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Abstract—In this paper we present a time-domain notion
of moments for a class of single-input, single-output nonlinear
systems in terms of the evolution of the output of a generalized
signal generator driven by the nonlinear system. We also define
a new notion of moment matching and present a family of
(nonlinear) parametrized reduced order models that achieve
moment matching. We establish relations with existing notions of
moment for nonlinear systems, showing that the newly derived
and the existing families of reduced order models that achieve
nonlinear moment matching, respectively, are equivalent. Fur-
thermore, we compute the reduced order model that matches the
moments at two chosen signal generators (one exciting the input
of the system and another driven by the system), simultaneously.
We also present a family of models computed on the basis of
a nonlinear extension of the Petrov-Galerkin projection that
achieve moment matching. Finally, we specialise the results to
the case of nonlinear, input-affine systems.

Index Terms—Nonlinear moment matching, signal generator,
family of parametrized reduced order models, two-sided, inter-
connection.

I. INTRODUCTION

THE MODEL REDUCTION PROBLEM for linear and

nonlinear systems has been widely studied in the systems

and control community. Since the modelling of processes and

phenomena leads to models consisting of a large number of

differential equations, the resulting systems are not always

suitable for analysis and control design. Hence, this problem is

of great importance in applications, because its solution yields

reduced order models (i.e., models of reduced complexity) that

can be used in practice. In the problem of model reduction

moment matching techniques represent an efficient tool, see

e.g., [1] for a complete overview for linear systems. In

such techniques the (reduced order) model is obtained by

constructing a lower degree rational function that approximates

the given transfer function (assumed rational). The classical

notion of moment has been defined in [1], based on the

series expansion of the transfer function of the linear system

(see also [2]–[4]). The low degree rational function matches

(some of) the terms of the original transfer function at various

points in the complex plane. However, since the calculation

of moments is costly, the reduced order models that match a
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Rome, Italy. E-mail: a.astolfi@imperial.ac.uk.

This work has been supported by the EPSRC grant ”Control for Energy
and Sustainability”, reference EP/G066477/1.

prescribed number of moments are computed efficiently using

Krylov projection techniques, which do not require the direct

computation of the moments (see, e.g., [5]–[7]).

Recently, a time-domain notion of moment for linear and

nonlinear systems has been proposed in [8], [9]. We give

a brief overview of the arguments developed in [8]. The

problem is formulated as follows. Given a nonlinear system

of dimension n

ẋ = f(x, u), y = h(x), (1)

where x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R and f and h are smooth

mappings, such that f(0, 0) = 0 and h(0) = 0, find a reduced

order model of dimension ν < n

ξ̇ = ϕ(ξ, u), η = ψ(ξ), (2)

with ξ(t) ∈ Rν , that approximates the system (1) based

on a moment matching criterion. The solution in [8] has

been developed as follows. First, the notion of moment of

a nonlinear system has been defined in relation to the (well-

defined steady-state) evolution of the output of the nonlinear

system driven by a chosen input yielded by a signal generator

ω̇ = s(ω), θ = l(ω), (3)

with ω(t) ∈ Rν , θ(t) ∈ R and s and l smooth mappings,

such that s(0) = 0 and l(0) = 0, as depicted in Figure

1. The moments are related to the solution of a nonlinear

ẋ = f(x, u)
y = h(x)

ω̇ = s(ω)
θ = l(ω)

Steady − state of y
m

Moment of (1)

θ = u

Fig. 1. Diagram illustrating the definition of moment

(Sylvester-like) partial differential equation (see [10], [11] for

the linear arguments). Using similar arguments, the moment of

(2) is related to the steady-state evolution of the output of the

system when excited by the signal generated by (3). Moment

matching is achieved when the moment of the system (2) is

equal to the moment of (1). Based on this property, a family

of parametrized, reduced order models that achieve moment

matching has been computed. The free parameters can be

used to enforce desired properties on the reduced order model,

such as stability and passivity (see, e.g., [12], [13]). For linear

systems, in [14], this approach has yielded a new family of

parametrized reduced order models achieving moment match-

ing and the equivalence to the Krylov projection-based models

has been established. Furthermore, the problem of matching a

number of moments larger than the dimension of the reduced

order model has been studied in, e.g., [14], where an approach
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based on interconnection of low order approximations has been

taken and in [15], where the problem of interpolating (ρ+1)ν
moments with a time-delay system of order ν with ρ delays

has been considered.

In this paper we present a new time-domain notion of

moment for a class of single-input, single-output nonlinear sys-

tems, in terms of the evolution of the output of the ”swapped

interconnection” of the system with a (generalised) signal

generator. The term ”swapped” refers to the interconnection

between the nonlinear system (1) and a signal generator,

where the nonlinear system (1) drives the signal generator,

see Figure 2. The new notion of moment is defined based on

ẋ = f(x, u)
y = h(x)

Signal generator
Evolution of output

m
New moment of (1)

y

Fig. 2. Diagram illustrating the proposed definition of moment for the
nonlinear system (1) based on the ”swapped” interconnection between the
system and the signal generator

the evolution of the output of the interconnection depicted in

Figure 2. Similar to [8], this notion of moment is related to the

(unique) solution of a nonlinear partial-differential equation.

This is an extension of the linear arguments developed in [9],

[14]. Under some technical assumptions, the moment of the

given nonlinear system is defined in a one-to-one relation with

the evolution of the output of such interconnection. However,

unlike the linear case the proposed PDE that characterises the

notion of moment is not dual to the Sylvester-like nonlinear

PDE from [8], hence, throughout the rest of the paper, when

required, we use the terminology ”swapped interconnection”

rather than ”dual”. The nonlinear system (2) is said to match

the given moment if the interconnection with the generalised

signal generator preserves the structure of the moment and

yields an output that matches the evolution of the output of

the same generalised signal generator driven by the given

nonlinear system, see Figure 3. Hence, we compute a new

ξ̇ = φ(ξ, u)
η = ψ(ξ)

Signal generator
Evolution of output

m
New moment of (2)

y

Fig. 3. Diagram illustrating the proposed definition of moment for the reduced
order model (2) based on the ”swapped” interconnection between the system
and the signal generator

parametrized family of reduced order models that achieve

moment matching in the aforementioned sense. Since, in

practice, stable models are of significant interest (e.g., for

power systems, where transients are of importance, see [16],

[17]), we show that the sub-family of stable models that

achieve moment matching can be computed using a classical

linearisation argument. Furthermore, we prove that the notion

of moment matching based on the ”swapped interconnection”

is equivalent to the notion of moment matching described in

[8], i.e., any model from one family of models that match

the moments of the system can be found in the ”swapped”

family of models. We also address the problem of ”two-sided”

moment matching for nonlinear systems, i.e., we compute the

reduced order models that simultaneously match the moment

in the sense of [8] and the moment in the sense of the

”swapped interconnection” approach. The result is a nonlinear

extension of the computation of a reduced order, linear model

that matches a number of moments equal to twice its order,

based on employing ”two-sided” Krylov projections, see, e.g.,

[5], [18], [19]. We also present the relation with the models

obtained using a nonlinear extension of the Petrov-Galerkin

projection method, as described in [20]. Furthermore, since in

practice most of the models stemming from applications are

affine in the input, we present explicit results for this class of

systems. Note that the results are general, since the number of

assumptions made is minimal. Finally, although in this paper

we study the single-input, single-output case, the results are

directly applicable to the multiple-input, multiple-output case.

