\

Nonlinear Modes of Vibration and Internal Resonances
in Nonlocal Beams
Pedro Ribeiro, Olivier Thomas

» To cite this version:

Pedro Ribeiro, Olivier Thomas. Nonlinear Modes of Vibration and Internal Resonances in Nonlocal
Beams. Journal of Computational and Nonlinear Dynamics, 2017, 12 (3), pp.031017-1 - 031017-11.
10.1115/1.4035060 . hal-03166221

HAL Id: hal-03166221
https://hal.archives-ouvertes.fr/hal-03166221

Submitted on 24 Jun 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.archives-ouvertes.fr/hal-03166221
https://hal.archives-ouvertes.fr

Pedro Ribeiro
DEMec/INEGI,

Faculdade de Engenharia,
Universidade do Porto,
R. Dr. Roberto Frias, s/n,
Porto 4200-465, Portugal
e-mail: pmleal@fe.up.pt

Olivier Thomas

Arts et Métiers Paris Tech,

LSIS UMR CNRS 7296,

8 Boulevard Louis XIV,

Lille 59046, France

e-mail: Olivier. THOMAS@ensam.eu

Nonlinear Modes of Vibration
and Internal Resonances in
Nonlocal Beams

A nonlocal Bernoulli-Euler p-version finite-element (p-FE) is developed to investigate
nonlinear modes of vibration and to analyze internal resonances of beams with dimen-
sions of a few nanometers. The time domain equations of motion are transformed to the
frequency domain via the harmonic balance method (HBM), and then, the equations of
motion are solved by an arc-length continuation method. After comparisons with pub-
lished data on beams with rectangular cross section and on carbon nanotubes (CNTs),
the study focuses on the nonlinear modes of vibration of CNTs. It is verified that the p-FE
proposed, which keeps the advantageous flexibility of the FEM, leads to accurate discre-
tizations with a small number of degrees-of-freedom. The first three nonlinear modes of
vibration are studied and it is found that higher order modes are more influenced by non-
local effects than the first mode. Several harmonics are considered in the harmonic bal-
ance procedure, allowing us to discover modal interactions due to internal resonances. It
is shown that the nonlocal effects alter the characteristics of the internal resonances.
Furthermore, it is demonstrated that, due to the internal resonances, the nonlocal effects
are still noticeable at lengths that are longer than what has been previously found.
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1 Introduction

Beams with dimensions of a few nanometers, or nanobeams,
outstand due to their extremely small size and high-frequency
dynamics [1,2]. There are diverse potential applications for nano-
beams, including the detection and measurement of very small
masses through shifts in oscillation frequency and in dynamic
response, and nanoelectromechanic switches [2]. When vibrating
at large amplitudes, nanobeams exhibit geometrical nonlinear
behaviors that receive more and more attention, especially
because one can take advantage of them to enhance the properties
of the nanodevice [3-5].

The types of theoretical/numerical methods that have been
more widely applied to investigate the vibrations of nanostruc-
tures can be divided in two large categories: atomistic/molecular
methods [6,7] and continuum modeling approaches [7-21].

Atomistic modeling methods, such as molecular dynamics
(MDs), have a high computational cost [6]. Formulations based on
classical continuum elasticity theories do not have this disadvant-
age, but their application at the nanoscale is questionable
[1,15,22]. Consequently, size-dependent continuum theories,
which attempt to capture small-scale effects, have been proposed.
One of these theories is the nonlocal elasticity theory of Eringen
[9,10], which has been applied to solve diverse problems at the
nanoscale, including wave propagation in a periodic lattice struc-
ture and vibrations of nanobeams (e.g., see Refs. [7,12,14,19], and
[21]). It takes into account scale effects and long-range atomic
interactions. According to this theory, the stress at a reference
point is not only a function of the strain at that point but also
depends on strains at all the other points of the body. In the case
of beams, the integral-partial differential equations of nonlocal
elasticity can be reduced to partial differential equations [10]. The
scale effect is considered in the differential constitutive equations

as a material parameter, which can be obtained via experiments,
molecular mechanics, or molecular dynamics.

A number of studies indicate that effects of smaller dimensions
are captured by the nonlocal elasticity theory. Therefore, it can be
applied to derive mathematical models for beams with reference
dimensions of a few nanometers, avoiding the very large compu-
tational cost of discrete atomistic simulations. For example,
according to Ref. [11], with a nonlocal beam Timoshenko model,
it is possible to predict “the decrease of phase velocity when the
wave number is so large that the microstructure of carbon nano-
tubes has a significant influence on the flexural wave dispersion.”
Another example is provided in Ref. [13], where a study is pre-
sented on flexural wave dispersion in double-walled carbon nano-
tubes, employing nonlocal elastic beam theories and MD
simulations. The results reveal that the nonlocal beam model is
able to predict the small-scale effect on flexural wave dispersion.
In addition, Ansari and Sahmani [7] showed that nonlocal CNT
models lead to values of natural frequencies that agree with the
ones of MD simulations.

