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� Abstract Morphoelasticity is the theory of growing elastic materials. This theory is based on the

multiple decomposition of the deformation gradient and provides a formulation of the deformation

and stresses induced by growth. Following a companion paper, a general theory of growing nonlinear

elastic Kirchhoff plate is described. First, a complete geometric description of incompatibility with
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1 Introduction

In a companion paper [12] we demonstrated that residual stress can be generated through
growth in a nonlinear Kirchhoff plate. It has been established that under appropriate cir-
cumstances, residual stress induced through growth can be sufficient to create instabilities in
an elastic three-dimensional material [9, 4]. It is therefore a natural question to investigate
whether such stress fields can be sufficient to initiate buckling in plates. Surprisingly, the
case of two-dimensional structures has not been analyzed within the framework of nonlinear
elasticity (note however, a growing body of literature in the physics community–all related
to extension of the Föppl-von Kármán equation to include the effect of growth through extra
curvature terms [8, 7], see [12] for a general introduction and citations). Here, we combine
incompatible growth with the global constraint principle ([2], [10]) that has clarified and
simplified the theory of finite deformations of rods and shells, geometrically exact models
can be constructed for a wide variety of shapes. We demonstrate that such theories can
be easily adapted to include growth. Further, we solve explicit examples of plate models
and find residual stress and buckling caused by the elastic response to growth. Whereas,
the notation and basic theory follows the discussion introduced in [12], we further analyze
the general theory of incompatibility based on differential geometry before analysing the
buckling problem.

The structure of the paper is as follows: In Section 2 we review the basic kinematics of
finite deformations of solids and show its relation to the geometry of differentiable manifolds.
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Using the notation and tools of kinematics and differential geometry, we construct concrete
examples of continuously differentiable two-point tensor fields with positive determinant that
are not deformation gradients. We expose three distinct ways in which such tensor fields can
fail the requirements of a deformation gradient. Such tensor fields are called incompatible
growth fields.

In Section 3 we introduce the multiplicative decomposition of the deformation gradient
into growth and elastic components. The proper method for incorporating the multiplicative
decomposition into constitutive relations is shown.

Section 4 introduces the global constraint principle by which rod and shell theories are
derived. In Section 5 we derive the kinematics of a buckled axisymmetric Kirchhoff plate,
find the virtual displacements from such a configuration, and apply the global constraint
principle to derive balance equations, which are simplified in Section 6. In Section 7 we
introduce a nonlinearly elastic constitutive relation, modify it with the multiplicative de-
composition of the deformation gradient, and import the result into the balance equations.

Section 8 explores the appearance of buckled solutions alongside un-buckled configura-
tions. We find the impact of thickness on the onset of buckling in response to incompatible
growth. In Section 9 we find large buckling in another example of elastic response to growth.

2 Geometry and Kinematics of Deformation and Growth

2.1 Coordinates and Euclidean Space E
3

The space in which a solid body resides is three-dimensional Euclidean space E
3, which

consists of (spatial) points, each of which has an inner-product space of tangent vectors
attached to it. E

3 has a fixed right-handed trio of orthogonal Cartesian axes, and each
tangent space has unit vectors i, j, and k pointing along these axes. We will also use
cylindrical coordinates (R, Θ, Z). The unit tangent vectors h1, h2, and k point in the
directions of increasing R, Θ, and Z, respectively. They are related to the Cartesian tangent
vectors by

h1(Θ) = cos Θ i + sin Θ j,

h2(Θ) = − sin Θ i + cos Θ j. (1)

Although E
3 consists of spatial points, in most cases we will refer to a point not by its

coordinates, but by the tangent vector anchored at the origin that points to the point.

2.2 Manifold with Cylindrical Coordinates

We will treat a solid body as a differentiable manifold with boundary, which is a set of
material points that can be assigned coordinates in an invertible manner, at least locally. In
the case at hand, we consider a multiply connected manifold B that is assigned cylindrical
coordinates (R, Θ, Z). We may need to employ different branches of the azimuthal angle Θ
for situations such as those illustrated in Figures 1 and 2. The map Ψ from B to coordinate
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points is called a coordinate system, and Ψ(B) will be called the space of coordinates.

Now that the body B is represented by a collection of coordinate points, we define the
position function X̂ : Ψ(B) → E

3 by

X̂(R, Θ, Z) = R cos Θ i + R sin Θ j + Z k = R h1(Θ) + Z k. (2)

The map X̂◦Ψ takes each point p ∈ B and assigns it a position (X̂◦Ψ)(p) = X̂(R(p), Θ(p), Z(p))

in E
3 in an invertible manner. The set (X̂ ◦Ψ)(B) will often be called the “Euclidean body”.

Note that the position function X̂ maps to the same point in E
3 regardless of whether the

chart in Figure 1 or the chart in Figure 2 is used.
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Figure 1: One chart for cylindrical coordinates assigns Θ-coordinates between 0 and 2π. The
position function X̂ for this chart sends this portion of R

3 into E
3.
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Figure 2: Some subsets of Bo (the open interior of B) may straddle the line that corresponds
to Θ = 0 = 2π in the chart in Figure 1. To avoid a disconnected image of the subset in R

3,
we choose a different chart, which assigns Θ-coordinates between π and 3π. The position
function X̂ for this chart sends this portion of R

3 into E
3.

2.3 Tangent Vectors

2.3.1 Tangent Vectors in E
3

To each point X in the Euclidean body there is attached a three-dimensional real vector
space whose elements are called tangent vectors. At X a basis for this tangent space is
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provided by the three partial derivatives of the position function X̂:

ER =
∂X̂

∂R
= cos Θ i + sin Θ j, (3)

EΘ =
∂X̂

∂Θ
= − R sin Θ i + R cos Θ j, (4)

EZ =
∂X̂

∂Z
= k. (5)

This basis is called the coordinate basis. There is a corresponding dual basis of vectors Ej

defined so that Ej · Ei = δj
i :

ER = cos Θ i + sin Θ j, (6)

EΘ = −R−1 sin Θ i + R−1 cos Θ j, (7)

EZ = k. (8)

The inner products Eij = Ei · Ej form a symmetric, positive-definite matrix:




ERR ERΘ ERZ

EΘR EΘΘ EΘZ

EZR EZΘ EZZ


 =




1 0 0
0 R2 0
0 0 1


 ; (9)

while the inner products Eij = Ei · Ej form the inverse matrix:




ERR ERΘ ERZ

EΘR EΘΘ EΘZ

EZR EZΘ EZZ


 =




1 0 0
0 R−2 0
0 0 1


 . (10)

2.3.2 Tangent Vectors in R
3
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Figure 3: Each tangent vector at a point X̂(R, Θ, Z) in the Euclidean body corresponds
to a unique tangent vector at (R, Θ, Z) ∈ Ψ(B) and to a unique abstract tangent vector at
Ψ−1(R, Θ, Z) ∈ B.

For each tangent vector at a point X̂(R, Θ, Z) in the Euclidean body there is a unique
tangent vector at (R, Θ, Z) ∈ Ψ(B). In the space of coordinates, the tangent vectors are
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represented by partial differential operators. The correspondence is

ER =
∂X̂

∂R
at X̂(R, Θ, Z) ←→ ∂

∂R
at (R, Θ, Z),

EΘ =
∂X̂

∂Θ
at X̂(R, Θ, Z) ←→ ∂

∂Θ
at (R, Θ, Z),

EZ =
∂X̂

∂Z
at X̂(R, Θ, Z) ←→ ∂

∂Z
at (R, Θ, Z). (11)

There is also a one-to-one correspondence between the vectors Ei and the linear func-
tionals on the vectors at (R, Θ, Z):

ER at X̂(R, Θ, Z) ←→ dR at (R, Θ, Z),

EΘ at X̂(R, Θ, Z) ←→ dΘ at (R, Θ, Z),

EZ at X̂(R, Θ, Z) ←→ dZ at (R, Θ, Z), (12)

where the linear functionals are defined so that

dξj

[
∂

∂ξi

]
= δj

i , where ξR = R, ξΘ = Θ, ξZ = Z, (13)

where we have used square brackets to indicate that ∂/∂ξi is the argument of dξj. We will

need this notation for tangent vectors at (R, Θ, Z) distinct from those at X̂(R, Θ, Z) because

we will be considering situations in which there is either no position function X̂ from Ψ(B)
or the position function is not globally one-to-one, so that two distinct coordinate points
(R1, Θ1, Z1) and (R2, Θ2, Z2) may be mapped to the same point in E

3.

2.4 Metric Tensor

A priori, the tangent space at (R, Θ, Z) ∈ Ψ(B) is just a real three-dimensional vector space,
not an inner-product space. A Riemannian metric tensor is a smooth1, symmetric, positive-
definite quadratic form on tangent vectors in Ψ(B). A metric tensor is used to assign sizes
to vectors and to compute the analogues of dot-products between vectors. A differentiable
manifold equipped with a Riemannian metric tensor is called a Riemannian manifold.

When a position function X̂ is present, the tangent space at X̂(R, Θ, Z) is an inner-
product space, and we want the tangent space at (R, Θ, Z) to “inherit” the inner product.
That is, we want an inner product 〈 , 〉 such that

〈
∂

∂R
,

∂

∂R

〉
= ER · ER = 1,

〈
∂

∂Θ
,

∂

∂Θ

〉
= EΘ · EΘ = R2,

〈
∂

∂Z
,

∂

∂Z

〉
= EZ · EZ = 1, (14)

1Infinite differentiability is required in Riemannian geometry, but several continuous derivatives are suf-

ficient in much of solid mechanics.
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with all other inner products of basis vectors equal to zero. Using the linear functionals in
Eq. (12), we can construct a bilinear form that satisfies these relations:

M = dR ⊗ dR + R2 dΘ ⊗ dΘ + dZ ⊗ dZ. (15)

Note the correspondence of M to the tensor

M = ER ⊗ ER + R2 EΘ ⊗ EΘ + EZ ⊗ EZ , (16)

which can be used to define the inner products of ER, EΘ, and EZ .

If we treat the functions Eij = Ei ·Ej as functions of (R, Θ, Z) and ignore their original
definition, M in Eq. (15), which is known as a metric tensor, can be expressed as

M = Eij dξi ⊗ dξj. (17)

Among other things, the metric tensor defines arclengths of curves. Let [a, b] ∋ s 
→
γ(s) = (R(s), Θ(s), Z(s)) be a continuously differentiable curve in Ψ(B). The length of γ is
computed with the metric tensor as follows:

∫ b

a

√
Eij(γ(s))

dξi

ds

dξj

ds
ds =

∫ b

a

√
(R′(s))2 + (R(s)Θ′(s))2 + (Z ′(s))2ds. (18)

By design of M , the length in Eq. (18) is the same as the Euclidean length of the Euclidean

image X̂ ◦ γ of the curve. Whenever there is a position function X̂, the metric tensor can
be used to convert a triple of coordinate velocities (dR/ds, dΘ/ds, dZ/ds) into the squared
norm of the corresponding Euclidean velocity. First we write the triple of velocities as the
tangent vector

dR

dS

∂

∂R
+

dΘ

ds

∂

∂Θ
+

dZ

ds

∂

∂Z
. (19)

Then we compute the inner product

〈
dR

dS

∂

∂R
+

dΘ

ds

∂

∂Θ
+

dZ

ds

∂

∂Z
,

dR

dS

∂

∂R
+

dΘ

ds

∂

∂Θ
+

dZ

ds

∂

∂Z

〉
=

(
dR

ds

)2

+R2

(
dΘ

ds

)2

+

(
dZ

ds

)2

.