The paper is organized as follows. In Section II-A we give

a short presentation of the notion of time-domain moments

for nonlinear systems and the resulting family of reduced

order models that achieve moment matching. In Section II-B

we briefly overview a nonlinear extension of the Petrov-

Galerkin projection method and present the resulting family

of reduced order models that achieve moment matching in

the sense of Section II-A. In Section III-A we define and

analyse the output of a generalized nonlinear signal generator

driven by the system. The resulting structure of the dynam-

ics of the interconnection provides the definition of a new

notion of moment. We define moment matching in terms of

finding a low order system that preserves the structure of

the interconnection with the signal generator. We compute

a family of parametrized, reduced order, nonlinear models

that achieve moment matching in the aforementioned sense.

We establish a relation between the notion of moment and

moment matching based on the output of the system driven

by a signal generator and its ”swapped” counterpart, through a

necessary and sufficient condition. In Section III-B we briefly

discuss the problem of moment matching-based model order

reduction, as in Section III-A, such that the approximant

has an asymptotically stable equilibrium. In Section III-C we

compute the reduced order models that simultaneously match

the moment of the given nonlinear system in the sense of

[8] and the moment of the nonlinear system in the sense of

Section III-A. The nonlinear Petrov-Galerkin projection-based

extension of the results from Section III-C is given in Section

III-D. In Section IV we apply the results developed in Section

III to the case of nonlinear systems, affine in the input. Section

V contains an example which illustrates the theory. The paper

is completed by some concluding remarks.

Preliminary results of this work may be found in [21] and

[20], where proofs have not been given and the developments

were made on particular cases.

Notation: R is the set of real numbers and C is the set of

complex numbers. R+ denotes the set of positive real numbers

and R− is the set of negative real numbers. C0 is the set of

complex numbers with zero real part and C− denotes the set

of complex numbers with negative real part. M∗ ∈ Cn×m is

the complex-conjugate transpose of the matrix M ∈ Cm×n. If

M ∈ R
m×n, then M∗ = MT is the transpose of the matrix

M . σ(A) denotes the set of eigenvalues of the square matrix
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A and ∅ denotes the empty set. Let x ∈ Rn and f : Rn → Rm

be a differentiable function, then
∂f(x)

∂x

∣
∣
∣
∣
x=a

∈ R
m×n denotes

the Jacobian of f evaluated at a ∈ Rn.

II. PRELIMINARIES

A. Nonlinear moment matching - system driven by a signal

generator

Consider the single-input, single-output, nonlinear system

described by equations (1) and the signal generator (3).

Consider the interconnected system

ω̇ = s(ω), ẋ = f(x, l(ω)), y = h(x). (4)

Suppose that f and h are smooth mappings defined in the

neighbourhood of the origin of Rn and s and l are smooth

mappings defined in the neighbourhood of the origin of Rν .

Furthermore assume f(0, 0) = 0, s(0) = 0, l(0) = 0 and

h(0) = 0. Throughout the paper the results are local, although

global versions are easy to give. The following definitions and

assumptions have been given in [8].

Assumption 1: There exist a unique smooth mapping π(ω)
locally defined in the neighbourhood of 0, which is the solution

of the partial differential equation

∂π(ω)

∂ω
s(ω) = f(π(ω), l(ω)). (5)

Assumption 1 implies that system (4) has an invariant manifold

x = π(ω), with π(0) = 0, on which the restricted dynamics

of the system is described by (3).

Assumption 2: The signal generator (3) is observable1 and

Poisson stable2.

Definition 1: [8], [23] Consider the system (1) and the

signal generator (3). Assume that the signal generator (3) is

observable and that the equilibrium ω = 0 of the system (3)

is Poisson stable. Furthermore, assume that π is the unique

solution of (5). Then, we call the function h ◦ π the moment

of (1) at {s, l}. �

The assumptions and definitions above allow to derive a

result relating the notion of moment of the nonlinear system

(1) with the (well-defined) steady-state response (provided it

exists) of the output of the interconnection (4).

Theorem 1: [8] Consider system (1) and the signal generator

(3). Suppose Assumption 2 holds. Assume that the zero

equilibrium of the system ẋ = f(x, 0) is locally exponentially

stable and ω(0) 6= 0. Then Assumption 1 holds and the mo-

ment of (1) at {s, l} coincides with the (locally well-defined)

1The system (3) is observable if for any pair of initial conditions ωa(0) 6=
ωb(0), the corresponding output trajectories l(ωa(t)) and l(ωb(t)) are such
that l(ωa(t)) − l(ωb(t)) 6= 0 for all t.

2An equilibrium point ω̄ is said to be Poisson stable if the trajectory
ω(t), solution of the equation ω̇ = s(ω), passes close to ω̄ for arbitrarily
large times, in forward and backward direction. Hence, if every point in a
neighbourhood of ω̄ is Poisson stable, no trajectory of (3) can decay to zero
as time tends to infinity, see e.g., [22, Chapter 8].

steady-state response3 of the output of the interconnected

system (1). �

Now, we present the definition of a system that matches the

moment h ◦ π of (1) at {s, l}.

Definition 2: [8] The system (2), with ξ(t) ∈ Rν , matches

the moment of (1) at {s, l} if it has the same moment at {s, l}
as (1), i.e., the equation

ϕ(p(ω), l(ω)) =
∂p(ω)

∂ω
s(ω), (6)

has a unique solution p, locally defined in the neighbourhood

of the origin, such that

h(π(ω)) = ψ(p(ω)), (7)

where π is such that Assumption 1 holds. �

To compute the reduced order models that achieve moment

matching we make the following assumption.

Assumption 3: The mappings ψ and p are smooth and such

that ψ(0) = 0 and p(0) = 0. Furthermore (6) holds and p
possesses a local inverse.

Note that Assumption 3 holds for p(ω) = ω and ψ(ω) =
h(π(ω)). Hence, provided Assumptions 1-3 hold, a family

of reduced order models, all achieving moment matching at

{s, l}, is described by

Σδ(ξ) :

{

ξ̇ = s(ξ)− δ(ξ)l(ξ) + δ(ξ)u,

ψ = h(π(ξ)),
(8)

with ξ(t) ∈ Rν , where δ is such that the equation

s(p(ω)) + δ(p(ω))l(ω)− δ(p(ω))l(p(ω)) =
∂p(ω)

∂ω
s(ω), (9)

has the unique solution p(ω) = ω.

B. Nonlinear Petrov-Galerkin projection-based moment

matching

In this section we present a new family of reduced order

models that achieve moment matching, built through a non-

linear extension of the Petrov-Galerkin projection method in

which the projector is given by the mapping

̺ : Rn → R
n, ̺(π(ξ)) = ξ. (10)

In the linear case, π and ̺ are π(ξ) = V ξ and ̺(x) = W ∗x,

respectively, and equation (10) becomes W ∗V = I . The fol-

lowing result presents the family of nonlinear Petrov-Galerkin

projection-based reduced order models that achieve moment

matching at {s, l}.