The natural modes of vibration provide information that is fun-
damental to understand the dynamic behavior of a beam. In con-
servative, geometrically nonlinear systems, free oscillations can
be found, which are periodic and tend to the linear modes as the
displacement amplitude decreases [23-25]. In this case, the har-
monic motion with a constant shape becomes a periodic motion
with variable shape. Not only the natural frequency of vibration
changes with the vibration amplitude but also it is accompanied
by its harmonics, hence the natural frequency is now the funda-
mental frequency of a periodic—but not harmonic—oscillation.
Nonlinear free vibrations of single-walled carbon nanotubes
(SWCNTs) were studied in Ref. [14], employing Eringen’s nonlo-
cal elasticity theory. It was demonstrated that the small-scale
affects the frequency and, less, the mode shapes of vibration in
the nonlinear regime. Simsek [19] applied Eringen’s nonlocal
elasticity theory to investigate geometrically nonlinear free vibra-
tions of beams. The motion was assumed to occur with a constant
shape, equal to the one of the first linear mode shape of vibration.
As in Ref. [14], it was found that the nonlocal parameter affects



the frequencies of vibration in the nonlinear regime by increasing
the degree of hardening spring. Both in Refs. [14] and [19], only
the first mode of vibration was studied and it was assumed that the
oscillations in the nonlinear regime are harmonic.

In this paper, the nonlinear modes of vibration of nonlocal
beams are investigated, with most numerical tests focusing on car-
bon nanotubes. Since the study addresses modes of vibration of a
fundamental element, i.e., single beams or CNTs, interactions
with other structural elements and force fields are not considered.
To carry out the investigations, a Bernoulli-Euler type p-version
finite-element (p-FE) is developed, where in a search for accurate
discretizations in the spatial domain, the number of shape func-
tions over the finite element(s) is increased. It is verified that this
Bernoulli-Euler p-FE leads to accurate models—which accom-
modate variations of the mode shapes with the oscillation
amplitude—with a small number of degrees-of-freedom. The
equations of motion are passed to the frequency domain via the
harmonic balance method (HBM), then they are solved by an arc-
length continuation method [23,24]. For the first time in this prob-
lem, several harmonics are considered in the HBM and, also origi-
nally, the evolution of the first three modes of vibration with the
vibration amplitude is investigated. The consideration of several
harmonics allows us to disclose previously undetected modal
interactions—resulting in multimode, multifrequency
vibrations—due to internal resonances in free vibrations. It is
shown that the modes of vibration of nonlocal beams can be very
different from the modes of local beams due to the internal
resonances. Furthermore, it is also demonstrated that, because of
internal resonances, the nonlocal effects are still noticeable at
lengths that are longer than what has been previously found.

2 Modeling and Analysis Approach

2.1 Partial Differential Equations of Motion. Although the
original constitutive relations of Eringen’s nonlocal elasticity
theory are integropartial differential equations [9], they were later
simplified to second-order differential equations (Eq. (3.19) in
Ref. [10]). In the Bernoulli-Euler beam case, only one differential
constitutive equation is necessary; this equation is—as presented,
for example, in Ref. [12]—as follows:

6203()@ v, 1)

o2 :E‘g):(-x7y7t) (1)

Ux(X,% t) —H

where o.(x, y, 7) is the axial stress, ¢, (x, y, ?) is the axial strain, £
is the Young modulus, and y is a nonlocal parameter. The latter is
n= (eoa)z, where a represents an internal characteristic length (as
lattice parameter or distance between C—C bonds), and ¢ is a
constant that depends on the material [10].

Following Bernoulli-Euler’s beam theory, the longitudinal
displacement, # (x,y,f), and the transverse displacement (in
direction y), v (x,y,t), of any point of a beam are given by
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where u(x,t) and v(x,f) represent the displacements of points on
the longitudinal axis x, an axis that contains the geometric centers
of the cross sections; and ¢ represents the time.

To take into account the effect of large amplitude displace-
ments, a Von Karman type strain displacement relation is
employed
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From Egs. (1) and (3), we obtain the following relations for the
longitudinal force and for the bending moment on a cross section:
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where [ represents the second moment of area of the cross sections
about axes parallel to z.

Considering the free vibration case and neglecting the inertia
due to cross section rotation, the partial differential equations of
motion are
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These are classical dynamic equilibrium equations, which also
apply in the present nonlocal formulation [19]. The rotational
inertia term of Eq. (7) will be neglected.

Neglecting the longitudinal inertia, Eq. (6) dictates that N(x,?) is
uniform along the beam (nevertheless, we will keep x as an argu-
ment of the internal longitudinal force), so that Eq. (4) leads to
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and, returning to Eq. (6), one obtains
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From Egs. (5) and (7), one obtains the following expression for

the bending moment:
82v(x, 1) ( 82v(x, ) 0 ( ov(x, t)))
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With the bending moment as in Eq. (10), from Eq. (7) we arrive at
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In terms of displacement components, the partial differential
equations of motion are Egs. (9) and (11), with N(x, 7) given by
Eq. (8). These can be reduced, if one so wishes, to a nondimen-
sional equation of motion, with the nondimensional nonlocal
parameter (= epa/L as sole parameter [19]. L represents the
length of the beam.

2.2 Bernoulli-Euler p-Version Finite-Element Equations
of Motion. In a Bernoulli-Euler type p-FE method, the displace-
ment components—which are the unknowns of the present
displacement based formulation—are written as

{u(&t) } _ R 0 {qum }
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where q,(7) and q,(¢) are the vectors of generalized coordinates in
Lagrangian mechanics; since they specifically relate to

(12)



displacement components, we will call them generalized displace-
ments. Their second derivatives with respect to time, derivation
represented by two dots, are the generalized accelerations. f,(&)
and f,(&) are the vectors with shape functions. In the p-version
FE, when one wishes to improve the approximation, one increases
the number of shape functions and generalized coordinates, but
does not refine the finite-element mesh. Because functions previ-
ously used are kept in improved approximations, the approach is
said to be hierarchic [26]. This methodology has a number of
advantages over traditional, A-version, finite elements, including
the fact that it requires a small number of elements and a small
number of degrees-of-freedom, while it keeps the versatility of the
finite-element method.