(20)
Tangent vector at (R, Θ, Z) ∈ Ψ(B) corresponds to a tangent vector at Ψ−1(R, Θ, Z) ∈ B.
Similarly, the metric tensor at (R, Θ, Z) also corresponds to a symmetric, positive-definite
bilinear form on tangent vectors at Ψ−1(R, Θ, Z). Equipped with this bilinear form, each
tangent space at a point in B becomes an inner-product space, and B with the abstract
metric tensor is an example of a Riemannian manifold.

2.4.1 Deformation and Change of Metric Tensor

Consider a deformation χ in which the deformed configuration has coordinates (r, θ, z) and
corresponding position function

x̂(r, θ, z) = r cos θ i + r sin θ j + z k. (21)
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Figure 4: A deformation of a solid body is computed in three steps. X̂−1 maps each Eu-
clidean point of the body to its corresponding coordinate point. f maps reference coordinate
points to deformed coordinate points. The position function x̂ maps deformed coordinate
points into E

3. The full deformation is χ = x̂ ◦ f ◦ X̂−1.

Just as the position function X̂ in Eq. (2) induces the metric tensor in Eq. (15) on the
space of (R, Θ, Z)-points, the position function x̂ induces a metric tensor on the space of
(r, θ, z)-points:

m = dr ⊗ dr + r2 dθ ⊗ dθ + dz ⊗ dz. (22)

If we use the notation (ξ1, ξ2, ξ3) = (R, Θ, Z) for the reference coordinates and (ζ1, ζ2, ζ3) =
(r, θ, z) for the deformed coordinates, the deformation gradient can be written as

F =
∂ζj

∂ξi
ej ⊗ Ei, (23)

where

er =
∂x̂

∂r
= cos θ i + sin θ j = h1(θ), (24)

eθ =
∂x̂

∂θ
= − r sin θ i + r cos θ j = r h2(θ), (25)

ez =
∂x̂

∂z
= k. (26)

The deformation gradient maps tangent vectors at X ∈ (X̂ ◦Ψ)(B) to the corresponding,
deformed tangent vectors at x = χ(X). The right Cauchy-Green tensor F T · F associated
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with F provides a quadratic form akin to the one in Eq. (16):

F T · F =

(
∂ζj

∂ξi
Ei ⊗ ej

)
·
(

∂ζℓ

∂ξk
eℓ ⊗ Ek

)

= ejℓ

∂ζj

∂ξi

∂ζℓ

∂ξk
Ei ⊗ Ek (27)

where ejℓ = ej · eℓ. F T · F allows the computation of deformed arclengths while using the
reference coordinates (R, Θ, Z). For example, if [a, b] ∋ s 
→ γ(s) = (R(s), Θ(s), Z(s)) is a
continuously differentiable curve in Ψ(B), then the velocity of its Euclidean image is

v =
dR

ds
ER +

dΘ

ds
EΘ +

dZ

ds
EZ , (28)

and its arclength after deformation is

∫ b

a

‖F · v‖ ds =

∫ b

a

√
v · F T · F · v ds

=

∫ b

a

√
ejℓ

∂ζj

∂ξi

∂ζℓ

∂ξk

dξi

ds

dξk

ds
ds (29)

The metric tensor on Ψ(B) corresponding to the right Cauchy-Green tensor is

ejℓ

∂ζj

∂ξi

∂ζℓ

∂ξk
dξi ⊗ dξk, (30)

which is used as a quadratic form on velocity vectors in Ψ(B) of the form

v =
dξi

ds

∂

∂ξi
=

dR

ds

∂

∂R
+

dΘ

ds

∂

∂Θ
+

dZ

ds

∂

∂Z
. (31)

If v is the velocity vector of the curve s 
→ γ(s) in Ψ(B), then the arclength assigned by the
metric tensor in Eq. (30) is

∫ b

a

√
ejℓ

∂ζj

∂ξi

∂ζℓ

∂ξk
dξi [v] ⊗ dξk [v] ds =

∫ b

a

√
ejℓ

∂ζj

∂ξi

∂ζℓ

∂ξk
dξi

[
dξm

ds

∂

∂ξm

]
⊗ dξk

[
dξn

ds

∂

∂ξn

]
ds

=

∫ b

a

√
ejℓ

∂ζj

∂ξi

∂ζℓ

∂ξk

dξm

ds
δi
m

dξn

ds
δk
n ds

=

∫ b

a

√
ejℓ

∂ζj

∂ξm

∂ζℓ

∂ξn

dξm

ds

dξn

ds
ds. (32)

The metric tensor in Eq. (30) is called the pull-back of the metric tensor m in Eq. (17),
under the map f(R, Θ, Z) = (r, θ, z).
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2.5 Incompatible Growth

Each fixed two-point tensor with positive determinant can be the value of a deformation gra-
dient at a point, but not every two-point tensor field with positive determinant is equal to
a deformation gradient. A continuously differentiable two-point tensor field G with positive
determinant will be called an incompatible growth field if it is not equal to a deformation
gradient.

Even if G is an incompatible growth field, it can be used to create a new metric tensor
in the same fashion that a deformation gradient can. Let

G = Gj
i ei ⊗ Ej . (33)

Then the analogue of the right Cauchy-Green tensor is

GT · G = ejℓ Gj
i Gℓ

k Ei ⊗ Ek. (34)

This is a symmetric, positive-definite quadratic form on tangent vectors at X ∈ (X̂ ◦Ψ)(B),
and it corresponds to the metric tensor

ejℓ Gj
i Gℓ

k dξi ⊗ dξk (35)

on Ψ(B).

Before we can demonstrate the ways in which G can fail to be a deformation gradient,
we must delve a little deeper into differential geometry.

2.6 Immersibility and Embeddability

2.6.1 Immersions, Embeddings, and Isometry

An immersion of a set Ω ⊂ R
3 of coordinate points (ξ1, ξ2, ξ3) is a differentiable function

Ŷ : Ω → E
3 such that the determinant of the gradient of Ŷ has positive determinant

throughout Ω:

det

(
∂Ŷ

∂ξ1

∂Ŷ

∂ξ2

∂Ŷ

∂ξ3

)
> 0. (36)

This ensures that no volumes in Ω are collapsed to areas in E
3, and that no volumes undergo

a reversal of orientation. If Ω is equipped with a metric tensor Eij dξi ⊗ dξj, an immersion

Ŷ is called isometric if

∂Ŷ

∂ξi
· ∂Ŷ

∂ξj
= Eij, i, j = 1, 2, 3, in Ω. (37)

An immersion is locally invertible, but it need not be globally so. An immersion Ŷ of Ω
is called an embedding if it invertible throughout Ω. An embedding is called isometric if it
satisfies Eq. (37).
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2.6.2 Riemann-Christoffel Curvature Tensor

Not every Riemannian metric has an isometric immersion into E
3. There is a test for the

existence of such a map from coordinates to E
3. The test involves the Riemann-Christoffel

curvature tensor, whose computation we now show.

If Eij dξi ⊗ dξj is a Riemannian metric, then the Christoffel symbols of the first kind are
defined by

Γijk =
1

2

(
∂Eik

∂ξj
+

∂Ejk

∂ξi
− ∂Eij

∂ξk

)
, (38)

and the Christoffel symbols of the second kind are defined by

Γℓ
ij = EℓkΓijk, (39)

where [Eij ] = [Eij ]
−1.

In classical tensor analysis, the Christoffel symbols of the second kind are defined as the
coefficients used to express the rates of change of coordinate tangent vectors:

∂Ej

∂ξi
= Γℓ

ijEℓ, (40)

and the Christoffel symbols of the first kind are defined by “lowering” the raised index in
Γℓ

ij :

Γijk = EkℓΓ
ℓ
ij . (41)

The Riemann-Christoffel curvature tensor R is a four-indexed tensor whose components
satisfy

Rℓijk =
∂Γikℓ

∂ξj
− ∂Γijℓ

∂ξk
+ Γm

ij Γkℓm − Γm
ikΓjℓm. (42)

The test is embodied in the three-dimensional case of the “Fundamental Theorem of
Riemannian Geometry”, as described in Theorem 1.6-1 in [6], which we paraphrase:

Theorem 2.1 Let Ω be an open, simply-connected set in R
3 and let C = [Eij ] be a C2

symmetric positive-definite matrix-valued function on Ω that satisfies

R ≡ O in Ω,

where Rℓijk is defined by Eq. (39). Then there exists a C3 immersion Ŷ of Ω such that

Eij =
∂Ŷ

∂ξi
· ∂Ŷ

∂ξj
in Ω.

For a deeper exploration, see [6] or [11].

We will consider simple cases in which isometric embeddability fails.
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2.7 Example: Immersion without Embedding

We construct an example by considering two manifolds with cylindrical coordinate systems,
metric tensors, and position functions isometric with the given metric tensors:

manifold B
coordinate system Ψ = (R, Θ, Z)
metric tensor M = dR ⊗ dR + R2dΘ ⊗ dΘ + dZ ⊗ dZ

M = ER ⊗ ER + R2 EΘ ⊗ EΘ + EZ ⊗ EZ

isometric position function X̂(R, Θ, Z) = R cos(Θ) i + R sin(Θ) j + Z k

manifold M
coordinate system ψ = (r, θ, z)
metric tensor m = dr ⊗ dr + r2dθ ⊗ dθ + dz ⊗ dz

m = er ⊗ er + r2 eθ ⊗ eθ + ez ⊗ ez

isometric position function x̂(r, θ, z) = r cos(θ) i + r sin(θ) j + z k

In each case we have also included the “Euclidean image” of the metric tensor under the
isometric position functions, where

er = cos(θ) i + sin(θ) j,

eθ = −r−1 sin(θ) i + r−1 cos(θ) j,

ez = k. (43)

We consider a two-point tensor field of the form

G = γ1 er ⊗ ER +
γ2

γ2
eθ ⊗ EΘ + ez ⊗ EZ , (44)

where γ1 and γ2 are positive constants. If this were a deformation gradient, the reference
coordinates-to-deformed coordinates part of the deformation would have the form

r = γ1R, θ =
γ2

γ1
Θ, z = Z. (45)

The analogue of the right Cauchy-Green tensor is

GT · G =

(
γ1 ER ⊗ er +

γ2

γ2

EΘ ⊗ eθ + EZ ⊗ ez

)
·
(

γ1 er ⊗ ER +
γ2

γ2

eθ ⊗ EΘ + ez ⊗ EZ

)

= γ2
1err ER ⊗ ER +

(
γ2

γ1

)2

eθθ EΘ ⊗ EΘ + ezz EZ ⊗ EZ

= γ2
1 ER ⊗ ER +

(
γ2

γ1

)2

r2 EΘ ⊗ EΘ + EZ ⊗ EZ

= γ2
1 ER ⊗ ER + γ2

2R
2 EΘ ⊗ EΘ + EZ ⊗ EZ . (46)

This corresponds to the metric tensor

γ2
1 dR ⊗ dR + γ2

2R
2 dΘ ⊗ dΘ + dZ ⊗ dZ (47)
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on Ψ(B). Applying Eqs. (38), (39), and (42) to the coefficients of the this metric yields an
identically zero Riemann-Christoffel curvature tensor. Theorem 2.1 ensures the existence of
an isometric immersion of any simply-connected subset of Ψ(B).