3We use the notion of steady-state response as described in [24], see also
[25]. In lay terms, the steady-state response of a system fed by some specific
input is a function of time to which the actual response ”converges” as
time increases, provided such convergence exists. In detail, let x(t, x(0), u)
denote the value of the state of (1) at time t starting from the initial
condition x(0) under the effect of u. Suppose there exists xss(0) such
that limt→∞ ‖x(t, x(0), u) − x(t, xss(0), u)‖ = 0, for all x(0). Then the
response xss(t) = x(t, xss(0), u) is the steady-state of the system (1). Hence,
the steady-state response of (1) is yss(t) = h(xss(t)).
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Theorem 2: Consider system (1) and the signal generator

(3) assumed observable. Suppose π is the unique solution of

equation (5). Consider the family of models

ξ̇ =
∂̺(x)

∂x
f(x, u)

∣
∣
∣
∣
x=π(ξ)

,

ψ = h(π(ξ)),

(11)

where ̺ is such that equation (10) holds. Assume that the zero

equilibrium of (11) is exponentially stable. Then all models in

the family (11) match the moment of system (1) at {s, l}. �

Proof: To prove the claim it is sufficient to show that the

moment at {s, l} of all models (11) coincides with the moment

of (1). For, consider the partial differential equation

∂̺(x)

∂x
f(x, l(ω))

∣
∣
∣
∣
x=π(p(ω))

=
∂p(ω)

∂ω
s(ω) (12)

and note that, by equation (5), and the property
∂̺(x)
∂x

∣
∣
∣
x=π(ξ)

∂π(ξ)
∂ξ

= I , resulting from (10), the function

p(ω) = ω is a solution of (12). By the centre manifold theory,

this solution is unique, see [26]. As a result, The moment at

{s, l} of all models (11) is given by h(π(ω)), which proves

the claim.

Note that in the linear case a reduced order model of the

linear system ẋ = Ax+Bu, y = Cx is obtained by using the

projection x = V ξ, i.e, the reduced order model is given by

ξ̇ =W ∗AV ξ +W ∗Bu, ψ = CV ξ. By [1, Chapter 11], if V
and/or W are the Krylov projections, then the reduced order

model is an approximation of the linear system that matches

a prescribed set of moments.

III. NONLINEAR MOMENT MATCHING, A NEW APPROACH -

THE SIGNAL GENERATOR DRIVEN BY THE SYSTEM

A. Main results

In this section we present a new general framework for

nonlinear moment matching based on ”swapping” the inter-

connection between the system and the (generalized) signal

generator.

Consider the generalized signal generator defined by the

equations

˙̟ = q(̟, v), ̟(0) = 0, (13a)

d = υυυ(̟, x), (13b)

with ̟(t) ∈ Rν , d(t) ∈ Rν , q : Rν × R → Rν a smooth

mapping, with q(0, 0) = 0 and υυυ : Rν × Rn → Rν a smooth

mapping, with υυυ(0, 0) = 0 and
∂υυυ(̟,x)
∂̟

full rank around (0, 0).
Furthermore, assume that there exists ρ : Rn → Rν such

that, locally, υυυ(ρ(x), x) = 0, i.e., d restricted to the manifold

̟ = ρ(x) is zero. Consider the interconnection between the

nonlinear system (1) and the signal generator (13), described

by the relation v = y, as depicted in Figure 4, i.e., given by

ẋ = f(x, u),

ω̇ = q(̟,h(x)), (14)

d = υυυ(̟, x).

˙̟ = q(̟, v)
d = υυυ(̟, x)

ẋ=f(x,u)
y=h(x)

dy = vu

υυυ(̟, x)

Fig. 4. Diagram describing the signal d(t).

The following result describes the evolution of the signal d,

restricted to the manifold ̟ = ρ(x), based on the solution of

a nonlinear Sylvester-like partial differential equation.

Lemma 1: Consider the nonlinear signal generator (13).

Then d(0) = 0 and u(t) = 0 for all t ≥ 0 imply d(t) = 0
for all t, if and only if the nonlinear ”Sylvester-like” partial

differential equation
(
∂υυυ(̟, x)

∂̟
q(̟ − d, h(x)) +

∂υυυ(̟, x)

∂x
f(x, 0)

)∣
∣
∣
∣
̟=ρ(x)

= 0

(15)

holds for all x around zero. �

Proof: Note that ḋ = υ̇υυ(̟, x) = ∂υυυ
∂̟

˙̟ + ∂υυυ(̟,x)
∂x

ẋ =
∂υυυ(̟,x)
∂̟

q(̟,h(x)) + ∂υυυ(̟,x)
∂x

f(x, u). By the existence of the

mapping ρ, this further yields

ḋ
∣
∣
∣
̟=ρ(x)

=
∂υυυ(̟, x)

∂̟
[q(̟,h(x)) − q(̟ − d, h(x))]

∣
∣
∣
∣
̟=ρ(x)

+
∂υυυ(̟, x)

∂x

∣
∣
∣
∣
̟=ρ(x)

[f(x, u)− f(x, 0)]

+
∂υυυ(̟, x)

∂̟
q(̟ − d, h(x))

∣
∣
∣
∣
̟=ρ(x)

+
∂υυυ(̟, x)

∂x

∣
∣
∣
∣
̟=ρ(x)

f(x, 0).

Then

ḋ|̟=ρ(x),u=0 = 0 (16)

holds if and only if υυυ satisfies the equation

∂υυυ(̟, x)

∂̟
q(̟ − d, h(x)) +

∂υυυ(̟, x)

∂x
f(x, 0) = 0, (17)

for ̟ = ρ(x), yielding (15).

Assuming that (15) holds locally around zero, the nonlinear

interconnected system (14) can be rewritten based on the

evolution of the coordinates x and d as

ẋ = f(x, u),

ḋ =
∂υυυ(̟, x)

∂̟
[q(̟,h(x))− q(̟ − d, h(x))]

+
∂υυυ(̟, x)

∂x
[f(x, u)− f(x, 0)], (18)

ϑ = d,

with ̟ = ρ(x). Note that (18) is such that (x, d) = (0, 0)
is an equilibrium for u = 0. We are now ready to propose

a new definition of moment for the nonlinear system (1).

Throughout the rest of the paper we make the following

standing assumption.

Assumption 4: The mapping υυυ in (13b) is the unique

solution of the nonlinear partial differential equation (15) and

ρ is a smooth mapping such that υυυ(ρ(x), x) = 0.
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Definition 3: Consider the nonlinear system (1) and the

generalized nonlinear signal generator (13). Suppose that

Assumption 4 holds. We call the moment of (1) at q the

mapping

∂υυυ(̟, x)

∂x
[f(x, u)− f(x, 0)]

∣
∣
∣
∣
̟=ρ(x)

, (19)

locally defined in the neighbourhood of the origin, where ρ is

as in Assumption 4. �

We now give the definition of a model that achieves moment

matching. It is based on searching for the dynamics of the

output of the generalised signal generator fed by the model that

mimics the evolution of d from (18). Consider the nonlinear

system (2) given by

ξ̇ = ϕ(ξ, u),

η = ψ(ξ),

where ξ(t) ∈ Rν , u(t) ∈ R and η(t) ∈ R and ϕ and ψ are

smooth mappings with ϕ(0, 0) = 0 and ψ(0) = 0. Consider

the interconnection v(t) = η(t), between (2) and the signal

generator defined by (13a) with the output ζ(t) ∈ Rν (see

Figure 5).