The vector of shape functions f,(¢) is formed by linear func-
tions plus a set of functions designated as g functions in Ref. [24];
the set of shape functions f, (&) is constituted by cubic polyno-
mials plus the set of f functions presented, for example, in Ref.
[24]. The low order shape functions—Ilinear functions of f,(&)
and cubic functions of f,(£) —are employed to respect geometric
boundary conditions and to connect elements. At the element
ends, the value of higher-order shape functions of the g type is
zero. In the same locations, both the higher-order shape functions
of the f type and their derivatives are zero. Therefore, higher-
order shape functions do not interfere with geometric boundary
conditions or with the connection between elements.

Nondimensional coordinate £, which varies from —1 to 1, was
introduced in Eq. (12). In all the case studies of this paper, the
beam is represented by a single element and x = L/2. A single
p-FE can be applied to analyze beams with diverse boundary con-
ditions, including clamped-free [27,28], provided that the dis-
placements and cross section rotations are not too large. In the
latter case, more than one p-element and updating of the local
reference frames would be necessary.

Inserting the expansion for u(¢,f) and v(&,f) in the partial differ-
ential equation of motion (11), multiplying by each shape function
of vector f, (&), and integrating by parts in the domain, one obtains
a set of ordinary differential equations of motion. This set can be
written as follows:

(M, + M, i, (1) + KD, (1) + [ 2K}, (0,(0)) + K (0,(0) 4,0

+ Kl (a,(0) + K}, (a,0))] 4, () = 0
(13)

M, is the local mass matrix associated with the transverse acceler-
ation, and M, is a mass matrix due to the effects of transverse
inertia on the nonlocal part of the bending moment. The letters
given as subscripts in the stiffness matrices K indicate the dis-
placement components related to the diverse matrices or the non-
local parameter. The numbers presented as superscripts indicate
the dependence of the matrices on the transverse generalized dis-
placements: O for a constant matrix, 1 for a matrix that is a linear
function of q, (#), and 2 for quadratic dependence. Therefore,
matrix K is the constant stiffness matrix due to bending; matrix
K}, (q,(t)) is a matrix due to coupling between the longitudinal
and the transverse displacement components and depends linearly
on g, (#); and matrix K?(q, (#)) depends quadratically on q,(¢) and
is due to the transverse displacement and to the consideration of
large displacements. The former stiffness matrices are given in
Ref. [24].

Because of the nonlocal and geometrically nonlinear effects,

two new stiffness matrices appear in Eq. (13): K:W (qv(t)) and

Ki‘, (q,(f)). These two matrices and matrix M, are given in the
Appendix.

Substituting the displacement components given by expansion
(12) in Eq. (9) and applying the weighted residuals method over
one element, with shape functions of vector f,(&) as weight func-

tions, one obtains the following algebraic equation:

Kuq, (1) + Ky, (q,()) g, (1) =0 (14)
Matrix KS is a constant stiffness matrix due to longitudinal defor-
mation without accounting for nonlinear effects, and matrix
K}, (q,(t)) is a matrix due to coupling between the longitudinal
and the transverse displacement components, which depends line-
arly on q, (7). These two matrices are given in Ref. [24].

The generalized displacements q,(7) can be written as functions
of q,(7), using Eq. (14). In this way, one obtains the following
ordinary differential equation of motion solely in q,(¢) from
Eq. (13):

M, + M, ]d, (1) + K, (1) — K, (a,(0)K; ™" K, (q,(0)a, (1)
K3 (a,(0) + K, (a,(0) — 2K, (a,(0) K]

K,,(9,(0)]a,( =0 (15)
When applying the harmonic balance method, this reduction
allows us to automatically take into consideration the fact that for
each vibration cycle in q,(¢), there are two cycles in q,(?).

The nonlinear modes of vibration to be obtained here are peri-
odic solutions of equations of motion (15). Hence, the vector of
generalized displacements can be replaced by its Fourier series

k
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which is truncated to k terms. Vectors uy;_; are the coefficients of
the harmonics. Since only cubic type nonlinear terms exist in
Eq. (15) and because we are not going to investigate symmetry
breaking bifurcations in time, which would lead to even harmon-
ics [29,30], series (16) only includes odd harmonics. Furthermore,
because there are no traveling waves in the case studies consid-
ered, and neither is energy dissipation, sin terms are not required
in the Fourier expansion.

Applying the harmonic balance method, a system of nonlinear
algebraic equations is obtained, with the fundamental frequency
of vibration, w, and the coefficients of each harmonic, uy;_;, as
unknowns. If k=5 in Eq. (16), this system is

M 0 0 K, 0 0 u
—o’[0 M 0 |[+[0 K, 0|
0 0 25M 0 0 K, us3
Fi (o, ugp) 0
+< Fs3(w, upg) » =< 0 (17)
Fs(w, upp) 0
where each vector F,-(w7 ugp), i=1, 3,5, is given by

T
Fi(w, uyp) =%J K, (q,(1)q,(t)cos(imt)dt, i =1,3,5 (18)
0

Matrix K,,(q,(t)) in Eq. (18) contains all the matrices that give
rise to nonlinear terms in Eq. (15).

Algebraic nonlinear system of equations (17) is solved by an
arc-length continuation method [23].