Consider the maps x̂ ◦ f : Ψ(B) → E
3 shown in Figures 5 and 6:

(x̂ ◦ f)(R, Θ, Z) = x̂

(
γ1R,

γ2

γ1

Θ, Z

)

= γ1R cos

(
γ2

γ1
Θ

)
i + γ1R sin

(
γ2

γ1
Θ

)
j + Z k. (48)

�
3

0 A B

0

Π

2 Π

R

�

f
�

3

0 Γ1A Γ1B

0

Π

Γ2

Γ1
2 Π

r

Θ

X
� �1 x�

�
3

�
3

Figure 5: If γ2 > γ1, then x̂ ◦ f : Ψ(B) → E
3 double-covers part of E

3.

The coordinate basis vectors with respect to (R, Θ, Z) are

∂(x̂ ◦ f)

∂R
= γ1 cos

(
γ2

γ1
Θ

)
i + γ1 sin

(
γ2

γ1
Θ

)
j

∂(x̂ ◦ f)

∂Θ
= −γ2R sin

(
γ2

γ1

Θ

)
i + γ2R cos

(
γ2

γ1

Θ

)
j

∂(x̂ ◦ f)

∂Z
= k, (49)

whose dot products form a symmetric positive-definite matrix:



γ2
1 0 0
0 γ2R

2 0
0 0 1


 . (50)
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Figure 6: If γ2 < γ1, then x̂ ◦ f does not map Ψ(B) to a complete annulus in E
3.

Thus x̂◦f maps Ψ(B) into E
3 in an isometric immersion of Ψ(B) with the metric in Eq. (47).

But Figures 5 and 6 reveal that if γ1 �= γ2, then the image of Ψ(B) under x̂ ◦ f is not a
proper annulus.

A theorem on the “rigidity” of the class of isometric immersions shows that the problems
found in x̂ ◦ f will be found in any isometric immersion of Ψ(B) with the metric tensor in
Eq. (47):

Theorem 2.2 Let Ω be an open, connected subset of R
3, and let Ŷ and Ẑ be two C1

immersions such that their associated metric tensors satisfy

∂Ŷ

∂ξi
· ∂Ŷ

∂ξj
=

∂Ẑ

∂ξi
· ∂Ẑ

∂ξj
in Ω.

Then there exist a constant vector c and a constant orthogonal matrix Q such that

Ẑ(ξ1, ξ2, ξ3) = Q · Ŷ (ξ1, ξ2, ξ3) + c for each (ξ1, ξ2, ξ3) ∈ Ω.

See Theorem 1.7-1 in [6].

No constant rotation and translation of x̂◦f will solve the problems displayed in Figures 5
and 6. The annulus cannot be embedded in E

3 in a fashion that agrees with the metric in
Eq. (47). The map χ = x̂ ◦ f ◦ X̂−1 described above is a local deformation on subsets of the
annulus, but it is not a global deformation. Hence G is not equal to a global deformation
gradient; it is an incompatible growth field.
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2.8 Lack of Immersion

Consider next a growth field of the form

G = γ1 er ⊗ ER +
γ2R∫ R

0
γ1(s)ds

eθ ⊗ EΘ + ez ⊗ EZ , (51)

where γ1 and γ2 are positive, continuously differentiable functions of R, and

r(R) =

∫ R

0

γ1(s)ds, θ(R, Θ) =
γ2(R)R
∫ R

0
γ1(s)ds

Θ, z = Z. (52)

The analogue of the right Cauchy-Green tensor is

GT · G = γ2
1err ER ⊗ ER +

(
γ2R∫ R

0
γ1(s)ds

)2

eθθ EΘ ⊗ EΘ + ezz EZ ⊗ EZ

= γ2
1 ER ⊗ ER +

(
γ2R∫ R

0
γ1(s)ds

)2

r2 EΘ ⊗ EΘ + EZ ⊗ EZ

= γ2
1 ER ⊗ ER + γ2

2R
2 EΘ ⊗ EΘ + EZ ⊗ EZ , (53)

which corresponds to the metric tensor

γ2
1 dR ⊗ dR + γ2

2R
2 dΘ ⊗ dΘ + dZ ⊗ dZ (54)

on Ψ(B). Applying Eqs. (38), (39), and (42) to the coefficients of the metric in Eq. (54)
yields a Riemann-Christoffel curvature tensor with four entries that may be nonzero:

RRΘRΘ = −RRΘΘR = RΘRΘR = −RΘRRΘ =
Rγ2

γ1
(γ2γ

′
1 + Rγ′

1γ
′
2 − γ1 (2γ′

2 + Rγ′′
2 )) . (55)

Unless
γ2 + Rγ′

2

γ1

= constant, (56)

the two-point tensor field G in Eq. (51) is an incompatible growth field.

2.9 Non-Metric Complications

Note that computing the Riemann-Christoffel curvature tensor tests properties of GT · G

and not of G alone. We provide here an example of a two-point tensor field with positive
determinant and identically zero associated Riemann-Christoffel curvature that is not a de-
formation gradient, even locally.

Let

G = (cosφ er − sin φ ez) ⊗ ER + (− sin φ er + sin φ ez) ⊗ EZ + eθ ⊗ EΘ, (57)
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with r = R, θ = Θ, and z = Z. φ is an R-dependent angle. This corresponds to a rotation
of the vectors er and ez in the θ = constant plane. The analogue of the right Cauchy-Green
tensor is

GT · G =
(
err cos2 φ + ezz sin2 φ

)
ER ⊗ ER + eθθ EΘ ⊗ EΘ +

(
err sin2 φ + ezz cos2 φ

)
EZ ⊗ EZ

= ER ⊗ ER + R2 EΘ ⊗ EΘ + EZ ⊗ EZ , (58)

which is the same as the Euclidean metric tensor induced by the position function X̂ from
cylindrical coordinates to E

3. The associated Riemann-Christoffel curvature tensor is iden-
tically zero. This tells us that GT · G is equal to the right Cauchy-Green tensor for some
isometric immersion. It does not imply, however, that G is itself the gradient of an iometric
immersion.

Consider the form of a deformation gradient using cylindrical coordinates (R, Θ, Z) and
(r, θ, Z):

F = er ⊗
(

∂r

∂R
ER +

∂r

∂Θ
EΘ +

∂r

∂Z
EZ

)

︸ ︷︷ ︸
GRAD r

+ eθ ⊗
(

∂θ

∂R
ER +

∂θ

∂Θ
EΘ +

∂θ

∂Z
EZ

)

︸ ︷︷ ︸
GRAD θ

+ ez ⊗
(

∂z

∂R
ER +

∂z

∂Θ
EΘ +

∂z

∂Z
EZ

)

︸ ︷︷ ︸
GRAD z

. (59)

If G in Eq. (57) is a deformation gradient, then

GRAD r = cos φ ER − sin φ EZ , (60)

and the vector field on the right-hand side should have identically zero curl. However,

CURL
(
cos φ ER − sin φ EZ

)
= Rφ′ cos φ EΘ, (61)

so for non-constant φ the two-point tensor field G in Eq. (57) is not an isometric immersion.

All information about orientation is absent from GT ·G. G fails to be even a local defor-
mation gradient because it describes a re-orientation of material fibers without any bending,
stretching, or compression of the body. If the material fibers were re-oriented in this fashion
in a deformation, the result of this microscopic re-orientation would be a macroscopic change
in the shape of the body.

Considering incompatible growth such as that in Eq. (57) requires more advanced dif-
ferential geometry, including the theory of linear connections. Incompatible growth of this
kind will not be considered here.

3 Deformation and Hyperelasticity

3.1 The Multiplicative Decomposition

We imagine incompatible growth to be non-elastic, i.e. it generates no elastic strain energy.
A Riemannian manifold that undergoes incompatible growth has intrinsic arclengths that
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preclude it from being isometrically immersed in E
3. Since a solid body must be embedded

isometrically in E
3, the transformation of an incompatibly grown body is incomplete with-

out some distortion that changes the “grown” metric tensor to one that has allows isometric
immersion.

We assume that the body has an elastic response to the incompatible growth, and we
assume that the full deformation gradient F can be decomposed as in [14] and related works:

F = A · G, (62)

where A is a two-point tensor field that describes the distortion caused by the body’s elastic
response to the incompatible growth field G. A rough description is that the incompatible
growth, described by G, transforms infinitesimal neighborhoods in such a way that they
cannot fit together into E

3, and the elastic response, described by A, transforms these
neighborhoods so that they again form a solid body in E

3, without overlaps or voids.

3.2 Constitutive Relation of an Elastic Body with Growth

3.2.1 Traditional Hyperelasticity

A growthless hyperelastic body has a strain-energy density W (F ) (a function of the Cauchy-
Green tensor F · F T in an isotropic material) with units

[W (F )] =
elastic energy

reference volume
. (63)

The nominal stress tensor, which is the transpose of the first Piola-Kirchhoff stress tensor,
is

S =
∂

∂F
W (F ), (64)

so the units of S are

[S] =
[W (F )]

[F ]
=

elastic energy / reference volume

deformed length / reference length
=

elastic energy / deformed length

reference area
.

(65)
If we recognize elastic energy per final length as elastic force in the deformed configuration,
then the units of S reflect S’s rôle as a linear map converting area in the reference configu-
ration into stress in the deformed configuration.

The Cauchy stress tensor T is related to S by

T = (det F )−1
F · S, (66)

so the units of T are

[T ] = [det F ]−1 [F ] [S]

=

(
deformed volume

reference volume

)−1
deformed length

reference length
· elastic energy / deformed length

reference area

=
elastic energy / deformed length

deformed area
. (67)

These units reflect T ’s rôle as a linear map converting area in the deformed configuration to
force in the deformed configuration.
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3.2.2 Hyperelasticity with Growth

In a body with growth included via the multiplicative decomposition in Eq. (62), we distin-
guish three states of the body. The pre-growth state is the traditional reference configura-
tion; the post-growth, pre-elastic response state (described by a non-embeddable Riemannian
manifold) is called intermediate; and the final (Euclidean) configuration is found after the
elastic response to the growth. The lengths, areas, and volumes attached to these three
states will be considered distinct.

In this model, the elastic strain-energy density’s argument is A, the sole (first-order)
descriptor of the elastic response. Just as F maps from a tangent space in the reference
configuration to a tangent space in the deformed configuration in traditional hyperelasticity,
A maps from a tangent space in the intermediate configuration to a tangent space in the
final configuration. Considering the units of W (F ) in Eq. (63), we conclude that the units
of W (A) are

[W (A)] =
elastic energy

intermediate volume
. (68)

The analogue of the nominal stress has units
[

∂

∂A
W (A)

]
=

elastic energy / intermediate volume

final length / intermediate length
=

elastic energy / final length

intermediate area
, (69)

while the analogue of the Cauchy stress has units
[
(det A)−1

A · ∂

∂A
W (A)

]

=

(
final volume

intermediate volume

)−1

· final length

intermediate length
· elastic energy / final length

intermediate area

=
elastic energy / final length

final area
. (70)

A value of this analogue of the Cauchy stress is a linear map that coverts area in the final
configuration to stress in the final configuration. Since the elastic strain-energy depends only
on the elastic response A, this is the true Cauchy stress for a body in which the deformation
gradient is decomposed as F = A · G.

