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Abstract— Efficiently implementing nonlinear Bayesian esti-
mators is still an unsolved problem, especially for the mul-
tidimensional case. A trade-off between estimation quality
and demand on computational resources has to be found.
Using multidimensional Fourier series as representation for
probability density functions, so called Fourier densities, is
proposed. To ensure non-negativity, the approximation is per-
formed indirectly via Ψ-densities, of which the absolute square
represent the Fourier density. It is shown that Ψ-densities can be
determined using the efficient fast Fourier transform algorithm
and their coefficients have an ordering with respect to the
Hellinger metric. Furthermore, the multidimensional Bayesian
estimator based on Fourier densities is derived in closed form.
That allows an efficient realization of the Bayesian estimator
where the demands on computational resources are adjustable.

I. INTRODUCTION

Many technical applications involve dealing with unknown

quantities. A common problem is determining an unknown

state from imprecise measurements. Typical examples for the

so called state estimation or filtering problem are localization

of vehicles or reconstruction of temperature distributions by

means of a sensor network.

The most common approach is to describe the uncertain

quantities with stochastic variables, i.e., random vectors,

and employ a Bayesian Estimator. For linear systems with

Gaussian random variables, the problem can be fully solved

using the Kalman Filter [1], [2]. For the case of nonlinear

systems, a vast variety of approaches exist [2], [3] for quite

some time. The key idea is to find an appropriate approx-

imation for probability density functions, which allows an

efficient implementation of the Bayesian estimator. Very

popular are the extended Kalman filter, particle filters [4],

and set based methods [5]. They all have in common that

they are efficient, scale well with an increasing number of

dimensions. Unfortunately, determining the quality of their

results is generally difficult and usually computationally

costly.

To overcome this drawback, systems of functions can be

employed for approximating probability densities. Gaussian

mixtures [6] and Gauss-Hermite series [7] are commonly

used. Although methods exist for precisely determining

Gaussian mixtures for arbitrary density functions [8], ap-

proximating a density function, including another Gaussian

mixture, demands much computational resources as all pa-

rameters are interdependent.

Edgeworth-expansions are much more efficient on this

point [7], due to the fact that Gauss-Hermite series are an

orthogonal function system, which permit determining the

needed parameters independently of each other. Furthermore,

the parameters can be ordered with respect to a distance

measure. Unfortunately, it cannot be ensured in general that

a truncated Gauss-Hermite series is a valid density function

as they can become negative.

In this paper we use Fourier series as representations for

probability density functions, as first proposed by Kronmal

and Tarter [9]. To ensure non-negativity, we approximate the

density indirectly via its square root utilizing the Hellinger

metric. This concept was also used for density approximation

with wavelets [10]. Unfortunately employing wavelet repre-

sentations does result in a closed form Bayesian estimator.

The contribution of this paper is a full generalization of

the approach we presented in [11] to the d-dimensional case.

Particularly, the cumulative distribution, expected value and

the covariance as well as the multidimensional Bayesian

estimator are derived.

In this paper the following notation is used:

x – random variable C – set of complex numbers

x – vector δqp – Kronecker symbol

x – random vector a⊙b – elementwise multiplication

1 – vector of ones c∗ – conjugate complex of c
j – imaginary unit δ(x) – Dirac delta function

The rest of the paper is structured as follows: In the

next Section the Bayesian estimator for the d-dimensional

case is dicsussed. In Sec. III the multidimensional Fourier

densities are defined and their key characteristics are derived.

In Sec. V the multidimensional Bayesian estimator based on

Fourier densities is derived. A localization example is shown

in Sec. VI. The paper closes with a summary and an outlook

to future work.

II. PROBLEM FORMULATION

Without loss of generality, finite intervals are limited to

the interval Ω := [−π, π] unless otherwise noted.

Consider a nonlinear discrete-time multidimensional sys-

tem

xk+1 = ak(xk, uk) + wk , (1)

with the d-dimensional state vector xk ∈ Ωd = [−π, π]
d
, the

input vector uk, the nonlinear system function ak(., .), and

additive noise term wk with the probability density fw(wk).
The subscript k denotes the discrete time, bold variables, e.g.

x, denote random variables, and underlining, e.g. x, denotes
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Fig. 1. Structure of a nonlinear discrete-time system with additive noise
and a nonlinear discrete-time estimator. The output ŷ

k
is a realization of

the random variable y
k

.

vectors. Furthermore, we consider the measurement equation

y
k

= hk(xk) + vk , (2)

where y
k

is the measurement vector at time k, hk(.) the non-

linear measurement function and vk the additive noise term

with the density fv(vk). Note that an actual measurement,

denoted with ŷ
k
, is a realization of (2). It is assumed that

all the individual noise variables wk and vk are statistically

independent and have an expected value of zero.

The purpose of the estimator is to determine the probabil-

ity density f(xk) of xk as precise as possible for each time

step k. To achieve this, two steps are performed alternately

(Fig. 1), namely the prediction step and the filtering step.

Prediction Step: A prior density f(xk) for xk, a known

input uk, and a noise density fw(wk) are assumed to be

given. With respecting (1) for the discrete time k + 1 the

density fp(xk+1) of xk+1 can be determined by employing

the well-known generalized convolution formula

fp(xk+1) =

∫

Ωd

∫

Ωd

δ
(

xk+1 − ak(xk, uk) − wk

)

f(xk)fw(wk) dwk dxk

=

∫

Ωd

fw
(

xk+1 − ak(xk, uk)
)

f(xk) dxk . (3)

The input for the prediction step is usually the estimated

density f(xk) = fe(xk) from the filtering step.

