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� Abstract Volumetric growth of an elastic body may give rise to residual stress. Here a rigorous

analysis of the residual strains and stresses generated by growth in the axisymmetric Kirchhoff plate

is given. Balance equations are derived via the global constraint principle, growth is incorporated via

a multiplicative decomposition of the deformation gradient, and the system is closed by a response

function. The particular case of a compressible neo-Hookean material is analyzed and the existence

of residually stressed states is established.
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1 Introduction

The description of volumetric growth of an elastic material within the framework of contin-
uum mechanics can be achieved through the multiplicative decomposition of the deformation
gradient [23]. The basic idea is to decompose the growth process and the elastic response in
two different deformation steps. A volumetric growth deformation tensor is specified locally
and is followed by an elastic response ensuring integrity and continuity of the body as well
as specific boundary conditions. However, the local specification of volumetric growth of a
three-dimensional body may distort the constituent volume elements in such a way that the
grown elements are unable to form a continuous body residing in Euclidean space. This situ-
ation is usually referred to as incompatible growth and corresponds to a growth deformation
tensor which cannot be expressed as the gradient of a vector field. Geometrically speaking this
means that the set of distances between points in the grown body does not agree with the
set of Euclidean distances between points in any simply connected subset of three-dimensional
Euclidean space. However, if an elastic response distorts the grown volume elements so that
they again form a continuous Euclidean body this can give rise to so called residual stresses,
that is stresses that remain in the body in the absence of loading. Residual stresses are found
in many soft tissues and are of particular importance in a number of bio-mechanical contexts,
e.g. in the genesis of stress in blood vessels and trachea [6, 7, 10, 13, 25, 24, 2]. The elastic
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responses to growth and the stability thereof have been studied in depth for three-dimensional
models of growing elastic bodies with spherical shell [14, 1] and cylindrical geometries [15, 26].

Many biological structures such as leaves, skin, and thin biological membranes are essentially
two dimensional. Therefore, it is of interest to adapt the theory of volumetric growth to
structures which can be described by two dimensional elasticity. Previous works along these
lines include: the analysis of cavitation in growing elastic membranes [20]; the development of
a theory (linear) elastic plates equipped a priori with metric tensors characterizing growth and
such that preclude their isometric immersion into three-dimensional Euclidean space [12]; and
the generalization of Föppl-von Kármán equation to include an extra source of mean curvature
[11]. Our approach here is different in the sense that we do not use the assumption that the
body is thin. Rather, following the theory of Cosserat and Kirchhoff plates, we constrain the
possible deformations of a three-dimensional body to deformations compatible with the two-
dimensional geometry [3]. This approach allows to explore the full nonlinear behavior of the
material and does not restrict the analysis to thin bodies.

The plan of the paper is as follows: first we examine the kinematics of cylindrical deforma-
tions of an axisymmetic plate and offer two interpretations of the multiplicative decomposition
of the deformation gradient. In Section 3 the Global Constraint Principle is applied to derive
balance equations for a plate constrained to a class of “plate-like” configurations. A nonlinearly
elastic constitutive relation is chosen in Section 4 and is modified to model the elastic distortion
from an incompatibly grown state. In Section 5 the closed system of ordinary differential equa-
tions is converted to a set of autonomous equations. In Sections 6 and 7 dynamical systems
theory is employed to establish the existence of solutions of the equations for two classes of
growth tensors. Results of numerical experiments are also presented. In this paper we study
the Kirchhoff plate, namely one that is constrained to maintain constant thickness; however,
a similar model allowing for expansion or contraction through the thickness can be derived
through a similar procedure.

2 Kinematics

By Euclidean 3-space we mean the space E
3 of space points equipped with the inner product:

(x1i + y1j + z1k) · (x2i + y2j + z2k) = x1x2 + y1y2 + z1z2. (1)

This endows each spatial point with a norm,

‖xi + yj + zk‖ =
√

x2 + y2 + z2, (2)

which indicates the distance of that point from the origin.

To each point of E
3 there is anchored a three-dimensional vector space of tangent vectors.

Each such vector space is called the tangent space at that point in E
3. Other than spatial

position in E
3, all vectorial and tensorial quantities discussed, such as forces and deformation

gradients, will be constructed from tangent vectors and linear functionals on tangent vectors.
Since each tangent space is a distinct vector space, each has a distinct local basis of vectors
that span it.
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For example, for the cylindrical coordinates that will be used here, we have the local or-
thonormal basis

e1(Θ) = cos Θ i + sin Θ j, e2(Θ) = − sin Θ i + cos Θ j, and k. (3)

See Figure 1.

Z

R

Θ

k

e 1(Θ)

e (Θ)2

x

y

z

Figure 1: Cylindrical coordinates and local orthonormal basis

We use these vectors to define the position function for the reference configuration:

X(R, Θ, Z) = R e1 (Θ) + Z k. (4)

When used to define a position function, this linear combination of vectors may be considered
as a tangent vector anchored at the origin of E

3 and pointing to the spatial position occupied by
the material point with coordinates (R, Θ, Z). When used in expressions for force and stress at
a spatial point, however, they are to be understood as tangent vectors anchored at the spatial
point in question, as shown in Figure 1.

2.1 Deformation and Deformation Gradient

If we let B be the set of coordinates (R, Θ, Z) of all the material points of the body, then X (B)
is the subset of E

3 occupied by the body in its reference configuration. A deformation of the
body is a differentiable, invertible map χ : X(B) → E

3 whose value x0 = χ(X0) is the spatial
position of the material point originally located at X0 ∈ X(B).

A local, linear description of the deformation is provided by its gradient. This deformation
gradient maps infinitesimal material lines in the reference configuration to their images in the
deformed configuration. Since a material line is a tangent vector, this makes the deformation
gradient a two-point tensor : it maps tangent vectors anchored at a point X0 in the reference
configuration to tangent vectors anchored at x0 = χ (X0), the image of X0 under the defor-
mation.