˙̟ = q(̟,v)
ζ = χ(̟, ξ)

ξ̇ = ϕ(ξ, u)
η = ψ(ξ)

ζη = vu

Fig. 5. Interconnection between the nonlinear reduced order model and the
generalized signal generator.

Consider the nonlinear system (1) and the nonlinear signal

generator (13a). Similar to the arguments for the nonlinear

system (1), the moments of the system (2) at q can be

characterised by a continuously differentiable function χ :
Rν × Rν → Rν such that ζ = χ(̟, ξ) satisfies the equation
(
∂χ(̟, ξ)

∂̟
q(̟ − ζ, ψ(ξ)) +

∂χ(̟, ξ)

∂ξ
ϕ(ξ, 0)

)∣
∣
∣
∣
̟=γ(ξ)

= 0,

with γ such that χ(γ(ξ), ξ) = 0.

Furthermore, the output ζ mimics the evolution of d
(locally) if there exists a smooth mapping α, defined lo-

cally around zero, with α(0) = 0, satisfying 0 =

υυυ(ρ(α(ξ)), α(ξ)) = χ(γ(ξ), ξ), such that
˙︷ ︸︸ ︷

d− ζ

∣
∣
∣
∣
∣
x=α(ξ),u=0

=

0, for all t. Hence,
˙︷ ︸︸ ︷

d− ζ

∣
∣
∣
∣
∣
x=α(ξ)

= 0 for all u and t if the

moments ”match” (locally).

Definition 4: The system (2) matches the moment of (1) at

q if there exists a mapping α such that

∂υυυ(̟, x)

∂x
[f(x, u)− f(x, 0)]

∣
∣
∣
∣
̟=ρ(x),x=α(ξ)

=
∂χ(̟, ξ)

∂ξ
[ϕ(ξ, u)− ϕ(ξ, 0)]

∣
∣
∣
∣
̟=γ(ξ)

,

(20)

where ρ is as in Assumption 4 and γ is such that χ(γ(ξ), ξ) =
0. �

In other words, we seek (2) such that the output ζ of the

interconnection with the signal generator (13a) satisfies

ζ̇ =
∂χ(̟, ξ)

∂̟
[q(̟,ψ(ξ))− q(̟ − ζ, ψ(ξ))]

∣
∣
∣
∣
̟=γ(ξ)

+
∂υυυ(̟, x)

∂x
[f(x, u)− f(x, 0)]

∣
∣
∣
∣
̟=ρ(x),x=α(ξ)

.

(21)

Definition 4 is a generalization of the arguments from [9, Sec-

tion IV], i.e., a linear system ξ̇ = Fξ+Gu, ψ = Hξ matches

the moments of the linear system ẋ = Ax + bu, y = Cx at

q(̟, v) = Q̟+Rv if there exists χ(̟, ξ) = ̟+ξ such that

the signal ζ = χ(̟, ξ) satisfies equation (21) which becomes

ζ̇ = Qζ +ΥBu.

Remark 1: Following arguments similar to those used in the

proof of Lemma 1, χ satisfies the partial differential equation

(
∂χ(̟, ξ)

∂̟
q(̟ − ζ, ψ(ξ)) +

∂χ(̟, ξ)

∂ξ
ϕ(ξ, 0)

)∣
∣
∣
∣
̟=γ(ξ)

= 0.

For the linear case one may select ζ = ̟ + Pξ. Then ζ̇ =
Qζ + ΥBu if and only if for ̟ = γ(ξ) = −Pξ, we have

Q(̟− ζ)+ (RH+PF )ξ = 0, i.e., there exists P (invertible)

such that −QP + RH + PF = 0, yielding the family of

reduced order models ξ̇ = (Q − RH)ξ + ΥBu, ψ = Hξ as

in [9, Section IV]. �

We now compute a family of parametrized models of order

ν that achieve moment matching in the sense of Definition 4.

Theorem 3: Consider the nonlinear system (2) and the signal

generator (13a). Suppose Assumption 4 holds and d is as in

(13b). Let ζ = χ(̟, ξ). Assume there exists γ such that

χ(γ(ξ), ξ) = 0. Then the system (2) matches the moments

of (1) at q (in the sense of Definition 4), if and only if

(
∂χ(̟, ξ)

∂̟
q(̟ − ζ, ψ(ξ)) +

∂χ(̟, ξ)

∂ξ
ϕ(ξ, u)

)∣
∣
∣
∣
̟=γ(ξ)

=
∂υυυ(̟, x)

∂x
[f(x, u)− f(x, 0)]

∣
∣
∣
∣
̟=ρ(x),x=α(ξ)

.

(22)

A family of models (2) parametrized in ψ that achieves
moment matching is characterised by a mapping ϕ satisfying

∂χ(̟, ξ)

∂ξ

∣

∣

∣

∣

̟=γ(ξ)

ϕ(ξ, 0)+
∂χ(̟, ξ)

∂̟
q(̟ − ζ, ψ(ξ))]

∣

∣

∣

∣

̟=γ(ξ)

= 0,

(23)

if and only if equation (20) holds. �

Proof: Note that

ζ̇ =
∂χ(̟, ξ)

∂̟
q(̟,ψ(ξ)) +

∂χ(̟, ξ)

∂ξ
[ϕ(ξ, u)− ϕ(ξ, 0)]

+
∂χ(̟, ξ)

∂ξ
ϕ(ξ, 0).

By Definition (4), moment matching occurs if ζ satisfies

equation (21), which proves the first statement. Since equation
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(22) can be written as
(
∂χ(̟, ξ)

∂̟
q(̟ − ζ, ψ(ξ)) +

∂χ(̟, ξ)

∂ξ
ϕ(ξ, 0)

)∣
∣
∣
∣
̟=γ(ξ)

=
∂υυυ(̟, x)

∂x
[f(x, u)− f(x, 0)]

∣
∣
∣
∣
̟=ρ(x),x=α(ξ)

− ∂χ(̟, ξ)

∂ξ
[ϕ(ξ, u)− ϕ(ξ, 0)]

∣
∣
∣
∣
̟=γ(ξ)

,

the second claim also follows directly.

Equations (2) with ϕ satisfying (23) defines a family of

nonlinear models of order ν that match the moments of (1) at

q. Theorem 3 is a generalised version of the arguments in [9,

Section IV], i.e., ΣH : ξ̇ = (Q−RH)ξ+ΥBu, ψ = Hξ, is

a family of reduced order models parametrized in ψ(ξ) = Hξ
that match the moments ΥB of the linear system ẋ = Ax +
Bu, y = Cx.

Setting χ(̟, ξ) = ̟±ξ, the family of reduced order models
that achieve moment matching can be described by equations
of the form

ξ̇ = −q(∓ξ, ψ(ξ)) +
∂υυυ(̟,x)

∂x
[f(x, u) − f(x, 0)]

∣

∣

∣

∣

̟=∓ξ,x=α(ξ)

,

η = ψ(ξ),
(24)

with α such that ρ(α(ξ)) = ξ, parametrized in ψ.