3 Numerical Tests and Analysis

3.1 Summary of Convergence and Verification Analysis.
In order to verify the nonlocal Bernoulli-Euler p-FE and the com-
putational procedure implemented, several comparisons with data
published by other authors were carried out. Our values for the
natural frequencies, in the linear regime, of clamped—clamped and
hinged-hinged CNTs and nonlocal beams agreed with the values



published in Refs. [12,16-18], and [30-32]. Due to space limita-
tions, just one example is shown here, the case of a
hinged-hinged beam presented in Ref. [12] and considered by
several authors. The following properties are given, without units,
in Ref. [12]: L=10, E=30 x 10_6, v=0.3, and p = 1. The cross
section of this beam is rectangular, we assume that the thickness
(h) is equal to the width (b). Table 1 presents a comparison
between the nondimensional fundamental frequency of the
approach here proposed, computed with discretizations indicated
by the value of p,, and results given in Refs. [12,16], and [17].
Data computed using two theories in Ref. [12] are shown: EBT,
i.e., Bernoulli-Euler’s theory, and TBT, Timoshenko’s beam
theory (results computed using two third-order-shear deformation
approaches in Ref. [12] are similar to the ones computed by
TBT). The values from Ref. [16] were computed with a Timo-
shenko beam approach. In Ref. [17], Rayleigh’s beam theory
(RBT) is adopted. The nondimensional natural frequency is given

by
6)[ = (JJ,'L2 %
V EI

where suffix i indicates the mode number. Ratio L/h is varied,
keeping L constant. The present results are either very close or
equal to the ones published. Furthermore, similar values were
published in Refs. [18] and [31]. Five shape functions guarantee
five digits accuracy, whatever the value of the nonlocal parameter
1 is. We note that the fundamental frequency decreases as the
nonlocal parameter increases, a behavior that is been already
found by a few authors.

Additional convergence tests were performed and it was veri-
fied that the nonlocal Bernoulli-Euler p-FE requires a small num-
ber of degrees-of-freedom for accuracy. A successful verification
of the geometrically nonlinear case, but local, part of the model
and of the code that solves it, was achieved by carrying out the
example of Table 3 in Ref. [24], where the natural frequencies of
a clamped—clamped beam are given; similar results were also
computed in Ref. [30]. Another comparison with published results
in the geometrically nonlinear regime [23,33,34], but on a
hinged-hinged beam, was performed. The natural frequencies of
the present work agreed with the ones in Refs. [23,33,34].

In order to investigate the degree of convergence of the nonlo-
cal approach proposed, when it is applied in the geometrically
nonlinear and nonlocal case, backbone curves (amplitudes of har-
monics of transverse displacement versus frequency of vibration)
of the first three modes of vibration of CNTs were computed with
different numbers of shape functions. Due to space limitation,
only the main conclusions of this convergence analysis are given
here, figures are not shown. It was verified that a model with
po=11, p;=15 is extremely precise in the first mode of vibration,

(19)

Table 1 Nondimensional fundamental frequency of vibration

w1, L=10, hinged-hinged beam

L'h pn p,=5 p,=21 EBT[12] TBT][12] TBT[16] RBT[17]

100 0 9.8696 9.8696  9.8696 9.8683 9.8679 9.87
1 94159 94159  9.4159 9.4147 9.4143 9.4162
2 9.0195 9.0195 9.0195 9.0183 9.0180 9.0197
3 8.6693 8.6693 — — 8.6678 8.6695
4 8.3569 83569  8.3569 8.3558 8.3555 8.3571
5 8.0761 8.0761  8.0761 8.0750 — 8.0762

20 0 9.8696 9.8696  9.8696 9.8381 9.8281 9.8798
I 94159 9.4159  9.4159 9.3858 9.3763 9.4238
2 9.0195 9.0195  9.0195 8.9907 8.9816 9.0257
3 8.6693 8.6693 — — 8.6328 8.6741
4 83569 8.3569  8.3569 8.3302 8.3218 8.3606
5 8.0761 8.0761 8.0761 8.0503 — 8.0789

computing accurately all the harmonics. The same model also
leads to accurate computation of the second nonlinear natural fre-
quency of vibration, some differences were found in the fifth har-
monic, but these were irrelevant in the solutions computed. In the
case of the third mode of vibration, model p,=11, p,=15 ini-
tially gives values equal to the ones of other models, but at larger
vibration frequencies and vibration amplitudes, more shape func-
tions are required for convergence. Model p,=13, p;=17 and,
better, model p,=15, p,=19 accompany model p,=17,
p1=20—used as reference—more closely. This example confirms
a well-known, but on the other hand, sometimes neglected, fact:
convergence in the computation of linear modes of vibration of
nonlocal beams does not guarantee convergence in the nonlinear
regime. Three characteristics of nonlinear beams explain this need
for more shape functions as the vibration amplitude increases: (1)
the shapes of the modes of vibration change with the vibration
amplitude; (2) interactions with higher order modes can occur;
and (3) longitudinal deformation and bending are coupled.

In what concerns convergence with the number of harmonics,
the one harmonic approximation originates rather accurate results
until a certain vibration magnitude in the first three modes of
vibration, then it deviates from the other approaches. The differ-
ences are mostly due to internal resonances that the one harmonic
approach fails to detect. In the case studies performed, solutions
computed with the first two and the first three odd harmonics are
close to each other. Nevertheless, the order of the internal reso-
nance that can be studied is necessarily limited by the number of
harmonics employed.

3.2 Properties of CNTs. Before proceeding to the main goal
of this paper, which is to investigate how nonlocal effects influ-
ence the modes of vibration of beams in the nonlinear regime and
their internal resonances, we would like to justify the properties
chosen for the case studies. We intend to employ properties which
somehow represent a real example at the nanoscale. Carbon nano-
tubes (CNTs) can not only be very small but are also appointed as
having great potential for diverse applications [6,15]. Hence, we
will take as research case CNTs and adopt properties based on the
ensuing literature analysis.