If the body is deformed so that it remains cylindrical and is neither stretched nor compressed
along the vertical direction, the material point originally located at X(R, Θ, Z) has the new
location

x (R, Θ, Z) = r(R) e1(Θ) + Z k. (5)
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A tangent space anchored at a point in the reference configuration has a local basis formed
by the derivatives

∂X

∂R
= e1,

∂X

∂Θ
= Re2, and

∂X

∂Z
= k. (6)

At the image under the deformation, the images of these derivatives are

∂x

∂R
= r′e1,

∂x

∂Θ
= re2, and

∂x

∂Z
= k. (7)

The deformation gradient, which we label F , should have the following dot-products with the
local basis vectors in the reference configuration:

F · e1 = r′ e1, (8)

F · (Re2) = r e2, (9)

F · k = k. (10)

Hence, the full deformation gradient is

F = r′ e1 ⊗ e1 +
r

R
e2 ⊗ e2 + k ⊗ k, (11)

where the right vector in each tensor product is to be understood as a tangent vector anchored
at a point in the reference configuration, while the left vector is a tangent vector anchored at
a point in the final, deformed configuration.

2.2 Incompatible Growth

The very special relationship between the coefficients of e1 ⊗ e1 and e2 ⊗ e2 in F reflects the
fact that not all tensor fields of this form are equal to deformation gradients. Consider, for
example,

G(R, Θ, Z) = γ1(R) e1(Θ) ⊗ e1(Θ) + γ2(R) e2(Θ) ⊗ e2(Θ) + k ⊗ k. (12)

If G is the gradient of a cylindrical deformation of the form considered above, then γ1 = r′ and
γ2 = r/R, which implies

γ1 =
d

dR
(Rγ2) . (13)

If this is not satisfied, then G is not a deformation gradient of the type considered above. In
fact, computing the Riemann curvature tensor (see Chapter 1 of [9]) that arises from G and ob-
serving that it does not vanish identically shows that G is not the gradient of any deformation.
A two-point tensor field that is not equal to a deformation gradient will be called incompatible.

Each fixed tensor with positive determinant is equal to the local value of some deformation
gradient; it is only in the failure of local values to “patch” together correctly that a non-gradient
differs from a deformation gradient. Incompatible tensor fields have been used for decades in
the theory of elastoplasticity [17, 18, 27], where F is decomposed into the product of two
incompatible tensor fields:

F = A · G. (14)
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This multiplicative decomposition has more recently been employed in elastic models of grow-
ing solids [23]. In this context, G describes incompatible volumetric growth. A local value of
G describes the deformation that a growing element of matter would undergo if it were not
constrained by the presence of neighboring matter. The grown elements are considered stress-
free, but they no longer form a continuous solid. The tensor field A plays the rôle of the elastic
deformation needed to reestablish a continuous solid. However, since G is not compatible and
F is, A = F · G−1 is not a deformation gradient. Thus the step from the grown, stress-free
state to the final state, which may carry residual stress even in the absence of applied loads
and body forces, cannot properly be called an elastic deformation. This is illustrated in Figure 2.

incompatible

growth

elastic

response
�a� �b� �c�

Figure 2: In (a), the body is in its reference configuration. Incompatible growth precludes
stress-free grown elements of matter (b) from forming a continuous body. The body’s elastic
response determines how the grown elements are distorted to form a continuous body again
(c). This body will carry residual stress.

However, there is an alternative interpretation in which the body remains a continuous man-
ifold, avoiding concerns over the energetics of the tearing-apart and re-assembly of the body,
as examined in [16]. If we let the incompatible growth tensor G change the metric tensor, then
the arclengths between points in the body preclude the body “fitting” into E

3. The points of
the body still form a continuous three-dimensional manifold with the growth metric defined by
GT · G but, it is a manifold that cannot be isometrically immersed in E

3.

A two-dimensional analogue of this is illustrated in Figure 3. A flat disc has its metric
tensor changed by incompatible growth, resulting in a two-dimensional manifold that can no
longer fit into the Euclidean plane. The subsequent elastic response restores the body’s iso-
metric immersibility into E

2, but the resulting disc carries residual stress, even in the absence
of applied loads and body forces.

2.3 Elastic Response

There is no unique tensor field A that renders the product A · G a deformation gradient. For
example, if A = G−1, then the product is A · G = G−1 · G = I, which is the gradient of the
identity deformation X �→ X. We will seek a particular A by assuming that the grown body
has a hyperelastic constitutive relation. As shown in [8, 1], a hyperelastic constitutive relation
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Figure 3: An interpretation of the multiplicative decomposition that avoids tearing the body
into pieces. In this two-dimensional analogue, the flat disc (a) is given a new metric tensor
so that its arclengths preclude its remaining in the Euclidean plane. It is viewed as a non-
Euclidean surface in (b). After the elastic response, the body is again a disc in the Euclidean
plane (c) but carries residual stress.

should recognize only the elastic portion of the deformation gradient. Hence, we assume that
the Cauchy stress tensor has the form

T (x) = T̂ (A(x)) , (15)

where T̂ is the gradient of some scalar energy density. Our derivation of balance laws refers to
the reference and final configurations and, accordingly, the stress used here is the first Piola-
Kirchhoff stress tensor:

P = (det F )T · F−1. (16)

2.4 Explicit Expressions

We will need explicit expressions for several quantities in calculations. First among these is A,
the elastic factor of F :

A = F · G−1 =
r′

γ1

e1 ⊗ e1 +
r

γ2R
e2 ⊗ e2 + k ⊗ k. (17)

Since A is not a deformation gradient, its eigenvalues are not true “stretches”. We choose the
label pseudostretches for the eigenvalues of A; they are

λ1 =
r′

γ1
, λ2 =

r

γ2R
, λ3 = 1. (18)

We also will make reference to

F−T =
1

r′
e1 ⊗ e1 +

R

r
e2 ⊗ e2 + k ⊗ k. (19)
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3 Equation of Mechanical Equilibrium

3.1 The Global Constraint Principle

The mechanical equations of thin plates can be derived by viewing the plate as either a two-
dimensional body with a “director field” attached to it or a three-dimensional body subject to
constraints that keep it in a “plate-like” configuration. The latter approach yields “induced”
theories of plates in which constitutive restrictions are added to the full three-dimensional the-
ory [3].