The formula above provides the form of the (Eulerian) Cauchy stress tensor for a hypere-
lastic body with growth, but we will need the first Piola-Kirchhoff stress tensor P to express
balance laws. In hyperelasticity with growth, P remains a linear map from tangent spaces in
the reference configuration to tangent spaces in the final (post-growth, post-elastic response)
configuration, and it is related to the Cauchy stress tensor in the traditional manner:

P = (det F )T · F−T

=

(
det F

det A

)
A ·

(
∂

∂A
W (A)

)
· F−T

= (det G) A ·
(

∂

∂A
W (A)

)
· F−T . (71)

A more complete argument for importing incompatible growth into elasticity in this
fashion can be found in [5].
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4 Reduced Plate Theory

In a reduced theory of shells or rods, the deformations allowed are restricted to a specific
class. In the case of plates (a special type of shell), for example, the body is allowed to deform
to any in a family of “plate-like” configurations. This is different from a constraint such as
incompressibility in that restriction to such a class of deformations cannot be expressed as
a set of local constraints. With global constraints in place, weak forms of balance laws are
expressed in terms of virtual displacements tangent to the (infinite-dimensional) manifold of
allowed deformations. The theory is developed in [2], [10], and section of [1].

Further, it is assumed that the first Piola-Kirchhoff stress tensor can be decomposed into
the sum of an active, constitutively-defined portion plus a reactive or latent portion:

P = Pact + Plat. (72)

Plat is the portion of the stress that keeps the body plate-like, and it is assumed to do
no work in the sense that ∫

(cX◦Ψ)(B)

Plat :
∂

△

x

∂X
dV = 0 (73)

for each virtual displacement
△

x tangent to the manifold of allowed configurations, where
(X̂ ◦ Ψ)(B) is the reference configuration of the body. This combination of assumptions
form the Global Constraint Principle. Plat is that portion of the stress that constrains the
body to its plate-like configuration but performs no work in doing so. The equations of
equilibrium can be expressed in weak form as

∫

(cX◦Ψ)(B)

(Pact + Plat) :
∂

△

x

∂X
dV =

∮

∂(cX◦Ψ)(B)

τ · △

x dS, (74)

where ∂(X̂ ◦ Ψ)(B) is the boundary of the reference configuration and τ is the applied
traction vector at a point on this boundary. By Eq. (73), then, the equations of equilibrium
of the constrained body have the weak form

∫

(cX◦Ψ)(B)

Pact :
∂

△

x

∂X
dV =

∮

∂(cX◦Ψ)(B)

τ · △

x dS, (75)

where
△

x is again a virtual displacement tangent to the manifold of allowed configurations.
As pointed out in section 4 of [10], Eq. (75) will amount to an integral condition, as opposed
to a stronger pointwise condition, that the active stress Pact will be required to satisfy on
the boundary. It is through simplifications such as this that the so-called Global Constraint
Principle makes nonlinear rod and shell problems manageable.

5 The Kirchhoff Plate

5.1 Kirchhoff Constraints

In a Kirchhoff plate, the final configuration is assumed to have the form

(x̂ ◦ f)(R, Θ, Z) = r(R, Θ) + Z d(R, Θ), (76)
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where the function r describes a two-dimensional “middle surface” of the plate, and the
director field d is a unit vector-valued function that satisfies

d =
∂r

∂R
× ∂r

∂Θ

/����
∂r

∂R
× ∂r

∂Θ

���� . (77)

Thus d can be viewed as a function of r and its partial derivatives. The three-dimensional
Kirchhoff plate consists of a two-dimensional surface from which one-dimensional material
fibers sprout in a perpendicular direction. See Figure 7.

Momentarily viewing x̂ as a function of r and its derivatives for notational convenience,
we find a virtual displacement from this class of configurations has the form

△

x = lim
ǫ→0

1

ǫ

{
x̂

(
r + ǫ

△

r,
∂r

∂R
+ ǫ

∂
△

r

∂R
,
∂r

∂Θ
+ ǫ

∂
△

r

∂Θ

)
− x̂

(
r,

∂r

∂R
,
∂r

∂Θ

)}

= lim
ǫ→0

1

ǫ

{(
r + ǫ

△

r + Z
(r,R +ǫ

△

r,R ) × (r,Θ +ǫ
△

r,Θ )

‖(r,R +ǫ
△

r,R ) × (r,Θ +ǫ
△

r,Θ )‖

)
−
(

r + Z
r,R ×r,Θ

‖r,R ×r,Θ ‖

)}

=
△

r + Z

△

r,R ×r,Θ +r,R ×△

r,Θ
‖r,R ×r,Θ ‖ , (78)

where
△

r is an as-regular-as-needed function of R and Θ.

We could derive the vector equation of equilibrium by considering the weak form of the
Method of Virtual Work with this virtual displacement, but there is an easier but less direct
method. The director field must satisfy the (local) constraints

d · d = 1 and d · r,α = 0, α = R, Θ. (79)

Encoding this into the expression Pact : ∂
△

x/∂X is complicated, even in the axisymmetric
case. If we introduce Lagrange multipliers λ, βR, and βΘ, we can consider instead the integral
of the following:

τ k ·
(

△

r + Z
△

d

)
,k − λd ·

△

d + βα

(
△

d · r,α + d · △

r,α

)

= τ k · △

r,k + βαd · r,α + τ k ·
(

Z
△

d

)
,k + (βαr,α − λd) ·

△

d

= (τα + βαd) · △

r,α + τα · Z
△

d,α +
(
τZ + βαr,α − λd

)
·

△

d, (80)

where k = R, Θ, Z and α = R, Θ. Thanks to the Lagrange multipliers, we can treat
△

r and
△

d

as though they were independent virtual displacements. We will be considering a plate with
no body forces and no applied tractions, so the weak form of the equations of equilibrium
will be
∫

(cX◦Ψ)(B)

{
(τα + βαd) · △

r,α + τα · Z
△

d,α +
(
τZ + βαr,α − λd

)
·

△

d

}
dV = 0 (81)
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for all admissible virtual displacements r.

Note that

τR ·
(

△

r + Z
△

d

)
,R =

(
Pact · ER

)
· ∂

∂R

(
△

r + Z
△

d

)

= (Pact · h1) ·
∂

∂R

(
△

r + Z
△

d

)
(82)

τΘ ·
(

△

r + Z
△

d

)
,Θ =

(
Pact · EΘ

)
· ∂

∂Θ

(
△

r + Z
△

d

)

=

(
Pact ·

h2

R

)
· ∂

∂Θ

(
△

r + Z
△

d

)
. (83)

5.2 Kinematics of an Axisymmetric Kirchhoff Plate

h1

d

k

a

r

Ζ

Φ

Φ

Figure 7: A radial slice of an axisymmetric Kirchhoff plate. ζ is the height of a point of the
middle surface, and a material point’s height above the middle surface is measured along
the unit vector b = d, which is perpendicular to the middle surface.

We consider axisymmetric deformations of an axisymmetric Kirchhoff plate. The refer-
ence configuration has the form

X̂(R, Θ, Z) = R cos(Θ) i + R sin(Θ) j + Z k = R h1(Θ) + Z k, (84)

where
h1(Θ) = cos(Θ) i + sin(Θ) j. (85)

As a function of (R, Θ, Z), the final configuration will have the form

(x̂ ◦ f)(R, Θ, Z) = r(R) h1(Θ) + ζ(R) k︸ ︷︷ ︸
r(R,Θ)

+Z d(R, Θ). (86)
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Here r is the cylindrical radius of a point in the middle surface, and ζ is the height of a point
in the middle surface. See Figure 7.

An outward-pointing radial tangent vector to the middle surface is

d

dR
(r(R) h1(Θ) + ζ(R) k) = r′(R) h1(Θ) + ζ ′(R) k. (87)

We define a to be the corresponding unit vector:

a =
r′ h1 + ζ ′ k√
(r′)2 + (ζ ′)2

= cosφ h1 + sin φ k, (88)

where φ is the angle formed by a and the radial unit vector h1:

φ = arctan

(
ζ ′

r′

)
. (89)

The director d is the “upward”-pointing unit vector orthogonal to a:

d = − sin φ h1 + cosφ k. (90)

The azimuthal unit vector h2 is the third member of the local orthonormal basis.

To construct the deformation gradient, we appeal to the relation

∂

∂ξi
(χ ◦ X̂)(ξ1, ξ2, ξ3) = F · Ei, (91)

where F and the Ei are evaluated at X̂(ξ1, ξ2, ξ3).

∂

∂R
(r(R) h1(Θ) + ζ(R) k + Z d(R, Θ)) = r′(R) h1(Θ) + ζ ′(R) k + Z

∂d

∂R
(R, Θ)

= r′ h1 + ζ ′ k − Zφ′ (cos φ h1 + sin φ k)

= r′ h1 + ζ ′ k − Zφ′ a. (92)

∂

∂Θ
(r(R) h1(Θ) + ζ(R) k + Z d(R, Θ)) = r(R) h2(Θ) + Z

∂d

∂Θ
(R, Θ)

= r h2 − Z sin φ
∂h1

∂Θ
= (r − Z sin φ) h2. (93)

∂

∂Z
(r(R) h1(Θ) + ζ(R) k + Z d(R, Θ)) = d(R, Θ) (94)

These results show that

F = (r′ h1 + ζ ′ k − Zφ′ a) ⊗ ER + (r − Z sin φ) h2 ⊗ EΘ + d ⊗ EZ

= (r′ h1 + ζ ′ k − Zφ′ a) ⊗ h1 +

(
r − Z sin φ

R

)
h2 ⊗ h2 + d ⊗ k, (95)
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where it must be understood that the vectors on the right-hand sides of the tensor products
are anchored at the reference point, while those on the left-hand sides are anchored at the
deformed point.

We will find it convenient to use the orthonormal basis {a, h2, d} in the deformed con-
figuration, so we will re-write the left-hand side of the first tensor product in F . Note
that

(
a

d

)
=

(
cos φ sin φ
− sin φ cos φ

)(
h1

k

)
=⇒

(
h1

k

)
=

(
cos φ − sin φ
sin φ cos φ

)(
a

d

)
. (96)

As a result,

r′ h1 + ζ ′ k = r′ (cosφ a − sin φ d) + ζ ′ (sin φ a + cosφ d)

= (r′ cos φ + ζ ′ sin φ)a + (ζ ′ cos φ − r′ sin φ)d. (97)

By definition of φ, though, ζ ′ = r′ tan φ, so

r′ cos φ + ζ ′ sin φ = r′ (cosφ + tan φ sinφ)

= r′
(

cos φ +
sin2 φ

cos φ

)

= r′ sec φ, (98)

ζ ′ cos φ − r′ sin φ = r′ (tan φ cosφ − sin φ) = 0. (99)

The deformation gradient can thus be written as

F = (r′ sec φ − Zφ′) a ⊗ h1 +

(
r − Z sin φ

R

)
h2 ⊗ h2 + d ⊗ k. (100)

We will need the following expression for later computations:

F−T = (r′ sec φ − Zφ′)
−1

a ⊗ h1 +

(
r − Z sin φ

R

)−1

h2 ⊗ h2 + d ⊗ k. (101)

We will use incompatible growth tensors of the form presented in Eq. (44):

G = γ1 Er ⊗ ER +
γ2

γ1
Eθ ⊗ EΘ + Ez ⊗ EZ

= γ1 h1 ⊗ h1 +
γ2

γ1

rh2 ⊗
h2

R
+ k ⊗ k

= γ1 h1 ⊗ h1 + γ2 h2 ⊗ h2 + k ⊗ k, (r = γ1R) (102)

with γ1 and γ2 constant. It should be noted that in Eq. (102) the vectors on the right-hand
side of each tensor product are anchored at a point in the reference configuration and each
vector on the left-hand side of a tensor product is anchored at the image under the incom-
patible growth discussed above.
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With F and G so defined, the tensor describing the elastic response to growth is

A = F · G−1

=

(
r′ sec φ − Zφ′

γ1

)
a ⊗ h1 +

(
r − Z sin φ

γ2R

)
h2 ⊗ h2 + d ⊗ k. (103)

The vector on the right-hand side of each tensor product is anchored at a point in the incom-
patibly grown state, and each vector on the left-hand side of a tensor product is anchored
at a point in the final configuration.