In Ref. [35], the Young moduli of diverse CNT are measured
by analyzing thermal vibrations; values from 0.40 TPa to 4.15
TPa are obtained, being the average 1.8 TPa. The inner diameter
increases from 1.0nm to 6.6nm and the outside diameter from
5.6nm to 24.8 nm; specimens with lengths up to 5.81 um were
obtained. Wang et al. [36] measured the mechanical properties of
CNTs of different origins, using transmission electron micros-
copy. For carbon nanotubes produced by pyrolysis, the modulus
of Young varied between 23 = 2.7 GPa and 32.1 = 3.5 GPa. If the
CNTs were produced by an arc-discharge technique, Young’s
moduli from 0.2 TPa to 1.2 TPa were found. With the arc-
discharge technique, the carbon nanotubes have diameters
between 5 and 50 nm, and lengths ranging from 1 to 20 um; with
the pyrolysis technique, the inner diameter attained a maximum of
27.8 = 1 nm, the outer diameter a maximum of 45.8 = 1 nm, and
the maximum length was 5.7 = 0.5 um.

Yang et al. [14] estimated Young’s modulus of CNT from
1.1468 TPa to 1.1621 TPa, using molecular mechanics simula-
tions. The diameter varied from 0.391 nm to 0.861 nm. The same
authors compute the natural frequencies of CNTs with radius
r=0.313nm, length L=5nm, effective tube thickness
h;=0.34nm, Young’s modulus £ =1.1556 TPa, and epa/L =0.15
(hence, epa =0.75nm). Wang et al. [37] gave p= 2300kg m>
for the mass density of CNTs.

Li and Chou [38] established a link between structural mechan-
ics and molecular mechanics and arrived at Young’s modulus for
single-walled CNTs that vary with the diameter and chirality of
the tubes, but are not far from £ = 1.0 TPa. The authors assume
“the thickness of a single-walled carbon nanotube to be the same
as the interlayer spacing of graphite”: 0.34nm. Xiao et al. [39]



used the same effective thickness and also arrived at Young’s
modulus that are not far from £ =1.0 TPa. In both papers, refer-
ence is made to experimental analyses that somehow support the
values obtained. Yoon et al. [40] gave a value of 1 TPa for the
modulus of Young, 0.35nm for the effective thickness of single-
walled carbon nanotubes, and 1.3 x 10° kg/m3 for the mass
density.

Simsek [19] adopted epa between 0 and 2nm and wrote that
according to Wang [41], this is a “conservative estimate” of the
nonlocal parameter ega for SWCNTs. This estimate by Wang is
based on references given in Ref. [41], according to which the
measured frequency of SWNTSs is greater than 10 THz. The esti-
mates of Wang [41] are also referred/adopted in Ref. [15]. Ansari
and Sahmani [7] proposed values for the nonlocal parameter for
CNTs, by comparing the natural frequencies computed employing
diverse beam theories with results of molecular dynamics simula-
tions. The final values depended on the beam theory, the chirality
of the CNT, and the boundary conditions. The lowest value pre-
sented in a table in Ref. [7] is u=0.19 (ega =20.436 nm, Timo-
shenko beam, simply supported), and the largest value is u=1.42
(epa = 1.19 nm, Bernoulli-Euler beam, clamped—clamped).

As seen in the former paragraphs, a large range of values can
be found in the literature for material and geometric properties of
CNTs. Based on the aforementioned publications, we can say that
the values of Table 2 are appropriate for our study and these will
be the properties adopted in the numerical tests that follow. To
estimate the importance of nonlocal effects, ega and L will assume
values in the ranges indicated in the table. More specifically, three
lengths are considered—L =25, L =50, and L= 100nm—and
three values are attributed to ega: 0, 1, and 2nm. The value of the
nondimensional, nonlocal parameter { = epa/L is also given in the
examples that follow and it increases from O to 0.08.

Table 3 gives the natural frequencies of CNTs with properties
written in Table 2, computed with p,=11. The two boundaries
are clamped, as they will be in the remaining test cases. The
shorter CNT is, naturally, the one where the linear natural fre-
quencies change the most with the nonlocal parameter ega. With
epa equal to 1 nm, the first natural frequency decreases about 1%,
and the fifth natural frequency more than 16%. If epa is equal to 2
nm, then the first natural frequency decreases about 3.7% and the
fifth natural frequency a hefty 39%. When L=50nm and ega
equal to 1 nm, the first natural frequency decreases 0.25% and the
fifth 4.9%; with ega equal to 2 nm, the reductions are 1% and
16%, respectively. The longer CNT is less affected by the nonlo-
cal parameter, with modest variations in the lower natural fre-
quencies. In comparison with the local value, the first two linear
natural frequencies decrease only 0.26% and 0.91%, respectively,
when ega becomes 2nm. But the linear natural frequencies of
higher modes are more substantially altered, with the fifth linear
natural frequency decreasing 4.9%. Still for this length, when
epa =1nm, only the fifth natural frequency changes more than
1%. As we will see in Sec. 3.3, larger sensitivity of higher order
modes of vibration to nonlocal effects can be fundamental also at
low frequencies of vibration, due to internal resonances induced
by the geometrical nonlinearity.