When we view the plate as a constrained three-dimensional body, we consider a class of
allowed deformations X �→ x. Further, we assume that the first Piola-Kirchhoff stress tensor
P can be decomposed into a sum of an “active” stress P act and a “latent” stress P lat [4, 19]:

P = P act + P lat, (20)

where P act is determined by a constitutive relation involving the deformation gradient ∂x/∂X

and ∫

B

P lat :
∂

△

x

∂X
dv = 0 (21)

for each “virtual displacement”
△

x tangent to the manifold of allowed configurations, where B is
the reference configuration of the body; see below for details. P lat is that portion of the stress
that constrains the body to its plate-like configuration but performs no work in doing so. The
equations of equilibrium can be expressed in weak form as

∫

B

P :
∂

△

x

∂X
dv =

∮

∂B

τ ·
△

x da, (22)

where ∂B is the boundary of the reference configuration and τ is the applied load vector at a
point on this boundary. Hence equations of equilibrium of the constrained body have the weak
form ∫

B

P act :
∂

△

x

∂X
dv =

∮

∂B

τ ·
△

x da, (23)

where
△

x is again a virtual displacement from a restricted class tangent to the manifold of
allowed configurations.

3.2 Cylindrical Deformations of the Axisymmetric Plate

We consider cylindrical deformations of the plate, that is deformations of the form

x(R, Θ, Z) = r(R) e1(Θ) + Z k, (24)

The plate consists of a two-dimensional middle surface from which material fibers extend per-
pendicularly. The deformation leaves the material fibers unstretched and perpendicular to the
middle surface. The only possible virtual displacements are axially symmetric perturbations of

the middle surface, so in this case
△

x has the form

△

x(R, Θ) =
△

r(R) e1(Θ), (25)
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where
△

r is any as-regular-as-needed real-valued function. The weak form of the equation of
equilibrium is

∫

plate

(
(e1 · P act · e1)

△

r
′

+ (e2 · P act · e2)

△

r

R

)
dv =

∮

∂(plate)

τ ·
(

△

re1

)
da (26)

because all other projections of the tensor-valued gradient ∂
△

x/∂X are zero.

It should be noted that

(e1 · P act · e1)
△

r
′

+ (e2 · P act · e2)

△

r

R

=
(

△

r
′

e1

)
· (P act · e1) +

(
△

r

R
e2

)
· (P act · e2)

=

(
∂

△

x

∂R

)
· (P act · e1) +

(
1

R

∂
△

x

∂Θ

)
· (P act · e2) +

(
∂

△

x

∂Z

)
· (P act · k)

=
1

R

(
∂

∂R
R

△

x

)
· (P act · e1) −

△

x · P act · e1 +

(
1

R

∂
△

x

∂Θ

)
· (P act · e2) +

(
∂

△

x

∂Z

)
· (P act · k)

= Div
(

△

x · P act

)
−

△

x ·

(
1

R

∂

∂R
(RP act · e1) +

1

R

∂

∂Θ
(P act · e2)

)
, (27)

where Div indicates divergence with respect to cylindrical coordinates in the reference configu-
ration. We have assumed that since there is no extension or shear through the thickness of the
plate, (P act · k) is vertical, so that ∂ (P act · k) /∂Z is also vertical and has zero inner product

with
△

x.

By the Divergence Theorem applied to the vector field
△

x · P act,

∫

plate

Div
(

△

x · P act

)
dv =

∮

∂(plate)

△

x · P act · ν da =

∮

∂(plate)

△

x · τ da (28)

where ∂ (plate) is the boundary of the plate and ν is the outward-pointing unit normal on this
boundary. After cancellation of the surface traction terms, the weak equation of equilibrium is

∫

plate

△

r e1 ·

(
1

R

∂

∂R
(RP act · e1) +

1

R

∂

∂Θ
(P act · e2)

)
dv = 0, (29)

which must hold for all admissible
△

r.
Due to the constraints imposed on the body, we do not have an equation that determines

the rate of change of stress in the Z-direction. However, in an induced theory such as this, we
do not consider the pointwise values of stress in the three-dimensional body; rather, we consider
the stress integrated across the thickness of the plate. The integrated stress is a function of the
planar coordinates R and Θ only.
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We take the weak equation of equilibrium and write the integral over the plate as an iterated
integral, first in Z and then in the planar coordinates:

∫

slice

△

r e1 ·

[∫ H2

H1

(
1

R

∂

∂R
(RP act · e1) +

1

R

∂

∂Θ
(P act · e2)

)
dZ

]
R dR dΘ = 0 (30)

We change the order of differentiation and Z-integration:

∫

slice

△

r e1 ·

(
1

R

∂

∂R

∫ H2

H1

(RP act · e1) dZ +
1

R

∂

∂Θ

∫ H2

H1

(P act · e2) dZ

)
R dR dΘ = 0 (31)

By our assumptions of symmetry, P act·e2 must be proportional to e2, so P act·e2 = (e2 · P act · e2)e2.
And by symmetry, the coefficient (e2 · P act · e2) is Θ-independent, so

∂

∂Θ

∫ H2

H1

(P act · e2) dZ =
∂

∂Θ

∫ H2

H1

(e2 · P act · e2) e2 dZ

=
∂e2

∂Θ

∫ H2

H1

(e2 · P act · e2) dZ

= −e1

∫ H2

H1

(e2 · P act · e2) dZ. (32)

Our weak equation of equilibrium is now

∫

slice

△

r

(
∂

∂R
R

∫ H2

H1

(e1 · P act · e1) dZ −

∫ H2

H1

(e2 · P act · e2) dZ

)
dR dΘ = 0. (33)

Our symmetry assumption implies that the remaining mechanical quantities are Θ-independent,
so we can integrate over Θ and view the functions in the result as functions of R alone:

2π

∫

slice

△

r

(
d

dR
R

∫ H2

H1

(e1 · P act · e1) dZ −

∫ H2

H1

(e2 · P act · e2) dZ

)
dR = 0. (34)

If this is to hold for all admissible
△

r, then the other factor of the R-integrand must be identically
zero:

d

dR

(
R

∫ H2

H1

(e1 · P act · e1) dZ

)
−

∫ H2

H1

(e2 · P act · e2) dZ = 0. (35)

This is the equation of equilibrium for our constrained axisymmetric plate. Closure of the
system of differential equations requires a constitutive relation.