Moment matching in the sense of Definition 4 is also

moment matching by Definition 2, in the sense that the

reduced order model (2) that matches the moments of (1)

at q(̟, 0) + rv in the sense of Definition 4 yields a model

that matches the moments of (1) at {q(ω, 0), rTω}, with

r = ∂q(̟,v)
∂v

∣
∣
∣
̟=0

, in the sense of Definition 2.

Theorem 4: Consider a nonlinear system (1). Let q be

as in (13a). Furthermore, for ̟ = ω, assume that the pair

{q(ω, 0), rTω}, defines an observable signal generator (3).

Suppose that Assumption 4 holds and d is as in (13b). Let

π be the unique solution of the equation
∂π(ω)
∂ω

q(ω, 0) =
f(π(ω), rTω). Then a model (2) that matches the moments

of (1) at {q(ω, 0), rTω} matches the moment of (1) at

q(̟, 0) + rv if and only if ϕ satisfies the equation

∂χ(ω, ξ)

∂ξ
ϕ(ξ, 0) = −∂χ(ω, ξ)

∂ω
[q(ω−ζ, 0)−rh(π(ξ))]. (25)

Proof: We prove the necessity. Assume that (2) matches

the moment of (1) at {q(ω, 0), rTω}. Then ψ(ξ) = h(π(ξ)).
Let ζ = χ(ω, ξ). Then

ζ̇ =
∂χ(ω, ξ)

∂ω
[q(ω, 0) + rh(π(ξ))] +

∂χ(ω, ξ)

∂ξ
ϕ(ξ, u).

Furthermore,

ζ̇ =
∂χ(ω, ξ)

∂ω
[q(ω, 0) + rh(π(ξ))]

+
∂χ(ω, ξ)

∂ξ
[ϕ(ξ, u)− ϕ(ξ, 0)] +

∂χ(ω, ξ)

∂ξ
ϕ(ξ, 0).

If (2) matches the moment at q(ω, 0) + rv in the sense of

Definition 4 then (21) holds and the claim follows.

The sufficiency uses similar arguments and follows after

employing equation (21), hence the proof is omitted.

B. Moment matching with asymptotic stability

Since, in practice, asymptotically stable reduced order mod-

els are desirable, in this section, we briefly discuss the problem

of achieving model reduction by moment matching such that

the approximant has an asymptotically stable equilibrium. To

this end, note that the linearisation of the model (2) at (0, 0),
that matches the moments ΥB of the linearisation of system

(1), is a model of the form ΣH : ξ̇ = (Q−RH)ξ+ΥBu, ψ =

Hξ, with Q = ∂q(̟,v)
∂̟

∣
∣
∣
(̟,v)=(0,0)

, R = ∂q(̟,v)
∂v

∣
∣
∣
(̟,v)=(0,0)

,

H = ∂ψ(ξ)
∂ξ

∣
∣
∣
ξ=0

. Assuming that the pair (Q,R) is controllable,

there exists H such that the eigenvalues of Q−RH are in the

open left half plane, hence, there exists a model (2) that has

an asymptotically stable equilibrium at (0, 0), see, e.g., [22],

[27] for details. Note that this is not a necessary condition.

C. Moment matching at {s, l} and at q

In this section we compute the reduced order model (mod-

els) that matches (match) moments at {s, l} and at q, simul-

taneously. This is done by a selection of the free parameters,

i.e., from the classes of models that achieve moment matching

we identify the one matching two sets of moments, simultane-

ously. This is the nonlinear extension of the problem of finding

linear reduced order models that match a number of moments

equal to double their dimension, see, e.g., [1, Chapter 11] and

the references therein.

Consider the simultaneous interconnection of system (1)

with the signal generator (3) defined by the relation u = θ and

with the signal generator (13) defined by the relation y = v.

We call this a two-sided interconnection of system (1) with

the signal generators (3) and (13), see Figure 6.

ẋ = f(x, u)
y = h(x)

v = yu = θω̇ = s(ω)
θ = l(ω)

˙̟ = q(̟, v)
d = υυυ(̟, x)

d

Fig. 6. Diagram illustrating the two-sided interconnection of (1) with the
signal generators (3) and (13).

In this case the moments of system (1) at {s, l} and at q are

characterised simultaneously by the evolution of the signal d if

and only if the solution υυυ of (15) satisfies a certain equation

on the manifold x = π(ω), restricted to ̟ = ρ(x), with ρ
such that Assumption 4 holds.

Proposition 1: Consider the interconnection between the
system (1) and the signal generators (3) and (13) defined by
θ = u and v = y, respectively. Then the moments of (1) at
{s, l} and at q are characterised, simultaneously, by the signal
d satisfying equation (18) if and only if υυυ satisfies
(

∂υυυ(̟,x)

∂̟
q(̟ − d, h(π(ω))) +

∂υυυ(̟,x)

∂x
f(x, 0)

)∣

∣

∣

∣

̟=ρ(x),x=π(ω)

= 0,
(26)

where ρ and υυυ are such that Assumption 4 holds, and π is the

unique solution of (5). �

Proof: Let M = {(ω, x)|x = π(ω)}, where π is the

unique solution of (5). Then d = υυυ(̟, π(ω)) on M. Hence,
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for ̟ = ρ(x),

ḋ =
∂υυυ(̟, x)

∂̟

∣
∣
∣
∣
x=π(ω)

˙̟ +
∂υυυ(̟, x)

∂x

∣
∣
∣
∣
x=π(ω)

∂π(ω)

∂ω
ω̇

=
∂υυυ(̟, x)

∂̟

∣
∣
∣
∣
x=π(ω)

q(̟,h(π(ω)))

+
∂υυυ(̟, x)

∂x

∣
∣
∣
∣
x=π(ω)

∂π(ω)

∂ω
s(ω),

where s is as in (3). By (5)

ḋ =
∂υυυ(̟, x)

∂̟

∣
∣
∣
∣
x=π(ω)

q(̟,h(π(ω)))

+
∂υυυ(̟, x)

∂x

∣
∣
∣
∣
x=π(ω)

f(π(ω), l(ω)),

where l is as in (3). Restricting the behaviour of d to the

manifold ̟ = ρ(x) yields the claim, by Lemma 1.

The next result provides the conditions that the reduced

order model (2) must satisfy to match the moments of (1)

at {s, l} and at q, simultaneously.

Theorem 5: Consider the interconnection between the sys-

tem (2) and the signal generators (3) and (13) defined by

θ = u and w = η, respectively. Let υυυ be such that Assumption

4 holds. Let γ be such that χ(γ(ξ), ξ) = 0, with χ as in

Definition 4 and let π be the unique solution of (5). Then the

following statements are equivalent.

1) The models (2) match the moments of (1) at {s, l} and

at q, simultaneously.