3.3 Nonlinear Modes of Vibration and Internal Resonances
in Nonlocal CNTs. The nonlinear modes of vibration of nonlocal
CNTs are now investigated. All the data shown in this section
were computed using the first three odd harmonics—since the first
two even harmonics have zero amplitudes in the solutions

Table 3 Natural frequencies (Trad/s) in the linear regime, CNT
of Table 2

L (nm) ega(nm) { Wy wy w3 Wy ws
25 0 0 0.3051 0.8411 1.649 2726 4.072
1 0.04 03022 0.8117 1532 2414 3414
2 0.08 0.2938 0.7388 1.290 1.882  2.485
50 0 0 0.07628 0.2103  0.4122 0.6814 1.018
1 0.02 0.07609 0.2084  0.4043 0.6592 0.9681
2 0.04 0.07554 0.2029 0.3830 0.6036 0.8535
100 0 0 0.01907 0.05257 0.1031 0.1704 0.2545
1 0.01 0.01906 0.05245 0.1025 0.1689 0.2512
2 0.02 0.01902 0.05209 0.1011 0.1648 0.2420

depicted—and p,=15, p,=19, or, exceptionally, more shape
functions.

Figures 1-3 show backbone curves of CNTs with diverse
lengths and diverse nonlocal parameters. In order to limit the
number of figures, only the magnitude of the transverse vibration
displacement at the beginning of a cycle is given as a function of
the fundamental vibration frequency. This magnitude is repre-
sented by V(&), with & replaced by the nondimensional coordi-
nate of the point where the magnitude is calculated and is divided
by the diameter of the CNT, in order to provide an indication of
the importance of geometrical nonlinear effects. V(&) is com-
puted by using Egs. (12) and (16) with =0, it is also the sum of
the amplitudes—affected by the sign—of all the harmonics. At
this stage, to turn the figures clearer, we start the continuation
method at a linear mode of vibration and follow the path obtained
by using a secant predictor, still without attempting to find addi-
tional branches. A more detailed analysis, with additional
branches and bifurcations, is carried out after on two CNTs. To
illustrate the effect of the nonlocal parameter on the dimension of
the natural frequencies of vibration, it was decided to show the
frequencies in radian per second. Other than the actual value of
those frequencies and eventual convergence of the continuation
code to other branches, curves with the same nondimensional non-
local parameter { are identical.

Figures 1-3 show that the nonlocal parameters influence the
backbone curves of the first three modes of vibration in diverse
ways. First, as already seen, the nonlocal parameter affects the
natural frequencies in the linear regime. Second, the larger the
nonlocal parameter, the larger the degree of hardening (this had
already been found, but solely in analyses of the first mode of
vibration and assuming harmonic motions, in Refs. [14] and [19]).
In our test cases, the changes in hardening with the nonlocal
parameter are not very large. Third, changes in the nonlocal
parameter lead to different inflexions or even turning points in the
backbone curves; this phenomenon has not been found before.
Addressing each figure separately, we start by noting that when
L =25nm, the effect of the nonlocal parameter is rather obvious
in the three modes studied (Fig. 1). When L =50 nm, the effect of
the nonlocal parameter is still visible in the three backbone curves
(Fig. 2), although it is small in the first mode of vibration. In the
longer CNT, L =100nm (Fig. 3), the backbone curve of the first
mode barely changes with the nonlocal parameter. The backbone
curves of the second mode computed with different nonlocal
parameters are similar at low vibration amplitudes, although the
degrees of hardening slightly differ. More noticeable than the

Table2 Properties of the CNTs

Modulus of Mass density, Nonlocal parameter, Effective tube Medium radius, Length,
elasticity, E (TPa) p (kg m ) epa (nm) thickness, %, (nm) r (nm) L (nm)
1.0 1.3 % 10° 0-2 0.34 0.4 25-100
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Fig. 1 Transverse vibration displacement in the beginning of a vibration cycle of the CNT with

L=25nm. The nonlocal parameter takes val
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and x epa = 2.0 nm ({=0.08):(a) first mode, (b) second mode, and (c) third mode.
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Fig. 2 Transverse vibration displacement in the beginning of a vibration cycle, of the CNT with

L=50nm. The nonlocal parameter takes val

ues: + ea=0 ((=0), O ea=1.0nm ({=0.02),

and x epa = 2.0 nm ({=0.04):(a) first mode, (b) second mode, and (c) third mode.

different degrees of hardening is the fact that inflexion and turning
points occur at vibration amplitudes and frequencies that depend
upon the nonlocal parameter adopted. It results that the backbone
curves of the second mode still depend very much on the nonlocal
parameter when L =100 nm. In the case of the third mode, there
is a small difference in the values of the natural frequencies and in
the degree of hardening when L = 100 nm.

Although we leave a deeper analysis of bifurcations to the fol-
lowing paragraphs, we should report that the locations of bifurca-
tion points—detected by alterations in the sign of the determinant
of a Jacobian matrix employed in the continuation method [23]—
are affected by the nonlocal parameter in all the modes of

vibration and in all the CNTs analyzed in Figs. 1-3, including the
longer CNT.

Now we analyze in more detail the CNT with length L =50 nm,
considering the nonlocal effect with eqa =2 nm ({=0.04) and not
considering the nonlocal effect (eg¢ = 0 nm). The backbone curves
shown in Fig. 4 are related to the first nonlinear mode of vibration;
the curves were computed with p, = 15, p;= 19 and three harmon-
ics. The amplitude of harmonic number 7 at point ¢ is represented
by V;(&); this amplitude is affected by a plus or minus sign and
divided by the external diameter of the CNT, d. The effect of the
nonlocal parameter in the actual values, in radian per second, of
the natural frequencies was shown in the previous paragraphs. In
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Fig. 3 Transverse vibration displacement in the beginning of a vibration cycle, of the CNT with
L=100nm. The nonlocal parameter takes values: + ea=0 ({=0), O ea=1.0nm ({=0.01),

and x ega=2.0nm ({=0.02).