4 Neo-Hookean Constitutive Relation

We consider a compressible neo-Hookean constitutive relation with strain energy density

W (λ1, λ2, λ3) =
µ

2

(
λ2

1 + λ2
2 + λ2

3 − 3 − 2 lnJ
)

+ λ (J − 1 − ln J) ; (36)

this is very similar to the strain-energy found in Problem 6.3.1 of [21]. Here µ and λ can be
identified, for small deformations, with the Lamé parameters of linear elasticity, λ2

1, λ2
2, and
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λ2
3 are the eigenvalues of the left Cauchy-Green tensor F · F T , and J = λ1λ2λ3 = det F .

The principal components of the active Cauchy stress (the constitutively-defined portion of the
Cauchy stress) are then

(T act)i =
λi

J

∂W

∂λi

=
1

J

(
µ
(
λ2

i − 1
)

+ λ (J − 1)
)
; (37)

see section 4.3 of [21]. The full active Cauchy stress tensor is

T act =
1

J

(
µ
(
λ2

1 e1 ⊗ e1 + λ2
2 e2 ⊗ e2 + λ2

3 k ⊗ k
)

+ (λJ − (λ + µ)) I
)
. (38)

If a deformation gradient is decomposed as F = A · G, where G corresponds to non-elastic
growth, then [8] demonstrates that the appropriate constitutive definition of the Cauchy stress
tensor is to use the same formula as in growthless hyperelasticity, with the argument F · F T

replaced by A · AT . Hence we use Eq. (38) as the definition of T act, only now each λ2
i is an

eigenvalue of A · AT and J = det A.
The Cauchy stress is an Eulerian tensor, while the differential equations have been derived

in terms of the active portion P act of the first Piola-Kirchhoff stress, which is a two-point
tensor that maps normal vectors in the reference configuration to stress vectors in the current
(post-growth, post-elastic response) configuration. The full deformation gradient F is required
to convert Eulerian and Lagrangian tensors into two-point tensors, so the relation between T act

and P act has the same form as in traditional elasticity:

P act = (det F ) T act · F
−T . (39)

For our particular problem we do not need to compute the full first Piola-Kirchhoff stress tensor
since we need only the projections e1 · P act · e1 and e2 · P act · e2.

e1 · P act · e1 = (det F ) e1 · T act · F
−T · e1

=
(det A) (det G)

J

(
µλ2

1 + λJ − (λ + µ)
)
e1 ·

(
1

r′
e1

)

= (det G)

(
µ

(
r′

γ1

)2

+ λJ − (λ + µ)

)
1

r′

= γ1γ2

(
µ

r′

γ2
1

+ λ
r/R

γ1γ2

−
λ + µ

r′

)

=
µγ2

γ1
r′ + λ

r

R
−

(λ + µ) γ1γ2

r′
. (40)

A similar calculation shows that

e2 · P act · e2 =
µγ1

γ2

r

R
+ λr′ −

(λ + µ) γ1γ2

r/R
. (41)

The flatness of the middle surface and the lack of stretching or shear through the thickness
have ensured a complete lack of Z-dependence, so the integrated stresses are

∫ H2

H1

(e1 · P act · e1) dZ = (H2 − H1)

(
µγ2

γ1
r′ + λ

r

R
−

(λ + µ) γ1γ2

r′

)
(42)

∫ H2

H1

(e2 · P act · e2) dZ = (H2 − H1)

(
µγ1

γ2

r

R
+ λr′ −

(λ + µ) γ1γ2

r/R

)
. (43)
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This leaves us the ordinary differential equation

d

dR

(
R

(
µγ2

γ1
r′ + λ

r

R
−

(λ + µ) γ1γ2

r′

))
=

µγ1

γ2

r

R
+ λr′ −

(λ + µ) γ1γ2

r/R
. (44)

After differentiation and cancellation of λr′ from each side, we have

(
µγ2

γ1

)′

Rr′ +
µγ2

γ1
r′ +

µγ2

γ1
Rr′′ −

(λ + µ) γ1γ2

r′
−

(λ + µ)R (γ1γ2)
′

r′
+

(λ + µ)Rγ1γ2

(r′)2 r′′

=
µγ1

γ2

r

R
−

(λ + µ)Rγ1γ2

r/R
. (45)

We assume that r is at least twice continuously differentiable and that r′ is bounded away
from zero. By the boundedness of derivatives near R = 0 and the fact that r(R)/R → r′(0) as
R → 0, the limiting form of the equation above is, after cancellation,

γ2(0)

γ1(0)
r′(0) =

γ1(0)

γ2(0)
r′(0). (46)

The conclusion is that we need either r′(0) = 0 or γ1(0) = γ2(0) for a configuration without a
cavity.

We consider the first possibility. Suppose that near R = 0, r(R) = A(R)Rα, where A
is a slowly-varying function bounded above zero near R = 0. Since we want r to be twice
continuously differentiable, we assume α = 1 or α ≥ 2. If α = 1, then r′(0) 	= 0, and we assume
γ1(0) = γ2(0). If α ≥ 2, then

r′ = αARα−1 + A′Rα, r′′ = (α − 1)αARα−2 + 2αA′Rα−1 + A′′Rα, (47)

and the most singular terms in Eq. (45) are

−
(λ + µ) (γ1γ2)

′

r′/R
≈ −

(λ + µ) (γ1γ2)
′

αA

∣∣∣∣
R=0

R2−α, (48)

−
(λ + µ)γ1γ2

r/R2
≈ −

(λ + µ)γ1γ2

A

∣∣∣∣
R=0

R2−α. (49)

Requiring that the coefficients agree at R = 0 would put undue restrictions on the types of
growth functions γi we may consider. We opt for the less restrictive alternative: γ1(0) = γ2(0).

5 Conversion to a Dynamical System

We perform the change of variables described in section X.3 of [3]. Let n be the radial stress,

n =
µγ2

γ1
r′ + λ

r

R
−

(λ + µ) γ1γ2

r′
, (50)

and let
τ =

r

R
. (51)
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Finding r′ as a function of n yields two solutions, only of which is positive. The flatness of the
middle surface requires that r′ be positive, so we choose the positive solution:

r′ =
γ1

2µγ2

(
n − λ

r

R
+

√(
n − λ

r

R

)2

+ 4µ(λ + µ)γ2
2

)
=

γ1

2µγ2

(
n − λτ +

√
(n − λτ)2 + 4µ(λ + µ)γ2

2

)
.