2) There exists a coordinate transformation ξ = p(ω), with

p satisfying (6), such that ϕ and ψ satisfy the equations

∂χ(̟, ξ)

∂ξ

∣
∣
∣
∣
̟=γ(ξ),ξ=p(ω)

ϕ(p(ω), l(ω))

=
∂υυυ(̟, x)

∂x

∣
∣
∣
∣
̟=γ(p(ω)),x=π(ω)

π(ω)

∂ω
s(ω)

− ∂χ(̟, ξ)

∂̟
q(̟ − ζ, h(π(ξ)))

∣
∣
∣
∣
̟=γ(ξ),ξ=p(ω)

− ∂υυυ(̟, x)

∂x
f(x, 0)

∣
∣
∣
∣
̟=γ(p(ω)),x=π(ω)

(27)

and

ψ(p(ω)) = h(π(p(ω))).
�

Proof: We first prove that ”1) ⇒ 2)”. Consider the inter-

connection between system (2) and the signal generators (3)

and (13) defined by θ = u and w = η, respectively. Note that

if (2) matches the moments of (1) at {s, l}, then there exists

a coordinate transformation ξ = p(ω) such that ψ(p(ω)) =

h(π(p(ω))), where p satisfies ϕ(p(ω), l(ω)) = ∂p(ω)
∂ω

s(ω). Let

ζ = χ(̟, p(ω)). Let γ be such that χ(γ(ξ), ξ) = 0. Then

ζ̇ = ∂χ(̟,p(ω))
∂̟

q(̟,ψ(p(ω)))+ ∂χ(̟,ξ)
∂ξ

∣
∣
∣
ξ=p(ω)

ϕ(p(ω), l(ω)).

If, in addition, (2) matches the moment at q(̟, v), then ζ̇
satisfies (21) and by Theorem 4, the claim follows.

We now prove ”2) ⇒ 1)”. Note that if there exists p such that

ψ(p(ω)) = h(π(p(ω))) and φ(p(ω)) = h(π(p(ω))), where

p satisfies (6), then (2) matches the moment at {s, l}, by

Definition 2. Furthermore, (27) can be written as

∂χ(̟, ξ)

∂ξ

∣
∣
∣
∣
̟=γ(ξ),ξ=p(ω)

ϕ(p(ω), l(ω))

=
∂υυυ(̟, x)

∂x

∣
∣
∣
∣
̟=γ(p(ω)),x=π(ω)

π(ω)

∂ω
s(ω)

− ∂χ(̟, ξ)

∂̟
q(̟ − ζ, h(π(ξ)))

∣
∣
∣
∣
̟=γ(ξ),ξ=p(ω)

− ∂υυυ(̟, x)

∂x
f(x, 0)

∣
∣
∣
∣
̟=γ(p(ω)),x=π(ω)

± ∂υυυ(̟, x)

∂x
f(x, l(ω))

∣
∣
∣
∣
̟=γ(p(ω)),x=π(ω)

.

(28)

By assumption, π is the unique solution of the equation
∂π(ω)
∂ω

= f(π(ω), l(ω)). Hence (28) becomes (22) and, by

Theorem 4, the claim follows.

Remark 2: In the linear case, by [21, Proposition 1], a

reduced order model ξ̇ = Fξ + Gu, ψ = Hξ, that matches

the moments at σ(S) and at σ(Q), simultaneously, satisfies

(27) which becomes QP−PS = ΥBL−RCΠ, for P = ΥΠ,

provided the matrix ΥΠ is invertible, with Π and Υ, the unique

solutions of the Sylvester equations AΠ + BL = ΠS and

QΥ = ΥA+RC, respectively. �

A more explicit condition is achieved for the family of

models (24), i.e., in the family of models (24) that match

the moment at q, there exist parameters ψ that identify the

model(s) that also match the moments of (1) at {s, l}.

Corollary 1: Consider a model that matches the moments of

(1) at q, described by equations (24). Then the model (24) also

matches the moments of (1) at {s, l} if and only if there exists

a coordinate transformation ξ = p(ω) such that ψ satisfies the

equation

∂υυυ(̟, x)

∂x

∣
∣
∣
∣
̟=∓p(ω),x=π(ω)

π(ω)

∂ω
s(ω)

+ q(∓p(ω), ψ(p(ω)))|ψ(p(ω))=h(π(p(ω)))
=
∂υυυ(̟, x)

∂x
[f(x, u)− f(x, 0)]

∣
∣
∣
∣
x=π(ω),̟=∓p(ω)

,

(29)

where υυυ and ρ are such that Assumption 4 holds, with π the

unique solution of (5). �

Proof: By (24), for ξ = p(ω), we have

ϕ(p(ω), l(ω)) = −q(∓p(ω), ψ(p(ω)))

+
∂υυυ(̟, x)

∂x
[f(x, u)− f(x, 0)]

∣
∣
∣
∣
x=π(ω),̟=∓p(ω)

.

Substituting this relation in (27) and noting that by (24),

χ(̟, ξ) = ̟ ± ξ, yields the claim.

Note that, unlike the linear case, equation (29) may not have

a unique solution, hence there might be one or more models

(24) that achieve moment matching of (1) at {s, l} and at q,

simultaneously.

D. Nonlinear Petrov-Galerkin projection-based moment

matching at {s, l} and at q

In this section we compute the subfamily of nonlinear

Petrov-Galerkin projection-based models (11) from Theorem
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2 that achieve moment matching at {s, l} and at q, simultane-

ously.

Proposition 2: Consider the family of models (11). Suppose

that the assumptions from the preamble of Theorem 2 hold.

Then (11) matches the moments of (1) at {s, l} and at

q simultaneously if there exists a coordinate transformation

ξ = p(ω) such that π ◦ p and ̺ in (10) satisfy the equation
(
∂̺(x)

∂x
− ∂χ(̟, ξ)

∂ξ

)∣
∣
∣
∣
̟=γ(p(ω)),x=π(ω)

f(π(p(ω)), l(ω))

=
∂χ(̟, ξ)

∂̟
q(̟,h(π(ξ)))

∣
∣
∣
∣
̟=γ(p(ω)),ξ=p(ω)

+
∂υυυ(̟, x)

∂x
f(x, 0)

∣
∣
∣
∣
̟=γ(p(ω)),x=π(p(ω))

,

(30)

with υυυ such that Assumption 4 holds and γ such that

χ(γ(ξ), ξ)|ξ=p(ω) = 0. �

Proof: The result is a direct application of Theo-

rem 5 to the family of models (11). In fact, substituting

ϕ(π(p(ω)), l(ω)) = ∂̺(x)
∂x

f(x, l(ω))
∣
∣
∣
x=π(ξ),ξ=p(ω)

, as in (11),

into (27) and utilising equation (10) yields the claim.

IV. THE NONLINEAR INPUT-AFFINE CASE

In this section we apply the results of Section III to the

case of nonlinear systems affine in the input, often arising

in applications. In this case, the aforementioned results yield

explicit families of models that achieve moment matching.

A. Moment matching at q(̟, v) = q̄(̟) + r(̟)v

Consider a nonlinear system (1) with f(x, u) = f̄(x) +
g(x)u, where f̄ and g are smooth mappings, with f̄(0) =
0 and h(0) = 0. Furthermore, consider a generalized signal

generator (13), with q(̟, v) = q̄(̟) + r(̟)v, where q̄ and r
are smooth mappings, such that q̄(0) = 0. Let d = ̟± ῡυυ(x),
with ῡυυ a smooth mapping such that ῡυυ(0) = 0. By Lemma 1,

d satisfies equation (18) if and only if ῡυυ is the solution of the

nonlinear Sylvester-like equation

q̄(∓ῡυυ(x)) + r(∓ῡυυ(x))h(x) + ∂ῡυυ(x)

∂x
f̄(x) = 0. (31)

Note that ρ(x) = ∓ῡυυ(x) with ρ such that Assumption 4 holds.