The most important tensor for the constitutive relation will be the Eulerian tensor

A · AT =

(
r′ sec φ − Zφ′

γ1

)2

a ⊗ a +

(
r − Z sin φ

γ2R

)2

h2 ⊗ h2 + d ⊗ d. (104)

We now consider variations with
△

r. We start with the following expression

∫

plate

(τα + βαd) · △

r,α dV =

∫

plate

{
(
Pact · h1 + βRd

)
· ∂

△

r

∂R
+

(
Pact ·

h2

R
+ βΘd

)
· ∂

△

r

∂Θ

}
dV

=

∫

plate

{
∂

△

r

∂R
·
(
Pact · h1 + βRd

)
+

∂
△

r

∂Θ
·
(

Pact ·
h2

R
+ βΘd

)}
dV.

It will be helpful to consider βR and βΘ as components of a vector β:

β = βRER + βΘEΘ = βR h1 + βΘR h2. (105)

With β so defined, we can consider the two-point tensor field Pact + d ⊗ β.

Consider the planar portion of
△

r · (Pact + d ⊗ β):

△

r · (Pact + d ⊗ β)planar =
(

△

r · Pact · h1 +
(

△

r · d
)

(β · h1)
)

h1

+
(

△

r · Pact · h2 +
(

△

r · d
)

(β · h2)
)

h2. (106)

In polar coordinates, the divergence of a planar vector field is

Div (f h1 + g h2) =
1

R

∂

∂R
(Rf) +

1

R

∂g

∂Θ
, (107)
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so the divergence of
△

r · (Pact + d ⊗ β)planar is

Div
(

△

r · (Pact + d ⊗ β)planar

)
=

1

R

∂

∂R

(
R

△

r · Pact · h1 + R
(

△

r · d
)

(β · h1)
)

+
1

R

∂

∂Θ

(
△

r · Pact · h2 +
(

△

r · d
)

(β · h2)
)

=
∂

△

r

∂R
·
(
Pact · h1 + βRd

)
+

△

r · 1

R

∂

∂R

(
R Pact · h1 + R βRd

)

+
1

R

∂
△

r

∂Θ
· (Pact · h2 + (β · h2) d) +

△

r · 1

R

∂

∂Θ
(Pact · h2 + (β · h2) d)

=
∂

△

r

∂R
·
(
Pact · h1 + βRd

)
+

△

r · 1

R

∂

∂R

(
R Pact · h1 + R βRd

)

+
1

R

∂
△

r

∂Θ
·
(
Pact · h2 + βΘR d

)
+

△

r · 1

R

∂

∂Θ

(
Pact · h2 + βΘR d

)

=
∂

△

r

∂R
·
(
Pact · h1 + βRd

)
+

△

r · 1

R

∂

∂R

(
R Pact · h1 + R βRd

)

+
∂

△

r

∂Θ
·
(

Pact ·
h2

R
+ βΘ d

)
+

△

r · ∂

∂Θ

(
Pact ·

h2

R
+ βΘ d

)
. (108)

The
△

r portion of Eq. (81) can be written as

∫

plate

{
∂

△

r

∂R
·
(
Pact · h1 + βRd

)
+

∂
△

r

∂Θ
·
(

Pact ·
h2

R
+ βΘd

)}
dV

=

∫

plate

Div
(

△

r · (Pact + d ⊗ β)planar

)
dV

−
∫

plate

△

r ·
{

1

R

∂

∂R

(
R Pact · h1 + R βRd

)
+

∂

∂Θ

(
Pact ·

h2

R
+ βΘd

)}
dV. (109)

By the Divergence Theorem in the plane, the integral of the first integrand can be re-written
∫

plate

Div
(

△

r · (Pact + d ⊗ β)planar

)
dv

=

∫ H2

H1

{∫

slice

Div
(

△

r · (Pact + d ⊗ β)planar

)
R dR dΘ

}
dZ

=

∫ H2

H1

{∮

∂(slice)

(
△

r · (Pact + d ⊗ β)planar

)
· ν dℓ

}
dZ

=

∮

∂(slice)

△

r ·
{∫ H2

H1

(Pact + d ⊗ β)planar · ν dZ

}
dℓ, (110)

where the “slice” mentioned is a planar slice of the reference configuration of the plate,
∂(slice) is the curve that forms the planar boundary of the slice, ν is the outward-pointing
unit normal on ∂(slice), and dℓ is arclength measure on ∂(slice).
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In order to balance the boundary term in the weak form of the Principle of Virtual Work,
we must specify the value of

∫ H2

H1

(Pact + d ⊗ β)planar · ν dZ =

∫ H2

H1

(Pact + d ⊗ β) · h1 dZ (111)

on the boundary of the middle surface.

Now that boundary terms are balanced, we have

∫

plate

△

r ·
{

1

R

∂

∂R

(
R Pact · h1 + R βRd

)
+

∂

∂Θ

(
Pact ·

h2

R
+ βΘd

)}
dV = 0 (112)

for all as-smooth-as-needed function
△

r of R and Θ. Since
∫

plate

△

r ·
{

1

R

∂

∂R

(
R Pact · h1 + R βRd

)
+

∂

∂Θ

(
Pact ·

h2

R
+ βΘd

)}
dv

=

∫

slice

∫ H2

H1

{
1

R

∂

∂R

(
R Pact · h1 + R βRd

)
+

∂

∂Θ

(
Pact ·

h2

R
+ βΘd

)}
dZ · △

r R dR dΘ

= 0, (113)

for such a large class of
△

r, we conclude that the integral in Z is identically zero:

∫ H2

H1

{
1

R

∂

∂R

(
R Pact · h1 + R βRd

)
+

∂

∂Θ

(
Pact ·

h2

R
+ βΘd

)}
dZ = 0. (114)

Next, we consider the variation in
△

d. We apply the same procedure as for the variation in
△

r. The result will be a weak version of the balance of angular momentum in the constrained
plate with zero applied moments.

∫

plate

{
τα · Z

△

d,α +
(
τZ + βαr,α −λd

)
·

△

d

}
dV

=

∫

plate



τR · Z ∂

△

d

∂R
+ τΘ · Z ∂

△

d

∂Θ
+
(
τZ + βαr,α −λd

)
·

△

d



 dV

=

∫

plate

Z Div

(
△

d · Pact

)

planar

dV

+

∫

plate

△

d ·
{(

τZ + βαr,α −λd
)
− Z

1

R

∂

∂R
(R Pact · h1) − Z

∂

∂Θ

(
Pact ·

h2

R

)}
dV

=

∮

∂(slice)

△

d ·
(∫ H2

H1

Z Pact dZ

)
· ν dℓ

+

∫

slice

△

d ·
∫ H2

H1

{
τZ + βαr,α −λd − Z

1

R

∂

∂R
(R Pact · h1) − Z

∂

∂Θ

(
Pact ·

h2

R

)}
dZ R dR dθ.

(115)

26



As before, ν = h1 is the outward-pointing unit normal to the planar boundary ∂(slice) of
the slice in the reference configuration, and dℓ is arclength measure on ∂(slice).

To balance the boundary terms, we must set values of the moment

∫ H2

H1

Z (Pact · h1) dZ (116)

on the planar boundary of the middle surface.

We have found that

∫

slice

△

d·
∫ H2

H1

{
τZ + βαr,α −λd − Z

1

R

∂

∂R
(R Pact · h1) − Z

∂

∂Θ

(
Pact ·

h2

R

)}
dZ R dR dθ = 0

(117)

for all as-smooth-as-needed functions
△

d of R and Θ. We conclude that

∫ H2

H1

{
τZ + βαr,α −λd − Z

1

R

∂

∂R
(R Pact · h1) − Z

∂

∂Θ

(
Pact ·

h2

R

)}
dZ = 0. (118)

5.3 Addressing Lagrange Multipliers

We are not yet ready to introduce the constitutive relation to close the system of equations.
The quantities λ, βR, and βΘ are not constitutively defined. However, there is enough in-
formation in the equations above to get around this complication.

First we claim that if we take the cross-product with d, the term λd will vanish. By
the form of G we are assuming and the form of F−T found above, we can be sure that
F−T · k = d. If we use an isotropic hyperelastic constitutive relation, then the form of
A = F · G−1 in such a relation will guarantee that T · d points in the direction d. As a
result,

∫ H2

H1

τZdZ =

∫ H2

H1

(Pact · k) dZ

=

∫ H2

H1

(det F )
(
T · F−T · k

)
dZ

=

∫ H2

H1

(det F ) (T · d) dZ ∝ d, (119)

which implies

d ×
∫ H2

H1

τZdZ = 0, (120)

the elimination we sought.
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When we take the cross-product of d with Eq. (118), we have

d × 1

R

∂

∂R

(
R

∫ H2

H1

Z (Pact · h1) dZ

)
+ d × ∂

∂Θ

∫ H2

H1

Z

(
Pact ·

h2

R

)
dZ

− d × r,α

∫ H2

H1

βαdZ = 0. (121)

We will consider all these terms in detail to find expressions for βR and βΘ in terms of
kinematic and constitutively-defined quantities.

By the symmetry of the deformation, the vector field Pact · h1 has zero projection onto
h2. It is determined solely by its projections onto h1 and k:

(Pact · h1) = (h1 · Pact · h1) h1 + (k · Pact · h1)k (122)

Since h1 and k are R-independent,

1

R

∂

∂R
R (Pact · h1) = h1

1

R

∂

∂R
R (h1 · Pact · h1) + k

1

R

∂

∂R
R (k · Pact · h1) . (123)

In particular,

h1 ·
1

R

∂

∂R
R (Pact · h1) =

1

R

∂

∂R
R (h1 · Pact · h1) , (124)

k · 1

R

∂

∂R
R (Pact · h1) =

1

R

∂

∂R
R (k · Pact · h1) . (125)

We have

d × 1

R

∂

∂R

(
R

∫ H2

H1

Z (Pact · h1) dZ

)

= (cosφ k − sin φ h1) ×
{

h1
1

R

∂

∂R

(
R

∫ H2

H1

Z (h1 · Pact · h1) dZ

)

+ k
1

R

∂

∂R

(
R

∫ H2

H1

Z (k · Pact · h1) dZ

)}

= h2
cos φ

R

∂

∂R

(
R

∫ H2

H1

Z (h1 · Pact · h1) dZ

)
+ h2

sin φ

R

∂

∂R

(
R

∫ H2

H1

Z (k · Pact · h1) dZ

)

= h2

{
cos φ

R

∂

∂R

(
R

∫ H2

H1

Z (h1 · Pact · h1) dZ

)
+

sin φ

R

∂

∂R

(
R

∫ H2

H1

Z (k · Pact · h1) dZ

)}
.