(52)
The differential equation can now be stated in terms of n and τ :

d

dR
(Rn) =

µγ1

γ2

r

R
+ λr′ −

(λ + µ)γ1γ2

r/R

=
µγ1

γ2

τ +
λγ1

2µγ2

(
n − λτ +

√
(n − λτ)2 + 4µ(λ + µ)γ2

2

)

︸ ︷︷ ︸
λr′

−
(λ + µ)γ1γ2

τ
. (53)

Note also that

d

dR
(Rτ) = r′ =

γ1

2µγ2

(
n − λτ +

√
(n − λτ)2 + 4µ(λ + µ)γ2

2

)
. (54)

We define a new independent variable s by

R = Rmaxe
s−1, or s = ln

(
R

Rmax

)
+ 1. (55)

If we set ñ(s) = n(R) and τ̃ (s) = τ(R), then the R- and s-derivatives are related by

d

dR
(Rn) =

d

dR
(Rñ) = ñ + R

ds

dR

dñ

ds
= ñ +

dñ

ds
, (56)

d

dR
(Rτ) =

d

dR
(Rτ̃ ) = τ̃ + R

ds

dR

dτ̃

ds
= τ̃ +

dτ̃

ds
, (57)

where the prime on ñ and τ̃ indicates differentiation with respect to s. The differential equations
in ñ and τ̃ are

dñ

ds
=

µγ̃1

γ̃2

τ̃ +
λγ̃1

2µγ̃2

(
ñ − λτ̃ +

√
(ñ − λτ̃)2 + 4µ(λ + µ)γ̃2

2

)
−

(λ + µ)γ̃1γ̃2

τ̃
− ñ, (58)

dτ̃

ds
=

γ̃1

2µγ̃2

(
ñ − λτ̃ +

√
(ñ − λτ̃)2 + 4µ(λ + µ)γ̃2

2

)
− τ̃ , (59)

If we set N = ñ/µ and κ = λ/µ, then we can simplify these equations to:

dN

ds
=

γ̃1

γ̃2

τ̃ +
κγ̃1

2γ̃2

(
N − κτ̃ +

√
(N − κτ̃)2 + 4(1 + κ)γ̃2

2

)
−

(1 + κ)γ̃1γ̃2

τ̃
− N, (60)

dτ̃

ds
=

γ̃1

2γ̃2

(
N − κτ̃ +

√
(N − κτ̃)2 + 4(1 + κ)γ̃2

2

)
− τ̃ , (61)

where γ̃i(s) = γi(R).

13



Were it not for the s-dependence of the γ̃i, these equations would be autonomous and
could be subjected to a fairly straight-forward phase-plane analysis. If the γ̃i satisfied some
autonomous differential equations, then adding those equations to the pair above would form
an autonomous system. Below we consider several examples of γ̃i that satisfy autonomous
equations.

Finally, we add the following two boundary conditions to our system of differential equations:

N(1) = 0, (zero radial stress at R = Rmax) (62)

lim
s→−∞

Rmaxe
s−1τ̃ (s) = 0. (r(0) = 0) (63)

6 No Radial Growth: γ1(R) ≡ 1

Suppose that γ1(R) ≡ 1 and γ2(R) = a + b (R/Rmax)
2. Since we want γ1(0) = γ2(0), we set

a = 1. Then γ2 satisfies

d

dR
(Rγ2(R)) =

d

dR

(
R +

b

R2
max

R3

)
= 1 + 3b

(
R

Rmax

)2

= 1 + 3 (γ2(R) − 1) , (64)

so γ̃2 satisfies
γ̃2

ds
+ γ̃2 = 1 + 3 (γ̃2 − 1) , or

γ̃2

ds
= 2 (γ̃2 − 1) . (65)

We have the system of autonomous equations or dynamical system

dτ̃

ds
=

1

2γ̃2

(
N − κτ̃ +

√
(N − κτ̃ )2 + 4(1 + κ)γ̃2

2

)
− τ̃ , (66)

dN

ds
=

τ̃

γ̃2
+

κ

2γ̃2

(
N − κτ̃ +

√
(N − κτ̃ )2 + 4(1 + κ)γ̃2

2

)
−

(1 + κ)γ̃2

τ̃
− N, (67)

dγ̃2

ds
= 2 (γ̃2 − 1) . (68)

We will often summarize this system of differential equations by

dy

ds
= f (y) , (69)

where y = (τ̃ , N, γ̃2)
T . Points y ∈ R

3 will be described via τ̃ -, N -, and γ̃2-coordinates.

Definition: Domain The domain of f is

D (f) =
{
(τ̃ , N, γ̃2) ∈ R

3 : f (τ̃ , N, γ̃2) is defined
}

. (70)

In the case at hand, D(f) consists of all of R
3 except for the planes τ̃ = 0 and γ̃2 = 0.

Definition: Maximal Interval of Existence Each point y0 ∈ D(f) can be considered as
the initial condition of some solution of Eqs. (66)-(68):

dy

ds
= f(y), y(0) = y0. (71)
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The maximal interval of existence I(y0) is the largest interval of s-values (both positive and
negative) for which the solution of Eq. (71) exists and is unique.

Theorem: Uniqueness If f and the τ̃ -, N -, and γ̃2-derivatives of f are continuous on the
“box” {y ∈ R

3 : ‖y − y0‖ < b}, then Eq. (71) has at most one solution.
For proof, see e.g. Section 3.3 of [5]. Note that for Eqs. (66)-(68), f is continuously differ-

entiable in any finite box bounded away from τ̃ = 0 and γ̃2 = 0.

Definition: Orbit If s �→ y(s) is a solution of Eq. (71), then the curve

{
y(s) ∈ R

3 : s ∈ I(y0)
}

(72)

is called an orbit or trajectory of Eq. (71). We will often say that the solution s �→ y(s) traces
out its orbit.