By Definition 3, the moments of (1) at {q̄, r} are described

by ±∂ῡυυ(x)
∂x

g(x).
Let ζ = χ(̟, ξ) = ̟± ξ. In this case, γ(ξ) = −ξ yielding

ζ = 0. By construction, ξ = ῡυυ(x). Imposing the matching

condition as in Theorem 3, the equations

Σψ(ξ) :







ξ̇ = −q̄(∓ξ)− r(∓ξ)ψ(ξ) + ∂ῡυυ(x)

∂x
g(x)

∣
∣
∣
∣
x=α(ξ)

u,

η = ψ(ξ),
(32)

where α is such that ῡυυ(α(ξ)) = ∓ξ, with ξ(t) ∈ Rν , define a

class of models of order ν, parametrized in ψ, that match the

moments of (1) at {q̄, r}.

Moment matching in the sense of Definition 4 is related to

moment matching in the sense of Definition 2, i.e., a model

Σψ(ξ) matches the moments of (1) at {q̄, r} in the sense of

Definition 4 if and only if Σψ(ξ) matches the moments of (1)

at {q̄, l}, with l(̟) = rT (0)̟, in the sense of Definition 2,

for ω = ̟. For the sake of clarity, we only consider the case

ζ = ̟ + ξ.

Theorem 6: Consider a nonlinear observable system de-

scribed by the equations (1). Let q̄(ω) + r(0)v define the

generalized signal generator in (13). Furthermore, assume that

the pair {−q̄, l}, with l(ω) = rT (0)ω, defines an observable

signal generator (3). Consider the systems Σψ(ξ) in (32) and

Σδ(ξ) in (8). Suppose that Assumptions 1 and 4 hold. The

following statements hold.

1) Σψ(ξ), described by equations (32), that matches the

moments of (1) at {q̄, r} in the sense of Definition 4,

matches the moment at {−q̄(−ω), rT (0)ω} if and only

if r(0)h(π(ω)) = ∂ῡυυ(x)
∂x

g(x)
∣
∣
∣
x=α(ω)

rT (ω)rT (0)ω and

ψ(ω) = h(π(ω)).
2) Σδ(ξ), described by equations (8), that matches the

moments of (1) at {−q̄(−ω), rT (0)ω}, in the sense

of Definition 2, matches the moment of at {q̄, r} if

and only if r(0)h(π(ξ)) = δ(ξ)rT (0)ξ and δ(ξ) =
∂ῡυυ(x)
∂x

g(x)
∣
∣
∣
x=α(ξ)

. �

Σψ(ξ) at
{q̄, r}

˙̟ = q(̟)
θ = l(̟)

θ = u η

Fig. 7. Diagram illustrating statement 1) of Theorem 6.

Proof: We prove statement 1). Let Σψ(ξ) be as in

(32). Then Σψ(ξ) matches the moment at {−q̄(−ω), rT (0)ω}
if and only if, by Definition 2, there exists p satisfying

ψ(p(ω)) = h(π(p(ω))), such that the equation −q̄(−p(ω)) +
rψ(p(ω))+ ∂ῡυυ(x)

∂x
g(x)

∣
∣
∣
ξ=ῡυυ(x),ξ=p(ω)

rT (0)ω = −∂p(ω)
∂ω

q̄(−ω)
has the unique solution p(ω) = ω. This holds if and only if

r(0)h(π(ω)) = ∂ῡυυ(x)
∂x

g(x)
∣
∣
∣
x=α(ω)

rT (0)ω.

We now prove statement 2). Consider a system Σδ(ξ) that

matches the moment of (1) at {−q̄(−ω), rT (0)ω}. Then, Σδ(ξ)
matches the moment at q̄(ω) + r(0)v if and only if ζ = ω+ ξ
satisfies (21). Note that

ζ̇ = ω̇+ξ̇ = q̄(ω)+r(0)h(π(ξ))−q̄(−ξ)−δ(ξ)rT (0)ξ+δ(ξ)u.
Then, by (21) and Definition 4, ζ must satisfy

ζ̇ = q̄(ω)− q̄(ω − ζ
︸ ︷︷ ︸

−ξ

) +
∂ῡυυ(x)

∂x
g(x)

∣
∣
∣
∣
x=α(ξ)

u,

for all ξ and u. This holds if and only if δ(ξ) =
∂ῡυυ(x)
∂x

g(x)
∣
∣
∣
x=α(ξ)

and r(0)h(π(ξ)) = δ(ξ)rT (0)ξ.

B. Moment matching at {s, l} and at {q̄, r}
In this section we give the nonlinear counterpart of [21,

Proposition 1], i.e., we compute the subfamily of models of

order ν that match the moments at {s, l} and the moments at

{q̄, r}, of a given nonlinear system, simultaneously.
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Proposition 3: Consider the nonlinear system (1) and the

signal generators (3) and (13a). Let π be the unique solution

of (5) and ῡυυ be the unique solution of (31). Let α be such that

ῡυυ(α(ξ)) = ∓ξ. Then the following statements hold.

1) There exist a subfamily of models Σδ(ξ) as in (8)

that match the moments of (1) at {s, l} and {q̄, r}
simultaneously if and only if δ satisfies the equation

∂p(ξ)

∂ξ
δ(ξ) =

∂ῡυυ(x)

∂x
g(x)

∣
∣
∣
∣
x=α(ξ)

l(ξ), (33)

where p : Rν → Rν satisfies the equation

q̄(±p(ξ)) + ∂p(ξ)

∂ξ
s(ξ) =

∂ῡυυ(x)

∂x
g(x)

∣
∣
∣
∣
x=α(ξ)

l(ξ)

∓ rh(π(ξ)).
(34)

2) There exist a subfamily of models Σψ(ξ) as in (32)

that match the moments of (1) at {s, l} and {q̄, r}
simultaneously if and only if

ψ(p(ω)) = h(π(ω)), (35)

where p : Rν → Rν satisfies the equation

q̄(±p(ω)) + ∂p(ω)

∂ω
s(ω) =

∂υυυ(x)

∂x
g(x)

∣
∣
∣
∣
x=α(ξ),ξ=p(ω)

l(ω)

∓ rh(π(ω)).
(36)

�

Proof: It follows arguments identical to the proof of

Theorem 6, hence it is omitted.

Remark 3: Assuming that p uniquely satisfies equation (34),

there exists a unique model Σδ(ξ) that matches the moments of

(1) at {s, l} and at {q̄, r}, simultaneously. Furthermore, if p(ξ)
is a diffeomorphism, then Σδ(ξ) = Σ

( ∂p(ξ)
∂ξ )

−1 ∂ῡυυ(x)
∂x

g(x)|
x=α(ξ)

.