Fig. 4 and in the figures that follow, in order to offer another per-
spective on the influence that the nonlocal parameter has on the
backbone curves and to turn the comparison between degrees of
hardening more direct, the horizontal axes are nondimensional-
ized by dividing the frequency of vibration by the linear natural
frequency of vibration of the mode under analysis. Figure 4 shows
that, when the length is equal to 50 nm, the nonlocal parameter
has a small influence on some solutions of the first mode, limited
to slightly increasing hardening. On the other hand, the nonlocal
parameter has a strong influence on modal interactions, greatly
affecting turning points. With and without nonlocal effects, there
is an excitation of the third mode of vibration associated with the
fifth harmonic, due to a 1:5 resonance. However, when the nonlo-
cal parameter is zero, this internal resonance affects the main
branch slightly after w/w, = 1.1; if the nonlocal parameter ega is
2nm, the 1:5 internal resonance occurs earlier, before w/
wy, = 1.024. Furthermore, close to w/w, =1.8, a bifurcation
occurs when ega =2nm; this bifurcation is not visible, in the
range of frequencies portrayed, in the local model (epa =0nm).
The latter bifurcation is due to the excitation of the fourth mode
of vibration and is mainly linked with the fifth harmonic, although
the first and third harmonics are also meaningful in the oscilla-
tions due to this bifurcation. The bifurcations are altered by the
nonlocal parameter ega, because the relations between the natural
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0.001

-0.001

-0.002

-0.003

-0.004
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frequencies of the first and higher modes vibration change with
eopd.

Figure 5 shows bifurcation diagrams obtained by starting the
continuation at the second linear mode of vibration. Initially, the
backbone curves of the two CNTs are not very different, with
oscillations dominated by the first harmonic and the nonlocal
CNT (in this case with epa =2nm, {=0.04) experiencing only
slightly more hardening than the local CNT. But the bifurcations
(here, term “bifurcation” includes bifurcations of the turning point
type) are quite different in the local and nonlocal CNTs and they
lead to rather distinct oscillations, which are reflected in Fig. 5 by
the different relations between the vibration frequencies and the
amplitudes of the harmonics.

Figures 6 and 7 allow us to further compare the behavior of the
local and nonlocal CNTs, by analyzing the vibrations that corre-
spond to point Py in Figs. 5(a) and 5(b). In this point, the first har-
monic amplitude and the nondimensional frequency of vibration
are the same in both (local and nonlocal) CNTs. The time histories
and phase plane plots of Fig. 6 reflect the different harmonic con-
tents of the displacements and velocities of the local and nonlocal
CNTs. The strong presence of diverse harmonics, visible in this
figure and in Fig. 5, indicates that we are in the presence of an
internal resonance. The internal resonances are confirmed by the
shapes assumed by the local and by the nonlocal CNTs

0.06

0.04

0.02 g:l

(b)

(d)

Fig. 4 First nonlinear mode and bifurcations; the figures show amplitudes of harmonics of the
CNT with L =50 nm, when epa=0nm [ ]and when e,a= 2.0 nm ({=0.04) O: (a) first harmonic, (b)
third harmonic, (c) detail of figure (b), and (d) fifth harmonic
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Fig. 5 Amplitudes of harmonics of the CNT with L =50 nm, second nonlinear mode and inter-
actions, when ega=0nm [_| and when epa= 2.0 nm ({=0.04) O. The subfigures represent: (a)—
the first harmonic, (b)—detail of figure (a), (c¢)—the third harmonic, and (d)—the fifth harmonic.

(epa=2nm and {=0.04), which are displayed in Fig. 7. Only
half a cycle is shown and the shapes in the remaining part of the
cycle are a repetition in inverse order of the ones displayed. It is
obvious that more than one mode contributes to the oscillations of
both CNTs. But the shapes assumed by the local CNT along the
cycle are very different from the ones assumed by the nonlocal
CNT. An analysis of the shapes assumed by each harmonic was
also carried out (figures not shown). In point P, in Fig. 5, the first
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Fig. 6 Time histories (a) and phase plane plots (b) of transverse
oscillations of point £ = 0.5, local and nonlocal (epa=2nm and
{=0.04) CNTs, when o/owp =1.163, and the nondimensional first
harmonic amplitude is close to 0.33 (point P; in Fig. 5)

harmonic is connected with the second mode of vibration in both
CNTs; the third harmonic is related to the fourth mode of vibra-
tion in the local CNT, but in the nonlocal CNT the third harmonic
barely appears and is influenced by more than one mode, includ-
ing the sixth; the fifth harmonic is almost not excited in the local
CNT, where the presence of the second and sixth modes is visible
in connection with this harmonic; on the other hand, in the nonlo-
cal CNT the fifth harmonic is essentially related to the sixth
mode. So, in this example, not only the modes involved in the
oscillations of the local and nonlocal CNTs are different but so
are the harmonics that appear in the oscillations and the orders of
the internal resonances (1:3 in the local CNT, 1:5 in the nonlocal).

Another comparative analysis of the behavior of the two CNTs
is carried out by addressing points P, (local CNT) and P53 (nonlo-
cal CNT) in Fig. 5. Now, the solutions under analysis have in
common the amplitude of the first harmonic, which is approxi-
mately 0.77d. The value of the nondimensional frequency of
vibration ®/w, is 1.51 in point P, and 1.74 in point P;. This
examination is performed with the help of Fig. 8, where shapes
assumed by the local and nonlocal CNTs along half a vibration
period are shown. The individual shapes of each harmonic were
also inspected; again they are not shown here in order to limit the
number of figures.