One of the most important properties of orbits of autonomous systems of differential equa-
tions is that in regions of D(f) where f is continuously differentiable, distinct orbits do not
intersect. Hence, if s �→ y(s) and s �→ z(s) are solutions of Eq. (71) with different initial
conditions and y(s1) = z(s2) for some s1 	= s1, then z(s) = y(s + s1 − s2), i.e. s �→ z(s) is
essentially s �→ y(s) with a constant shift or argument.

Definition: Projection Much of the analysis will focus on the coordinates (τ̃ , N). If
s �→ (τ̃ (s), N(s), γ̃2(s)) is a solution of Eqs. (66)-(68), then we will refer to the function
s �→ (τ̃(s), N(s)) as the solution’s projection into the (τ̃ , N)-plane. We will also refer to the set
of points

{(τ̃ (s), N(s)) : s ∈ maximal interval of existence} , (73)

as the projection of the orbit.

6.1 Fixed Points and Linearization

The fixed points of Eqs. (66)-(68) form curves whose coordinates satisfy

γ̃2 = 1, N = (1 + κ)
(
τ̃ + τ̃−1

)
. (74)

The coordinates of the fixed points with τ̃ > 0 satisfy

γ̃2 = 1, τ̃ =
N +

√
N2 + 4 (1 + κ)2

2 (1 + κ)
. (75)

At each fixed point, the derivative of the right-hand sides of Eqs. (66)-(68) has the form

Df
(
τ̃ , (1 + κ)

(
τ̃ + τ̃−1

)
, 1
)

=




−
(1+κ)(1+τ̃2)

1+κ+τ̃2

τ̃2

1+κ+τ̃2

τ̃(1+κ−τ̃2)
1+κ+τ̃2

(1+κ)(1+τ̃2)(1+κ−(−1+κ)τ̃2)
τ̃2(1+κ+τ̃2)

−1−κ+(−1+κ)τ̃2

1+κ+τ̃2 −1+κ
τ̃

− τ̃ − κτ̃ + 2κ(1+κ)τ̃
1+κ+τ̃2

0 0 2


 . (76)
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This matrix has eigenvalues −2, 0, and 2, regardless of the values of κ and τ̃ . This indicates
the presence of a stable manifold, a center manifold, and an unstable manifold attached to each
fixed point; see [22].

Each of these manifolds is traced out by a solution of Eqs. (66)-(68). The unstable manifold
is “unstable” in the sense that the solution that traces it out approaches the fixed point at an
exponential rate as s → −∞, i.e. as the dynamical system is run backwards. The eigenvector
corresponding to the eigenvalue 2 describes the direction from which this solution approaches
the fixed point as s → −∞.

For a solution corresponding to a configuration of the plate, γ̃2(s) is non-constant and
γ̃2(s) ↓ 1 as s → −∞. The only eigenvector of the derivative matrix that has nonzero γ̃2-
component is the one associated with the eigenvalue 2:

(
−
−τ̃ − κτ̃ + 2τ̃ 3

4 (1 + κ + τ̃ 2)
, −

1 + 2κ + κ2 + 3τ̃ 2 + 2κτ̃ 2 − κ2τ̃ 2 + 2τ̃ 4 + 2κτ̃ 4

4τ̃ (1 + κ + τ̃ 2)
, 1

)T

. (77)

This means that the only orbit attached to a fixed point that could possibly correspond to a
configuration of the body is an unstable manifold. We will show in the next section that there
is an unstable manifold that corresponds to a plate with zero radial stress at its periphery.

6.2 Existence of Solution

We will demonstrate that there is one solution that traces out an unstable manifold and whose
N -coordinate satisfies N(1) = 0.

For each s > −∞, we define the horizontal isocline

Γh(s) =

{
(τ̃ , N) : τ̃ =

N +
√

N2 + 4(1 + κ) (κ + γ̃2(s)) γ̃2(s)

2 (κ + γ̃2(s))

}
(78)

and the vertical isocline

Γv(s) =

{
(τ̃ , N) : τ̃ > 0 and

1

2γ̃2(s)

(
N − κτ̃ +

√
(N − κτ̃)2 + 4(1 + κ)γ̃2(s)2

)
− τ̃ = 0

}
.

(79)
Γh(s) consists of the points in the (τ̃ , N)-plane with τ̃ > 0 where the vector field has zero
τ̃ -component at s. Γv(s) consists of the points in the same half-plane where the vector field
has zero N -component at s. If κ > 1, then Γv(s) has two branches, one above Γh(s) and one
below. See Figure 4.

Claim 1 At s = −∞, Γh(s) and Γv(s) coincide with Γ(−∞).

Proof of Claim 1 In the defining equation of the horizontal isocline Γh(s), set γ̃2 = 1. This
coincides with the equation for the curve of fixed points. Plug this formula for τ̃ into the defin-
ing equation of the vertical isocline (with γ̃2 set to 1) and the equation becomes a tautology. �
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Figure 4: Isoclines in the (τ̃ , N)-plane at some s > −∞. The presence of the upper branch of
Γv(s) indicates that κ > 1 in this example. The line segments attached to Γ(−∞) show the
directions of the unstable eigenvectors.

Claim 2 At s = 1, the projection of each solution that traces out an unstable manifold lies
in the region between Γ(−∞) and the lower branch of Γv(1).

Proof of Claim 2 First we note that the N -component of the “unstable eigenvector” in
Eq. (77),

−
(1 + κ) (2τ̃ 4 + (3 − κ2) τ̃ 2 + (1 + κ))

4τ̃ (1 + κ + τ̃ 2)
(80)

is negative for all real τ̃ . Hence each fixed point is asymptotically approached from below (as
s → −∞), which means each fixed point is approached asymptotically from the region between
Γ(−∞) and the lower branch of Γv(s).

Figure 5 shows the vector field for the dynamical system run in reverse. If (τ̃ (s), N(s)) is
to the left of Γ(−∞) for some s > −∞, then τ̃(s) → 0 as s → −∞, and the orbit does not
approach a fixed point. If (τ̃(s), N(s)) is to the right of thew lower branch of Γv(s) for some
s > −∞, then τ̃ (s) → ∞ as s → −∞, and the orbit does not approach a fixed point.