(126)

The symmetry of the deformation also requires that Pact · h2 point along h2:

(Pact · h2) = (h2 · Pact · h2) h2. (127)

Further, the coefficient (h2 · Pact · h2) is Θ-independent, so the Θ-derivative of (Pact · h2) is

∂

∂Θ
(Pact · h2) =

∂

∂Θ
(h2 · Pact · h2) h2

= (h2 · Pact · h2)
∂h2

∂Θ
= − (h2 · Pact · h2) h1. (128)
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The cross-product with d is

d × ∂

∂Θ

∫ H2

H1

Z

(
Pact ·

h2

R

)
dZ = (cosφ k − sin φ h1) ×

(
−h1

∫ H2

H1

Z

(
h2 · Pact ·

h2

R

)
dZ

)

= −h2
cos φ

R

∫ H2

H1

Z (h2 · Pact · h2) dZ. (129)

The remaining terms are

d × r,α

∫ H2

H1

βαdZ = d × ∂r

∂R

∫ H2

H1

βαdZ + d × ∂r

∂Θ

∫ H2

H1

βαdZ

= (cos φ k − sin φ h1) ×
{

(r′ h1 + ζ ′ k)

∫ H2

H1

βRdZ + r h2

∫ H2

H1

βΘdZ

}

=

(
r′ cos φ

∫ H2

H1

βRdZ

)
h2 +

(
ζ ′ sin φ

∫ H2

H1

βRdZ

)
h2

−
(

r cos φ

∫ H2

H1

βΘ

)
h1 −

(
r sin φ

∫ H2

H1

βΘ

)
k. (130)

What we have shown is
{

cos φ

R

∂

∂R

(
R

∫ H2

H1

Z (h1 · Pact · h1) dZ

)
+

sin φ

R

∂

∂R

(
R

∫ H2

H1

Z (k · Pact · h1) dZ

)

− cos φ

R

∫ H2

H1

Z (h2 · Pact · h2) dZ

}
h2

= (r′ cos φ + ζ ′ sin φ)

(∫ H2

H1

βRdZ

)
h2 − r (cosφ h1 − sin φ k)

∫ H2

H1

βΘdZ.

(131)

Note that the left-hand side is a scalar multiple of h2, and that
∫ H2

H1

βΘdZ on the right-hand
side is the coefficient of a linear combination of h1 and k, both of which are orthogonal to h2.
Since this holds for each (R, Θ), we see that

∫ H2

H1

βΘdZ = 0. Computing the h2-projection
reveals

cos φ

R

∂

∂R

(
R

∫ H2

H1

Z (h1 · Pact · h1) dZ

)

+
sin φ

R

∂

∂R

(
R

∫ H2

H1

Z (k · Pact · h1) dZ

)

−cos φ

R

∫ H2

H1

Z (h2 · Pact · h2) dZ = (r′ cos φ + ζ ′ sin φ)

(∫ H2

H1

βRdZ

)
. (132)
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If we multiply by R and divide by cosφ, we have

∂

∂R

(
R

∫ H2

H1

Z (h1 · Pact · h1) dZ

)

+ tanφ
∂

∂R

(
R

∫ H2

H1

Z (k · Pact · h1) dZ

)

−
∫ H2

H1

Z (h2 · Pact · h2) dZ = R (r′ + ζ ′ tanφ)

(∫ H2

H1

βRdZ

)

= R
(
r′ + r′ tan2 φ

)(∫ H2

H1

βRdZ

)

= Rr′ sec2 φ

(∫ H2

H1

βRdZ

)
. (133)

In the next section we will find another expression for the integral of βR, and this equa-
tion will become a differential equation in terms of kinematical and constitutively-defined
quantities.

6 Formulation of the problem as a system of ODEs

Since we have eliminated all differentiation with respect to Θ in the differential equations,
we can view them as a system of ordinary differential equations with independent variable R.

Thanks to the discoveries of the last section, Eq. (114) can now be written as

1

R

d

dR

{
h1 R

∫ H2

H1

(h1 · Pact · h1) dZ + k R

∫ H2

H1

(k · Pact · h1) dZ + R d

∫ H2

H1

βRdZ

}

− h1

∫ H2

H1

(
h2 · Pact ·

h2

R

)
dZ = 0. (134)

The projection of this equation onto k is

1

R

d

dR

{
R

∫ H2

H1

(k · Pact · h1) dZ + R cos φ

∫ H2

H1

βRdZ

}
= 0, (135)

so that

R

∫ H2

H1

(k · Pact · h1) dZ + R cos φ

∫ H2

H1

βRdZ = constant. (136)

Recall that we must assign the value of the stress
∫ H2

H1

(
Pact · h1 + βRd

)
dZ (137)

on the boundary (R = Rmax) of the middle surface. If this stress is zero, then in particular
its k-projection is zero. This implies that the constant on the right-hand side of Eq. (136)
is zero, and ∫ H2

H1

βRdZ = − sec φ

∫ H2

H1

(k · Pact · h1) dZ. (138)
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We will see later that the isotropic hyperelastic constitutive relation we choose ensures
that Pact · h1 points in the direction a = cosφ h1 + sin φ k. As a result of the direction of
Pact · h1,

Pact · h1 = (a · Pact · h1) a, (139)

so (h1 · Pact · h1) and (k · Pact · h1) satisfy

k · Pact · h1 = (a · Pact · h1) k · a = sin φ (a · Pact · h1) , (140)

h1 · Pact · h1 = (a · Pact · h1) h1 · a = cosφ (a · Pact · h1) , (141)

and (k · Pact · h1) = tan φ (h1 · Pact · h1) . (142)

and ∫ H2

H1

βRdZ = − sec φ tanφ

∫ H2

H1

(h1 · Pact · h1) dZ. (143)

The h1-projection of Eq. (134) becomes

1

R

d

dR

{
R

∫ H2

H1

(h1 · Pact · h1) dZ − R sin φ

∫ H2

H1

βRdZ

}
=

∫ H2

H1

(
h2 · Pact ·

h2

R

)
dZ

1

R

d

dR

{
R

∫ H2

H1

(h1 · Pact · h1) dZ + R tan2 φ

∫ H2

H1

(h1 · Pact · h1) dZ

}
=

∫ H2

H1

(
h2 · Pact ·

h2

R

)
dZ

d

dR

{
R sec2 φ

∫ H2

H1

(h1 · Pact · h1) dZ

}
=

∫ H2

H1

(h2 · Pact · h2) dZ.

(144)

We have one more scalar ordinary differential equation from the previous section:

d

dR

(
R

∫ H2

H1

Z (h1 · Pact · h1) dZ

)

+ tanφ
d

dR

(
R

∫ H2

H1

Z (k · Pact · h1) dZ

)

−
∫ H2

H1

Z (h2 · Pact · h2) dZ = Rr′ sec2 φ

(∫ H2

H1

βRdZ

)

= −Rr′ tan φ sec3 φ

∫ H2

H1

(h1 · Pact · h1) dZ,

(145)

where we have used Eq. (143) to re-write the right-hand side. Note that

tanφ
d

dR

(
R

∫ H2

H1

Z (k · Pact · h1) dZ

)

= tanφ
d

dR

(
R tan φ

∫ H2

H1

Z (h1 · Pact · h1) dZ

)

= φ′ tan φ sec2 φR

∫ H2

H1

Z (h1 · Pact · h1) dZ + tan2 φ
d

dR

(
R

∫ H2

H1

Z (h1 · Pact · h1) dZ

)
.

(146)
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Eq. (145) can be re-written as

(1 + tan2 φ)
d

dR

(
R

∫ H2

H1

Z (h1 · Pact · h1) dZ

)
+ φ′ tanφ sec2 φR

∫ H2

H1

Z (h1 · Pact · h1) dZ

=

∫ H2

H1

Z (h2 · Pact · h2) dZ − Rr′ tan φ sec3 φ

∫ H2

H1

(h1 · Pact · h1) dZ.

(147)

Since 1 + tan2 φ = sec2 φ = (cosφ)−2, we can re-write this as

d

dR

(
R

∫ H2

H1

Z (h1 · Pact · h1) dZ

)
= cos2 φ

∫ H2

H1

Z (h2 · Pact · h2) dZ

− (Rφ′ + Rr′ sec φ) tan φ

∫ H2

H1

Z (h1 · Pact · h1) dZ.

(148)

In summary, the balance laws for linear momentum and angular momentum for the plate
are

d

dR

(
R sec2 φ

∫ H2

H1

(h1 · Pact · h1) dZ

)
=

∫ H2

H1

(h2 · Pact · h2) dZ, (149)

d

dR

(
R

∫ H2

H1

Z (h1 · Pact · h1) dZ

)
= cos2 φ

∫ H2

H1

Z (h2 · Pact · h2) dZ

− (Rφ′ + Rr′ sec φ) tan φ

∫ H2

H1

Z (h1 · Pact · h1) dZ.

(150)

We have already ensured that

∫ H2

H1

(k · Pact · h1) dZ + cosφ

∫ H2

H1

βRdZ = k ·
{∫ H2

H1

(Pact · h1) dZ + d

∫ H2

H1

βRdZ

}
(151)

is identically zero. One of the boundary conditions is that the analogous h1-projection is
zero at the boundary of the middle surface:

h1 ·
{∫ H2

H1

(Pact · h1) dZ + d

∫ H2

H1

βRdZ

}

=

∫ H2

H1

(h1 · Pact · h1) dZ − sin φ

∫ H2

H1

βRdZ

=

∫ H2

H1

(h1 · Pact · h1) dZ + sin φ sec φ

∫ H2

H1

(k · Pact · h1) dZ

=
(
1 + tan2 φ

) ∫ H2

H1

(h1 · Pact · h1) dZ

= sec2 φ

∫ H2

H1

(h1 · Pact · h1) dZ. (152)
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Hence the boundary condition for stress is

sec2 φ

∫ H2

H1

(h1 · Pact · h1) dZ

∣∣∣∣
R∈{Rmin,Rmax}

= 0, (153)

where we consider Rmax in every case and Rmin only in the case of an annulus.

The boundary condition for moment is
∫ H2

H1

Z (Pact · h1) dZ

∣∣∣∣
R∈{Rmin,Rmax}

= 0. (154)

We will find a scalar equation that ensures that the h1- and k-projections are both zero.

7 Applying the Constitutive Relation

We consider an isotropic hyperelastic constitutive relation derived from a strain energy den-
sity of neo-Hookean type:

W (λ1, λ2, λ3) = µ

(
1

2

(
λ2

1 + λ2
2 + λ3

3 − 3
)
− ln J

)
+ λ (J − 1 − ln J) , (155)

where λi, i = 1, 2, 3, are the principal stretches of the deformation, and J = λ1λ2λ3. The
constants λ and µ correspond to the Lamé moduli of linear elasticity.

7.1 Without Growth

We will first consider the case without growth and establish the form of Cauchy stress tensor
as a function of the deformation gradient F .

One of the polar decompositions of the deformation gradient is F = R · U , where R is
a proper rotation and U =

√
F TF is a symmetric positive-definite tensor called the right

stretch tensor. Since the strain-energy density W (λ1, λ2, λ3) is an isotropic function of the

deformation gradient, it is equal to some function W̃ (U). We compute the Biot stress or
the Jaumann stress

T (1) =
∂W̃

∂U
=

3∑

i=1

∂W

∂λi

u(i) ⊗ u(i), (156)

where the u(i) are the unit eigenvectors of U .