Both in solutions P, and P3, more than one mode participates in
the oscillations, with the first harmonic associated with the second
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Fig. 7 Shapes assumed by local (—) and nonlocal (¢, ega=2nm, {=0.04) CNTs when w/op=1.163 and

V4/d=0.33, point P, in Fig. 5, along half a vibration cycle

mode of vibration. The fifth harmonic is also important in both
CNTs, although smaller than the first. In the nonlocal CNT, the
fifth harmonic is connected with the seventh mode of vibration; in
the local CNT, it is connected with the sixth mode. The third har-
monic is about 1 order of magnitude smaller than the fifth in both
CNTs and is affected by more than one mode of vibration; appa-
rently, the second and seventh modes influence the third harmonic
of the nonlocal CNT, and the second and sixth modes the third
harmonic of the local CNT.

Finally, we note that a branch of solutions appears in Fig. 5 at
larger vibration amplitudes only when nonlocal effects are taken
into account; it has no counterpart in the local CNT, in the range
of frequencies portrayed. This branch of solutions is due to an
internal resonance. All the harmonics are present in these oscilla-
tions, with their importance decreasing as the order of the harmon-
ics increases. It was verified that the first harmonic is still
connected to the second mode of vibration, while the third and
fifth harmonics are influenced by higher modes.

The analysis of this section shows that CNTs which are longer
than what has been previously deducted—for example, according
to Ref. [14], the nonlocal effects are negligible after L > 16 nm—
may still be strongly influenced by the nonlocal effects: it is only
required that a higher order mode of vibration is present in the
oscillation, either directly or due to an internal resonance. Internal
resonances can arise or cease to exist due to nonlocal effects; fur-
thermore, when they occur both in the local and nonlocal cases,
the modes and/or harmonics involved in internal resonances of
local and nonlocal CNTs can be different. If we remember that
nodes of vibration exist in higher order modes, it is immediately
understood that the distance between the nodes of the highest
mode involved in the vibration, not the CNT length, will dictate
how important the nonlocal effects are.

4 Conclusions

A beam p-version type finite-element, based on
Bernoulli-Euler’s hypothesis and on Eringen’s nonlocal theory of
elasticity, was presented. The ordinary differential equations of
motion in the time domain were transformed to the frequency
domain, for the first time in this problem with the help of a multi-
harmonic harmonic balance method. The last equations were
solved by a continuation method.

A few tests were carried out in the linear and nonlinear regimes.
The Bernoulli-Euler p-finite version element (p-FE) implemented
here provided results that agreed with published data; further-
more, convergence analyses were performed and it was verified
that the nonlocal p-FE does not require a large number of degrees-
of-freedom for accuracy. It was verified that the nonlocal parame-
ter reduces the natural frequencies in the linear regime and, in the
nonlinear regime, the larger the nonlocal parameter, the larger the
degree of hardening; the latter effect was not very pronounced in
the test cases of this paper. The reason why the nonlocal effects
reduce the natural frequencies in the linear regime is that the iner-
tia increases, as expressed in the mathematical model by an addi-
tional mass matrix. On the other hand, the part of the longitudinal
force that is due to the large displacement increases with the
“nonlocality” that is with the consideration of strains in the com-
plete domain; hence, the hardening spring effect is larger in nonlo-
cal than in local beams.

The first three nonlinear modes of vibration of CNTs modeled
as nonlocal Bernoulli-Euler beams were analyzed. In addition to
the investigation of higher order modes, the main original findings
of this study are related to internal resonances. In the absence of
internal resonances, higher order modes of vibration are—both in
the linear and nonlinear regimes—more altered by nonlocal
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Fig. 8 Shapes assumed along half a vibration cycle by local (—) and nonlocal (¢, ega=2nm, {=0.04) CNTs,
solutions corresponding, respectively, to points P, and P; of Fig. 5

effects than the first mode is; this occurs because the length that
dictates the importance of nonlocal effects is not the total length
of the beam or CNT, but the distance between nodes of vibration.
It was found that different nonlocal parameters cause different
inflections, bifurcation, and turning points in the backbone curves
of any mode, including the first. So, also in the first mode of vibra-
tion, it was found that the vibrations of CNTs that are not
extremely short (for example, with a length equal to 50 nm and
nonlocal parameter epa=2.0nm, or, without dimensions,
{=0.04) can be radically changed by the nonlocal effects. The
main explanation for this is that the nonlinearity promotes interac-
tion with higher order modes, which, as said, are more modified
than low order modes by nonlocal effects. Nonlocal effects alter
the frequencies at which internal resonances occur and nonlocal
effects can change the modes involved in the internal resonances.
These findings complement analysis by other authors, who
assumed harmonic motion and therefore could not reveal the
importance of internal resonances.
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Appendix: Bernoulli-Euler p-FE Matrices Due to
Nonlocal Effects

The transverse inertia affects the second derivative of the bend-
ing moment with respect to axis x (see Eq. (7)), which appears in
the nonlocal constitutive equation. From here results the following
nonlocal mass matrix of the Bernoulli—Euler p-FE:

d¢ (A

2 Jl of,(&) of,(&)"
L

M,uv:pA#_ ., O¢ oE

One of the stiffness matrices of the Bernoulli-Euler p-FE due
to nonlocal and geometrical nonlinear effects is a linear function
of the generalized transverse displacements; this matrix is as
follows:
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The other stiffness matrix that appears due to the nonlocal effects
and to the large displacements, a matrix which depends quadrati-
cally on q,(7), is
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