In particular, each solution whose orbit is an unstable manifold, lies in the region between
Γ(−∞) and the lower branch of Γv(1) at s = 1. �

Definition: Flow If we view each point y0 ∈ D(f) as the initial condition of the problem

dy

ds
= f(y), y(0) = y0, (81)

then the flow of that dynamical system is a function defined as

Φ(y0, s) = y(s), s ∈ I(y0). (82)

Let E be an open subset of D(f) such that f ∈ C1 (E). Define

Ω = {(s,y0) ∈ R × E : s ∈ I(y0)} . (83)
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Figure 5: The vector field of the dynamical system run in reverse

Then Φ ∈ C1(Ω), i.e., Φ is continuously differentiable in both its s and y0 arguments. See
Section 2.5 of [22].

Claim 3 At s = 1, the positions of the solutions tracing out the unstable manifolds form a
continuous curve in the region between Γ(−∞) and the lower branch of Γv(1).

Proof of Claim 3 Fix τ̃0 > 0. Define E by

E = {(τ̃ , N) : (τ̃ , N) is between Γ(−∞) and the lower branch of Γv(1), and τ̃ > τ̃0 > 0} .
(84)

Then f ∈ C1(E), which implies that the flow Φ of the dynamical system is also continuously
differentiable. The Center Manifold Theorem (see Section 2.12 of [22]) guarantees the unsta-
ble manifolds can be locally (near the fixed points) continuously parametrized by s and an
arclength coordinate for the curve of fixed points. Hence for some s0 > −∞ with |s0| >> 1
there is a continuous curve formed by the positions of the solutions that trace out unstable
manifolds. See Figure 6.

Since f ∈ C1(E), the maximal interval of existence for each unstable manifold includes the
half-infinite interval (−∞, 1]. Hence the continuous curve formed by the solutions at s = s0 is
mapped continuously via Φ to its image at s = 1. By continuity of the s = s0 curve and of Φ,
the positions of the solutions at s = 1 also form a continuous curve.

Note that E is bounded below by τ̃0 > 0. τ̃0 can be re-defined to allow E to extend to
any proximity to the τ̃ = 0 line, and the argument still holds. On the curve of fixed points,
N → −∞ as τ̃ → 0, so the continuous curve of positions at s = 1 is infinite in extent. This
argument leaves open the possibility that the map from the fixed points to this curve may not
be uniformly continuous. �
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Figure 6: The continuity of the curve of fixed points is maintained in the curves formed by the
unstable manifold orbits for s > −∞.

Figure 7: The stereographic projections of the lower branch of Γv(1) (outer curve) and Γ(−∞)
(inner curve) intersect at the north pole of the sphere. The dashed curve that they both
intersect is the projection of the N = 0 line. The curve of loci at s = 1 is between these two
curves and evolves into Γ(−∞) as s → −∞.

Claim 4 The continuous curve of positions of solutions at s = 1 intersects the line N = 0.

Sketch of Proof of Claim 4 This can be proved by considering the one-point compactifica-
tion of the (τ̃ , N)-plane, which is a 2-sphere, and examining the stereographic projections onto
the sphere of Γ(−∞), the lower branch of Γv(1), and the curve of solution positions at s = 1.
Each of these continuous images of R is projected to a closed loop on the sphere; see Figure 7.
Each “end” of the projections of Γ(−∞) and the lower branch of Γv(1) lie at the north pole of
the sphere. The closed loop of solution positions at s = 1 lies between these projections. If the
loop of positions is to evolve into Γ(−∞) as s → −∞, the “ends” of this loop must also lie at
the north pole. Hence the loop of positions must intersect the N = 0 line on the sphere, shown
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in Figure 7. �

6.3 Numerical Results

We use the form of the fixed points of Eq. (66)-(68) to compute numerical solutions of the
equations. The method is as follows.

1. Choose τ̃0 > 0.

2. Set N0 = (1 + κ)
(
τ̃0 − τ̃−1

0

)
, the N -coordinate of the fixed point with τ̃ -coordinate equal

to τ̃0.

3. Compute the unstable eigenvector at the fixed point (τ̃0, N0, 1).

4. For some small ǫ > 0, perturb (τ̃0, N0, 1) by ǫ times the unstable eigenvector:




τ̃1

N1

(γ̃2)1



 =




τ̃0

N0

1



+ ǫ




((1 + κ)τ̃0 − 2τ̃ 3

0 ) /4 (1 + κ + τ̃ 2
0 )

−(1 + κ) (2τ̃ 4
0 + (3 − κ2)τ̃ 2

0 + (1 + κ)) /4 (1 + κ + τ̃ 2
0 )

1



 .

(85)

5. Set s1 = 1 + 1
2
ln (ǫ/b2). The formula in the step above gives an approximation for the

position, at s = s1, of the solution tracing out the unstable manifold attached to the fixed
point (τ̃0, N0, 1).

6. Integrate the equations numerically (for increasing s) until N = 0.

If N reaches zero at some s-value other than 1, adjust τ̃0 and repeat the above steps until |N(1)|
is near zero to within some tolerance.

Results for Rmax = 1 are pictured in Figures 8-13. In each case, the radial stress is zero at
the periphery and positive at the center, as expected from the form of the vector field run in
reverse; see Figure 5. The azimuthal stress, which agrees with the radial stress at R = 0, is
negative at the periphery, indicating that the outer edge is under azimuthal compression.

Recall that for κ > 1, Γv(s) has two branches. The impact of the change in the vector field
can be seen by comparing Figures 9 and 11. As R → 0 (s → −∞), the terminal τ -value is
approached from below in Figure 9, indicating that the fixed point is approached from the left.
In Figure 11, on the other hand, the terminal τ -value is approached from larger values of τ ,
indicating that the fixed point is approached from the right.

7 Constant Radial Growth: γ1(R) ≡ γ0 > 1

Now we consider a growth pattern that allows us to use much of the previous section’s analysis
but produces quite different results. We again let the radial growth γ1 be constant, but we as-
sign it a value γ0 greater than one. Further, we assume γ2(R) ≤ γ0, with equality only at R = 0.
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Figure 8: The radial stress (upper curve) drops
to zero at the periphery, while the azimuthal
stress (lower curve) is negative at the periphery.
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Figure 9: τ = r/R decreases monotonically in
this configuration.
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Figure 10: Changing κ from 1 to 3 produces
little change in the stress profiles.
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Figure 11: Changing κ from 1 to 3 changes the
τ = r/R profile dramatically.
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Figure 12: Changing b from 1 to 2 produces
little change in the stress profiles.
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Figure 13: Changing b from 1 to 2 produces
little change in the τ = r/R profile.