In isotropic hyperelasticity without local constraints, the Cauchy stress and Biot/Jaumann
stress are related by

JRT · T · R = U · T (1)

=
3∑

i=1

∂W

∂λi

(
U · u(i)

)
⊗ u(i)

=
3∑

i=1

λi

∂W

∂λi

u(i) ⊗ u(i). (157)
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See section 4.3 of [13].

The principal components of the active Cauchy stress (the constitutively-defined portion
of the Cauchy stress) are then

(Tact)i =
λi

J

∂W

∂λi

=
1

J

(
µ
(
λ2

i − 1
)

+ λ (J − 1)
)
. (158)

7.2 With Growth

When growth is included via multiplicative decomposition of the deformation gradient F =
A · G, the (active) Cauchy stress is a function of the elastic portion A alone. However, we
can import the results found above. Eq. (158) still holds, but the eigenvalues are eigenvalues
of A (actually, square roots of eigenvalues of AT · A), and the principal directions are the
eigenvectors of AT · A. By Eq. (104), the full active Cauchy stress tensor is

Tact =
1

J

(
µ
(
λ2

1 a ⊗ a + λ2
2 h2 ⊗ h2 + λ2

3 d ⊗ d
)

+ (λJ − (λ + µ)) I
)
, (159)

where the λi are the “pseudo-stretches”

λ1 =
r′ sec φ − Zφ′

γ1
, λ2 =

r − Z sin φ

γ2R
, λ3 = 1, (160)

and J = det A = λ1λ2λ3.

To differential equations Eqs. (149) and (150) are written in terms of Pact = (det F )Tact ·
F−T , but we need only certain projections of this tensor. Note that

F−T · h1 = (r′ sec φ − Zφ′)
−1

a, (161)

F−T · h2 =

(
r − Z sin φ

R

)−1

h2. (162)

We have

Pact · h1 = (det F )Tact · F−T · h1

= Jγ1γ2 Tact · (r′ sec φ − Zφ′)
−1

a

= γ1γ2

(
µ

γ2
1

(r′ sec φ − Zφ′) +
λ

γ1γ2
(r′ sec φ − Zφ′) − λ + µ

r′ sec φ − Zφ′

)
a,(163)

where
det F = (det A) (det G) = (J) (γ1γ2) . (164)

A similar calculation shows that

Pact ·h2 = γ1γ2

(
µ

γ2
2

(
r − Z sin φ

R

)
+

λ

γ1γ2γ3

(
r − Z sin φ

R

)
− λ + µ

(r − Z sin φ) /R

)
h2. (165)

The projections pertinent for the differential equations are

h1 · Pact · h1 = cos φ

(
µγ2

γ1

(r′ sec φ − φ′Z) + λ

(
r − Z sin φ

R

)
− (λ + µ) γ1γ2

r′ sec φ − Zφ′

)
,(166)

h2 · Pact · h2 =
µγ1

γ2

(
r − Z sin φ

R

)
+ λ (r′ sec φ − Zφ′) − (λ + µ) γ1γ2

(r − Z sin φ) /R
. (167)
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We also assume that the middle surface occupies the true middle of the plate, so that
H1 = −H and H2 = H for some H > 0. The Z-integrals then have the forms

∫ H

−H

(h1 · Pact · h1) dZ = cosφ

{
2H

(
µγ2

γ1

r′ sec φ + λ
r

R

)
− 2 (λ + µ) γ1γ2

φ′
arctanh

(
Hφ′

r′ sec φ

)}

(168)
∫ H

−H

(h2 · Pact · h2) dZ = 2H

(
µγ1

γ2

r

R
+ λr′ sec φ

)
− 2 (λ + µ) γ1γ2R

sin φ
arctanh

(
H sin φ

r

)
(169)

∫ H

−H

Z (h1 · Pact · h1) dZ = − cos φ

{
2

3
H3

(
µγ2

γ1
φ′ + λ

sin φ

R

)

+
2 (λ + µ) γ1γ2

(φ′)2

(
r′ sec φ arctanh

(
Hφ′

r′ sec φ

)
− Hφ′

)}
(170)

∫ H

−H

Z (h2 · Pact · h2) dZ = −2

3
H3

(
µγ1

γ2

sin φ

R
+ λφ′

)

− 2 (λ + µ) γ1γ2R

sin2 φ

(
r arctanh

(
H sin φ

r

)
− H sin φ

)
(171)

We get a further simplification if we divide by µ:

1

µ

∫ H

−H

(h1 · Pact · h1) dZ = cosφ

{
2H

(
γ2

γ1
r′ sec φ + κ

r

R

)
− 2 (1 + κ) γ1γ2

φ′
arctanh

(
Hφ′

r′ sec φ

)}

(172)

1

µ

∫ H

−H

(h2 · Pact · h2) dZ = 2H

(
γ1

γ2

r

R
+ κr′ sec φ

)
− 2 (1 + κ) γ1γ2R

sin φ
arctanh

(
H sin φ

r

)
(173)

1

µ

∫ H

−H

Z (h1 · Pact · h1) dZ = − cos φ

{
2

3
H3

(
γ2

γ1
φ′ + κ

sin φ

R

)

+
2 (1 + κ) γ1γ2

(φ′)2

(
r′ sec φ arctanh

(
Hφ′

r′ sec φ

)
− Hφ′

)}
(174)

1

µ

∫ H

−H

Z (h2 · Pact · h2) dZ = −2

3
H3

(
γ1

γ2

sin φ

R
+ κφ′

)

− 2 (1 + κ) γ1γ2R

sin2 φ

(
r arctanh

(
H sin φ

r

)
− H sin φ

)
, (175)

where κ = λ/µ. The differential equations have the same form if each stress and moment is
replaced by the same quantity divided by µ.

8 Stability of the Flat Plate

8.1 The Flat Plate

If the plate is un-buckled, then there is no moment, Pact · h1 has no Z-dependence, and the
radial Piola-Kirchhoff stress is radial only, i.e. it has no vertical component. In the case of
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constant γ1 and γ2, the equations for the un-buckled plate can be converted into a pair of
autonomous ordinary differential equations, as detailed in [3]. If we set

R = Rmaxe
s−1, (176)

τ =
r

R
, (177)

N =
γ2

γ1
r′ + κ

r

R
− (1 + κ)γ1γ2

r′
. (178)

When τ and N are viewed as functions of the independent variable s, they satisfy

dτ

ds
=

γ1

2γ2

(
N − κτ +

√
(N − κτ)2 + 4(1 + κ)γ2

2

)
− τ, (179)

dN

ds
=

γ1

γ2

τ +
κγ1

2γ2

(
N − κτ +

√
(N − κτ)2 + 4(1 + κ)γ2

2

)
− (1 + κ)γ1γ2

τ
− N. (180)

We consider an annulus that has zero radial stress at its inner and outer faces. We can
find numerically an initial value for τ such that the boundary conditions n(s0) = 0 and
n(s1) = 0. The functions n(s) and τ(s) correspond to functions N(R) and T (R) via

N(R) = n

(
1 + ln

(
R

Rmax

))
, T (R) = τ

(
1 + ln

(
R

Rmax

))
. (181)

This correspondence also gives us a function r(R):

r(R) = RT (R) = Rτ

(
1 + ln

(
R

Rmax

))
, (182)

which also provides a function r′(R).

8.2 Differential Equations for Bifurcation

Finding numerical solutions of the boundary-value problem for the buckled plate has proved
a daunting task. To demonstrate the existence of buckled solutions, we consider perturba-
tion about the flat configuration.

Eqs. (149) and (150) for the buckled plate, i.e. with stresses and moments given by
Eqs. (168)-(171), can be expressed in the form




1 0 0 0
0 1 0 0
0 0 a33 a34

0 0 a43 a44




︸ ︷︷ ︸
A(R,r,φ,r′,φ′)

d

dR




r
φ
r′

φ′


 =




r′

φ′

f3

f4




︸ ︷︷ ︸
f(R,r,φ,r′,φ′)

, (183)

with

a33 = 2HR

(
γ2 sec2 φ

γ1

+
γ1γ2(1 + κ)

(r′)2 − H2 (φ′)2 cos2 φ

)
, (184)
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a34 = 2R

{
γ1γ2(1 + κ) sec φ

(φ′)2 arctanh

(
Hφ′ cos φ

r′

)

− Hγ1γ2(1 + κ)

r′φ′
(
1 − H2(φ′)2 cos2 φ

(r′)2

)



 (185)

a43 = 2R

{
−γ1γ2(1 + κ)

(φ′)2 arctanh

(
Hφ′ cos φ

r′

)

+
Hγ1γ2(1 + κ) cos φ

r′φ′
(
1 − H2(φ′)2 cos2 φ

(r′)2

)



 (186)

a44 = 2R

{
−H3γ2 cos φ

3γ1
+

Hγ1γ2(1 + κ) cos φ

(φ′)2

+
2γ1γ2(1 + κ) cos φ

(
arctanh

(
Hφ′ cos φ

r′

)
r′ sec φ − Hφ′

)

(φ′)3

− Hγ1γ2(1 + κ) cos φ

(φ′)2
(
1 − H2(φ′)2 cos2 φ

(r′)2

)



 , (187)

f3 = 2Rγ1γ2(1 + κ)arctanh

(
H sin φ

r

)
csc φ − 2Hκr sec φ

R

+ 2Hκr′ sec φ − 2H

(
γ1r

Rγ2
+ κr′ sec φ

)

+ sec φ


2H

(
κr

R
+

γ2r
′ sec φ

γ1

)
−

2γ1γ2(1 + κ)arctanh
(

Hφ′ cos φ

r′

)

φ




+
2HRγ2r

′φ′ sec2 φ tanφ

γ1

+ R sec φ tanφ


2H

(
κr

R
+

γ2r
′ sec φ

γ1

)
−

2γ1γ2(1 + κ)arctanh
(

Hφ′ cos φ

r′

)

φ′


φ′

+
2HRγ1γ2(1 + κ)φ′ tan φ

r′
(
1 − H2(φ′)2 cos2 φ

(r′)2

) (188)
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f4 =
2H3κ cos φ sin φ

3R

+ Rr′ tan φ


2H

(
κr

R
+

γ2r
′ sec φ

γ1

)
−

2γ1γ2(1 + κ)arctanh
(

Hφ′ cos φ

r′

)

φ′




−
2Rγ1γ2(1 + κ)arctanh

(
Hφ′ cos φ

r′

)
r′ tanφ

φ′

− 2

3
H3κφ′ cos2 φ +

2HRγ1γ2(1 + κ) sin φ

1 − H2(φ′)2 cos2 φ

(r′)2

− cos φ





2γ1γ2(1 + κ)
(
arctanh

(
Hφ′ cos φ

r′

)
r′ sec φ − Hφ′

)

(φ′)2

+
2

3
H3

(
κ sin φ

R
+

γ2φ
′

γ1

)}

− cos φ

{
−2Rγ1γ2(1 + κ) csc2 φ

(
rarctanh

(
H sin φ

r

)
− H sin φ

)

− 2

3
H3

(
γ1 sin φ

Rγ2
+ κφ′

)}
(189)

The matrix A is invertible symbolically, so the equations can be expressed in quasilinear
form:

d

dR




r
φ
r′

φ′


 = A−1f . (190)