Similarly, assuming that p uniquely satisfies equation (36),

there exists a unique model Σψ(ξ) that matches the moments

of (1) at {s, l} and {q̄, r}. Finally, if we assume that p is the

identity, then statement 1) and statement 2) from Proposition

3 are equivalent and moreover

Σδ(ξ) = Σ ∂ῡυυ(x)
∂x

g(x)|
x=α(ξ)

= Σh(π(ξ)) = Σψ(ξ)

is the unique model of order ν that matches the moments of

(1) at {s, l} and at {q̄, r}, simultaneously. �

V. ILLUSTRATIVE EXAMPLES

A. An academic example

Consider the one-dimensional system described by the equa-

tions

ẋ = −x− x3 + u,

y = x, (37)

and let the signal generator (3) be ω̇ = 0, θ = ω. Consider

the equation π3(ω)+π(ω)−ω = 0, which is of the form (5).

This equation has the unique solution

π(ω) =
1

6

3

√

108ω + 12
√

12 + 81ω2

− 2
1

3
√

108ω + 12
√
12 + 81ω2

, π(0) = 0.
(38)

A family of first order models, parametrized in δ, that match

the moment of (37) at {0, ω} is

ξ̇ = δ(ξ)(u − ξ),

η =
1

6

3

√

108 ξ + 12
√

12 + 81 ξ2 (39)

− 2
1

3

√

108 ξ + 12
√

12 + 81 ξ2
,

for any δ that satisfies (9).

Consider now the generalized signal generator ˙̟ = rv, r ∈
R, d = ̟+υυυ(x). Equation (15) becomes

∂υυυ(x)

∂x
(x3+x) = rx.

The (unique) solution of this differential equation such that

υυυ(0) = 0, is υυυ(x) = r arctanx. Let ξ = υυυ(x). Note that,

since the arctan function is invertible, there exists (locally)

α that satisfies α(υυυ(x)) = x, given by α(ξ) = tan
ξ

r
.

Hence the moment of (37) at q(̟, v) = rv, as in Defi-

nition 3, is
∂υυυ(x)

∂x
g(x)

∣
∣
∣
∣
x=α(ξ)

=
r

1 + x2

∣
∣
∣
∣
x=α(ξ)

. Imposing

the moment matching conditions then
∂υυυ(x)

∂x
g(x)

∣
∣
∣
∣
x=α(ξ)

=

∂υυυ(x)

∂x
g(x)

∣
∣
∣
∣
x=α(ξ)

=
r

1 + tan2 ξ
r

= r cos2
(
ξ

r

)

. A family of

first order models parametrized by ψ that match the moment

of (37) at rv is given by the equations

ξ̇ = r

[

cos2
(
ξ

r

)

u− ψ(ξ)

]

,

η = ψ(ξ). (40)

Let r = 1. Consider equation (36), i.e.,

π(ω(ξ)) − ξ cos2(ξ) = 0, (41)

with π as in (38). By Proposition 3, there exists a model

(40) with ψ(ξ) = π(ω(ξ)) = ξ cos2 ξ that matches both the

moment as in (38) and the moment of (37) at rv, i.e.,

ξ̇ = cos2 ξ(u − ξ), (42)

η = ξ cos2 ξ.

B. Reduced order model of a DC-to-DC Ćuk converter

E

L1
C2

u 1− u

L3

C4 G

Fig. 8. DC-to-DC Ćuk converter circuit.
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The averaged model of a DC-to-DC Ćuk converter is given

by the equations, see [28],

L1
di1(t)

dt
= −(1− u)v2 + E,

C2
dv2(t)

dt
= (1− u)i1 + ui3,

L3
di3(t)

dt
= −uv2 − v4, (43)

C4
dv4(t)

dt
= i3 −Gv4,

y = v4,

where i1(t) ∈ R+ and i3(t) ∈ R− describe currents,

v2(t) ∈ R+ and v4(t) ∈ R− describe voltages, L1, C2, L3, C4

and G are positive parameters, E ∈ R and u(t) ∈ (0, 1) is

a continuous control signal which represents the slew rate of

a Pulse-Width-Modulation circuit used to control the switch

position in the converter. Let the first equation of the signal

generator (13a) be described by q(̟, v) = ̟ + v. Let xT =
[x1 x2 x3 x4]

T = [i1 v2 i3 v4]
T ∈ R4 be the state of the model.

Let the output (13b) be d = ̟+υυυ(x). Because of the bilinear

form of the model, equation (15) becomes
∂υυυ(x)
∂x

f(x, 0) +
C4x4 = 0, with f(x, u) = [(−(1 − u)x2 + E)/L1 ((1 −
u)x1 + ux3)/C2 (−ux2 − x4)/L3 (x3 − Gx4)/C4] and has

the solution υυυ(x) = L3

C4L3+GL3−1x3+
C4L3

C4L3+GL3−1x4+higher

order terms. Taking the linear part of the solution, a family of

first order models of the form (24) that match the moment of

(43) at C4v is described by the equations

ξ̇ = −C4ψ(ξ)−
v2

C4L3 +GL3 − 1
u, (44)

η = ψ(ξ),

parametrized in ψ and v2. Note that v2 is a function of ξ such

that Assumption 4 holds. Now, select {s(ω), l(ω)} = {0, ω}.

Then equation (5) has the unique solution

π(ω) =








GE ω2

(1−ω)2

E 1
1−ω

GE ω
ω−1

E ω
ω−1







.

Hence h(π(p(ω))) = p(ω)
p(ω)−1 and equation (29) has the unique

solution p(ω) = ω, for v2 selected as v2(ω) = ω(C4L3 +
GL3−1)/(ω−1). By Corollary 1, the unique first order model,

from the family of models (44), that matches the moment at

̟+ v and the moment at {0, ω}, simultaneously, is given by

the equations

ω̇ = −ω − ω

ω − 1
(u+ 1), (45)

η =
ω

ω − 1
.

Figure 9(a) shows the outputs of the systems (43) and (45),

respectively, for u(t) = 1(t)
2 , where 1(t) denotes the Heaviside

function. Figure 9(b) shows the comparison of the outputs of

the systems (43) and (45), respectively, for u(t) = ǫet, with

ǫ > 0. This input has been chosen since we are matching at

˙̟ = ̟ + v. Note that u(t) < 1 for large values of t > 0 if ǫ
is in the neighbourhood of zero.

(a)

(b)

Fig. 9. Response of the Ćuk DC-to-DC converter (red, solid line) and of the
first order model (45) (blue, dashed line) for input u = 0.5 · 1(t) (a) and
u(t) = 10−15 · et, with ω(0) = −12 (b).

VI. CONCLUSIONS

In this paper we have extended the results from [9], [14].

In particular we have presented a time-domain notion of

moment for general nonlinear systems in terms of the evo-

lution of the output of a generalized signal generator driven

by the nonlinear system. In addition, we have defined a

new notion of moment matching and presented the class of

(nonlinear) parametrized reduced order models that achieve

moment matching. Furthermore, we have established relations
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with existing notions of moment, showing that the families of

reduced order models that achieve nonlinear moment matching

are equivalent. Furthermore, we have computed the reduced

order model that matches moments at two sets of interpolation

points, simultaneously, i.e., the number of interpolation points

is twice the order of the model.
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