If γ1(R) ≡ γ0 > 1 and γ2(R) = γ0 − b (R/Rmax)
2, the corresponding differential equations
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are

dN

ds
=

γ0

γ̃2

τ̃ +
κγ0

2γ̃2

(
N − κτ̃ +

√
(N − κτ̃)2 + 4(1 + κ)γ̃2

2

)
−

(1 + κ)γ0γ̃2

τ̃
− N, (86)

dτ̃

ds
=

γ0

2γ̃2

(
N − κτ̃ +

√
(N − κτ̃)2 + 4(1 + κ)γ̃2

2

)
− τ̃ , (87)

dγ̃2

ds
= 2 (γ̃2 − γ0) . (88)

The fixed points of this system form curves whose coordinates satisfy

γ̃2 = γ0, τ̃ =
N ±

√
N2 + 4 (1 + κ)2 γ2

0

2 (1 + κ)
. (89)

τ̃ > 0 on one curve; τ̃ < 0 on the other. We focus on positive τ̃ . At each such fixed point, the
linearization Df is



−
(1+κ)(τ̃2+γ2

0)
τ̃2+(1+κ)γ2

0

τ̃2

τ̃2+(1+κ)γ2

0

τ̃(−τ̃2+(1+κ)γ2

0)
γ0(τ̃2+(1+κ)γ2

0)
(1+κ)(τ̃2+γ2

0)(−(−1+κ)τ̃2+(1+κ)γ2

0)
τ̃2(τ̃2+(1+κ)γ2

0)
(−1+κ)τ̃2−(1+κ)γ2

0

τ̃2+(1+κ)γ2

0

−(1+κ)τ̃4+(−2−κ+κ2)τ̃2γ2

0
−(1+κ)2γ4

0

τ̃γ0(τ̃2+(1+κ)γ2

0)
0 0 2


 , (90)

which has eigenvalues 2, 0, and −2, regardless of κ, γ0, and τ̃ . As in the previous case, the only
eigenvector with nonzero γ̃2-component is the unstable eigenvector, which in this case is

(
τ̃ (−2τ̃ 2 + (1 + κ)γ2

0)

4γ0 (τ̃ 2 + (1 + κ)γ2
0)

,
−2(1 + κ)τ̃ 4 + (−3 − 2κ + κ2) τ̃ 2γ2

0 − (1 + κ)2γ4
0

4τ̃γ0 (τ̃ 2 + (1 + κ)γ2
0)

, 1

)T

. (91)

In this example, γ̃2(s) ↑ γ0 as s → −∞, which indicates that the unstable manifold approaches
the fixed point from the direction opposite to this eigenvector; see Figure 14.

As in the previous section, we define horizontal and vertical isoclines Γh(s) and Γv(s), re-
spectively, and observe that they coincide with Γ(−∞), the curve of fixed points, as s → −∞.
Arguments similar to those in the last section show the existence of an unstable manifold that
intersects the line N = 0 at s = 1. In this case, however, it is possible for a solution tracing
out an unstable manifold to satisfy N(1) = 0 as well as lims→−∞ N(s) < 0, which corresponds
to compressive radial stress at the center of the disc.

Using a numerical approach nearly identical to that of the last section (with negative ǫ in
step 4), we found results with negative radial stress throughout the body and azimuthal stress
that changes sign within the body. In these examples, γ0 ≥ γ2(R) ≥ 1, with γ2(0) = γ0 and
γ2(Rmax) = 1.

This type of growth tensor induces negative radial stress throughout the body; it is largest at
R = 0 and decays monotonically until it is zero at the periphery. At R = 0, the azimuthal stress
agrees with the radial stress. It grows monotonically in R and is positive at the periphery. The
presence of negative stresses through so much of the body suggests that these configurations
may be prone to buckling.
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Figure 14: The vector field of the dynamical system run in reverse. In this case, the solutions
tracing out the unstable manifolds approach the fixed points from the left as s → −∞.
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Figure 15: The radial stress is negative through-
out the body, while the azimuthal stress changes
sign, leaving it negative at the periphery.
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Figure 16:

8 Conclusion

Previously, the impact of the multiplicative decomposition in nonlinearly elastic bodies has
been explored in detail for cylindrical and spherical shells and for cylindrical columns. Here we
have shown how to produce a rigorous model of a globally constrained, incompatibly grown,
three-dimensional plate with nonlinearly elastic behavior. This was accomplished by adopting
the multiplicative decomposition of the deformation gradient and using the elastic portion of
this decomposition as the argument of the constitutive relation. We have employed the Global
Constraint Principle to derive balance laws for cylindrical deformations of an axisymmetric
plate and combined them with the modified constitutive relation.

Using a compressible neo-Hookean constitutive relation, we derived a complete set of or-
dinary differential equations and boundary conditions to describe the final configuration. A
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Figure 17: Changing κ from 1 to 3 changes the
magnitudes of the stresses.
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Figure 18: Unlike what was found in the pre-
vious case, changing κ from 1 to 3 has little
impact on the form of τ = r/R.
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Figure 19: Keeping κ = 1 but doubling the
growth approximately doubles the stress.
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Figure 20: Keeping κ = 1 but doubling the
growth approximately doubles the expansion.

change of variable produced an equivalent set of autonomous equations. For various choices
of growth tensor, we have used basic results of dynamical systems theory to demonstrate the
existence of a final configuration of an unloaded plate that carries residual stress due to incom-
patible growth.

Adjustment of the growth tensors produced solutions featuring a variety of stress and strain
profiles. In cases in which the radial growth is larger than the azimuthal growth, the radial
residual stress is compressive within the body, while the azimuthal residual stress is compressive
at the center of the body and tensile at the periphery. Large enough compressive stress can
lead to buckling in nonlinearly elastic plates. Therefore, it is reasonable to expect that suitable
growth profiles will generate sufficient compressive residual stress to create instabilities of the
kind found in nonlinearly elastic spherical shells [1, 14]. A detailed analysis should reveal which
growth tensors induce such an instability.
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