We consider expressions r = r0 + ǫr1 and φ = ǫφ1, where r0 is the radius function in
Eq. (182), i.e. the solution of the boundary-value problem for the un-buckled plate. Inserting
these into Eq. (190), we have

d

dR




r0

0
r′0
0


+ ǫ

d

dR




r1

φ1

r′1
φ′

1




= A−1f
∣∣

r = r0, r′
= r′

0

φ = 0, φ′
= 0

+ ǫ
∂A−1f

∂(r, φ, r′, φ)

∣∣∣∣
r = r0, r′

= r′

0

φ = 0, φ′
= 0

·




r1

φ1

r′1
φ′

1


+ O

(
ǫ2
)
. (191)

Equating terms with equal powers of ǫ, we are left with a system of linear equations for
(r1, φ1, r

′
1, φ

′
1):

d

dR




r1

φ1

r′1
φ′

1


 =

∂A−1f

∂(r, φ, r′, φ)

∣∣∣∣
r = r0, r′

= r′

0

φ = 0, φ′
= 0

·




r1

φ1

r′1
φ′

1


 . (192)
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8.3 Linear Boundary Conditions for Bifurcation

We emply first-order expansions of the scalar coefficient of the radial stress in Eq. (168):

1

µ

∫ H

−H

(a · Pact · h1) dZ =
1

µ

∫ H

−H

(a · Pact · h1) dZ

∣∣∣∣
r = r0, r′

= r′

0

φ = 0, φ′
= 0

+
∂
(

1
µ

∫ H

−H
(a · Pact · h1) dZ

)

∂(r, φ, r′, φ′)

∣∣∣∣∣∣
r = r0, r′

= r′

0

φ = 0, φ′
= 0

· ǫ




r1

φ1

r′1
φ′

1


+ O

(
ǫ2
)

= 2H

(
γ2

γ1
r′0 + κ

r0

R
− (1 + κ)γ1γ2

r′0

)

+ ǫ

(
2Hκ

R
r1 +

(
2Hγ2

γ1

+
2H(1 + κ)γ1γ2

(r′0)
2

)
r′1

)
+ O

(
ǫ2
)
. (193)

At R = R0 and R = R1, the radial stress of the flat annulus is zero, so for i = 0, 1,

1

µ

∫ H

−H

(a · Pact · h1) dZ

∣∣∣∣
R=Ri

= ǫ

(
2Hκ

R
r1 +

(
2Hγ2

γ1

+
2H(1 + κ)γ1γ2

(r′0)
2

)
r′1

)∣∣∣∣
R=Ri

+ O
(
ǫ2
)
.

(194)
This provides one linear boundary condition for R = R0 and one for R = R1:

κ

R
r1 +

(
γ2

γ1
+

(1 + κ)γ1γ2

(r′0)
2

)
r′1

∣∣∣∣
R=Ri

= 0. (195)

We perform the same expansion procedure for the moment in Eq. (170):

1

µ

∫ H

−H

(a · Pact · h1)Z dZ =
1

µ

∫ H

−H

(a · Pact · h1)Z dZ

∣∣∣∣
r = r0, r′

= r′

0

φ = 0, φ′
= 0

+
∂
(

1
µ

∫ H

−H
(a · Pact · h1) Z dZ

)

∂(r, φ, r′, φ′)

∣∣∣∣∣∣
r = r0, r′

= r′

0

φ = 0, φ′
= 0

· ǫ




r1

φ1

r′1
φ′

1


+ O

(
ǫ2
)

= 0 +
2H3ǫ

3

(
κ

R
φ1 +

(
γ2

γ1

+
(1 + κ)γ1γ2

(r′0)
2

)
φ′

1

)
+ O

(
ǫ2
)
. (196)

Recall that the un-buckled plate has identically zero moment. This provides linear boundary
conditions at R = R0 and R = R1:

κ

R
φ1 +

(
γ2

γ1
+

(1 + κ)γ1γ2

(r′0)
2

)
φ′

1

∣∣∣∣
R=Ri

= 0. (197)

8.4 Evidence of Bifurcation

We now have a system of four linear ordinary differential equations and four linear boundary
conditions. The linear boundary conditions at R = R0 have a two-dimensional vector space
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of solutions. Considering that the boundary conditions at R = R0 can be expressed as

(
κ
R

γ2

γ1

+ (1+κ)γ1γ2

(r′
0
)2

0 0

0 0 κ
R

γ2

γ1

+ (1+κ)γ1γ2

(r′
0
)2

)



r1

r′1
φ1

φ′
1




∣∣∣∣∣∣∣∣
R=R0

=

(
0
0

)
, (198)

we see that the two-dimensional solution space at R = R0 is spanned by, for example,




r1

r′1
φ1

φ′
1




∣∣∣∣∣∣∣∣
R=R0

=




γ2

γ1

+ (1+κ)γ1γ2

(r′
0
)2

− κ
R

0
0




∣∣∣∣∣∣∣∣
R=R0

and




r1

r′1
φ1

φ′
1




∣∣∣∣∣∣∣∣
R=R0

=




0
0

γ2

γ1

+ (1+κ)γ1γ2

(r′
0
)2

− κ
R




∣∣∣∣∣∣∣∣
R=R0

(199)
Let u and v be solutions of Eq. (192) with the initial (R = R0) conditions above. Then

u and v have the forms



u1

u2

u3

u4


 =




r1

r′1
0
0


 and




v1

v2

v3

v4


 =




0
0
φ1

φ′
1


 . (200)

Every linear combination αu+βv is a solution of the differential equations that satisfies the
linear boundary conditions Eq. (195) and (197) at R = R0.

We seek a linear combination of this form that also satisfies the linear boundary conditions
at R = R1. That is, we want

(
κ
R

γ2

γ1

+ (1+κ)γ1γ2

(r′
0
)2

0 0

0 0 κ
R

γ2

γ1

+ (1+κ)γ1γ2

(r′
0
)2

)



αu1

αu2

βv3

βv4




∣∣∣∣∣∣∣∣
R=R1

=

(
0
0

)
. (201)

We can seek the existence of such a linear combination by re-writing this condition as




κ
R
u1 +

(
γ2

γ1

+ (1+κ)γ1γ2

(r′
0
)2

)
u2 0

0 κ
R
v1 +

(
γ2

γ1

+ (1+κ)γ1γ2

(r′
0
)2

)
v2



∣∣∣∣∣∣
R=R1

(
α
β

)
=

(
0
0

)
(202)

If the matrix has zero determinant, then there is a non-trivial solution (α, β)T of this pair
of linear equations at R = R1.

We know that if γ1 = γ2, then the growth tensor is a true deformation gradient, and
there is no residual stress in the un-buckled annulus. We fix a value for γ2 and let γ1 vary
until the determinant of the matrix in Eq. (202) is zero. In truth, we seek the first γ1-value
at which either of the non-zero entries in the matrix is zero.
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8.5 Numerical Results

In all numerical results found so far, the first term to drop to zero is the (2, 2)-entry of the
matrix in Eq. (202). This means that we can choose a perturbation of the moment alone.
Further, the (2, 2)-entry reaches zero at some γ1 > γ2, which indicates buckled solutions for
the case in which incompatible growth corresponds to azimuthal contraction.

In the following example, we set γ2 = 1.01, H = 0.01, R0 = 0.01, R1 = 1, and κ = 1.
As seen in Figures 8 and 9, as functions of γ1, the stress perturbation (dependent on r1

alone) at R = R1 has no zeros, while the moment perturbation (dependent on φ1 alone)
at R = R1 has multiple zeros, all greater than γ2. The first four zeros are found at
γ1 = 1.01086, 1.01348, 1.01793, and 1.0242.
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Figure 8: The stress perturbation (dependent
on r1) at R = R1 has no zeros.
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Figure 9: The moment perturbation (depen-
dent on φ1) at R = R1 has multiple zeros.
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Figure 10: The first bifurcation value of γ1, as
a function of half-thickness H
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Figure 11: The first three critical values of γ1,
as functions of H

Figures 10 and 11 show that an increase in the half-thickness H of the plate causes a delay
in the onset of buckling. Figures 12-15 show the values of the buckling angle φ, the middle
surface height ζ , and the thickness-integrated radial and azimuthal stresses and radial and
azimuthal moments for γ1 = 56026090/55424431 ≈ 1.01086, which is very near a bifurcation
value. in these figures, quantities computed with solutions of the perturbation equations are
plotted with dashed lines, and those computed with solutions of the full nonlinear equations
are plotted with solid lines. Since γ1 is so close to the bifurcation value, the buckling is very
small.
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Figure 12: The buckling angle φ as a function of R.
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Figure 13: The height ζ of the middle surface as a function of R.
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Figure 14: Radial (rapid dashed) and azimuthal (slower dashes) stresses as function of R.
The results of perturbation and of solving the full nonlinear system of equations are overlaid.

9 Large Buckling Due to Immersibility-Precluding Growth

We consider a growth field of the kind in Eq. (51):

G = γ1 er ⊗ ER +
γ2R∫ R

0
γ1(s)ds

eθ ⊗ EΘ + ez ⊗ EZ

= γ1 h1 ⊗ h1 +
γ2R∫ R

0
γ1(s)ds

rh2 ⊗
h2

R
+ k ⊗ k

= γ1 h1 ⊗ h1 + γ2 h2 ⊗ h2 + k ⊗ k, (203)
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Figure 15: Radial (rapid dashes) and azimuthal (slower dashes) moments as function of R.
The results of perturbation and of solving the full nonlinear system of equations are overlaid.

where γ1 and γ2 are continuously differentiable positive functions of R, and

r(R) =

∫ R

0

γ1(s)ds, θ(R, Θ) =
γ2(R)R
∫ R

0
γ1(s)ds

Θ, z = Z. (204)

This growth tensor is incorporated into the constitutive relation in the same fashion,
and the differential equations are Eqs. (149) and (150), and the boundary conditions are
Eqs. (153) and (154).

With parameters R0 = 0.2, R1 = 0.709 H = 0.01, and κ = 1, and growth factors

γ1(R) ≡ 1.9, γ2(R) = 1.9 − 0.9R2, (205)

we found a solution exhibiting significant buckling. Figures (16)-(19) show plots of the
buckling angle, height of the buckled middle surface, stresses, and moments in the final
configuration. The largest value of ζ is 0.064, around 9% of the radius of the reference
configuration. Buckling of this size is visible in Figure 20, which features a top view of the
buckled middle surface.

10 Conclusion

We have demonstrated the relation of the standard kinematics of finite elasticity to the ge-
ometry of differentiable manifolds, and we have seen that kinematics can be adapted slightly
to include incompatible growth. We have shown that incompatible growth is equivalent to
a change of metric tensor on a Riemannian manifold such that the manifold can no longer
be isometrically embedded in Euclidean three-dimensional space. We have also shown that
the elastic response found in the multiplicative decomposition F = A ·G of the deformation
gradient, amounts to a second change of metric, so that the manifold can again be isomet-
rically embedded in E

3. We have imported incompatible growth into geometrically exact
models of plates and have solved models showing that incompatible growth alone can induce
buckling, without the assistance of applied tractions.
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Figure 16: The buckling angle φ as a function of R.
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Figure 17: The height ζ of the middle surface as a function of R.
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Figure 18: Radial (solid) and azimuthal (dashed) stresses as function of R
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Figure 19: Radial (solid) and azimuthal (dashed) moments as function of R

Figure 20: A top view of the buckled middle surface reveals buckling on the order of one-tenth
the radius of the plate.
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