Filtering Step: The purpose is to incorporate the informa-

tion of the measurement value ŷ
k

including the measurement

noise fv(vk) respecting (2). This can be achieved by using

the famous Bayes’ formula for additive noise

fe(xk) =
fv(ŷ

k
− h(xk))fp(xk)

∫

Ωd fv(ŷ
k
− h(xk))fp(xk) dxk

=
fL(xk)fp(xk)

ck

,

where

fL(xk) = f(ŷ
k
|xk) =

∫

Ωd

δ(ŷ
k
− h(xk) − vk)fv(vk) dvk

= fv(ŷ
k
− h(xk))

is called the likelihood function for the measurement value

ŷ
k
. It is the conditional density for the occurrence of the

measurement ŷ
k

given xk. The denominator ck is a normal-

ization constant for fL(xk)fp(xk).

III. MULTIDIMENSIONAL FOURIER DENSITIES

The use of Fourier series as density representation is

very convenient. The function type is conserved over the

operations +, −, ×,
∫

and
√

. It is shown in the previous

section that these operations are sufficient for performing

Bayesian estimation. Fourier series that can be interpreted

as probability density functions are called Fourier densities.

DEFINTION 1 (FOURIER DENSITIES) Consider a d-

dimensional Fourier expansion

fΨ : x = [x1, x2 . . . xd]
T ∈ Ωd := [−π, π]d �→ C

of the form

fΨ(x) =
∑

κ∈K

γκejκTx =
∑

κ∈K

(ακ + jβκ)ejκTx , (4)

with γκ = ακ+jβκ ∈ C and j2 = −1. κ = [κ1, κ2 . . . κd]
T ∈

K is an index vector. When used as an index, it denotes

multiple indices.

K = {−κo
1,−κo

1 + 1 . . . κo
1 − 1, κo

1}
× {−κo

2,−κo
2 + 1 . . . κo

2 − 1, κo
2}

× . . .

× {−κo
d, κ

o
d + 1 . . . κo

d − 1, κo
d}

denotes the set of all valid indices. Hence, (4) is a d-fold

summation over the indices κ1 from −κo
1 to κo

1, κ2 from

−κo
2 to κo

2, . . . , and κd from −κo
d to κ0

d. Note that the term

jκTx = j
∑d

l=1 κlxl denotes a scalar product.

If the fundamental probability density properties

fΨ : x �→ R
+
0 := {fΨ|fΨ ∈ R ∩ fΨ ≥ 0}

∫

Ωd

fΨ(x) dx = 1 (5)

hold, then fΨ is called a Fourier probability density function

or short a Fourier density on Ωd of the order
∏d

l=1 κo
l . If

(5) is not true, then fΨ is called an unnormalized Fourier

density. Note that this definition can be generalized to

arbitrary fixed intervals. This is omitted for the sake of

brevity.

More important is the following theorem. It narrows the

usable Fourier series to symmetric ones (−κo
(.) to κo

(.)), i.e.,

a condition for real Fourier densities. Furthermore, it shows

that only half of the coefficients need to be stored.

THEOREM 1 (REAL FOURIER SERIES) Consider a Fourier

density fΨ(x) of (4). For a coefficient γ−κ the condition

γ−κ = γ∗
κ

holds, since fΨ(x) is real, i.e., fΨ(x) ∈ R.

PROOF. A coefficient of a Fourier series can be determined

with the Fourier integral [12]

γκ =

∫

Ωd

fΨ(x)ejκTx dx . (6)



Conjugating (6) gives

γ∗
κ =

∫

Ωd

f∗
Ψ(x)e−jκTx dx =

∫

Ωd

fΨ(x)ej(−κ)Tx dx = γ−κ

since f∗
Ψ(x) = fΨ(x). �

The following theorems derive the most important char-

acteristics of probability density functions.

THEOREM 2 (CUMULATIVE DISTRIBUTION) The cumu-

lative distribution of a given d-dimensional Fourier density

fΨ(x) is

FΨ(x) =

∫ x

−π

fΨ(ξ) dξ =
∑

κ∈K

γκ

d
∏

l=1

χκl
with (7)

χκl
=

{

ejκlxl−(−1)κl

jκl
κl 	= 0

xl + π κl = 0

and π = [−π . . .−π]T being a d-dimensional vector of the

lower border.

PROOF. Since ejκTx = ejκ1x1ejκ2x2 . . . ejκdxd , the d-fold

integral can be distributed to single integrals over each e(.)-

term. Integration over each term results in (7). �

THEOREM 3 (EXPECTED VALUE) The expected value of the

l-th component of a d-dimensional random vector x with the

Fourier density fΨ(x) is given as

x̂l = E{xl} =

∫

Ωd

xlf(x) dx = (2π)d

κl,o
∑

κl=−κl,o

κl �=0

γ(δl�κ)(−1)κl

jκl

(8)

with δl = [δ1l δ2l . . . δdl]
T being a vector of Kronecker

symbols

δkl =

{

0 k 	= l

1 l = q
.

Since ⊙ denotes elementwise multiplication, γ(δl�κ) is the

coefficient with all indices being zero except κl. The expected

value of the random vector x is given by

E{x} = [E{x1} E{x2} . . . E{xd}]T .

PROOF. Eq. (8) can be written as a product of one-

dimensional integrals. Since
∫ π

−π

ejqξ dξ = 2πδq0

is zero for integer q 	= 0, only the coefficients γ(δl�κ)

influence the expected value. Using integration by parts on

the term
∫

ξle
jκlξl dξl results in (8). �

THEOREM 4 (VARIANCE) The variance of the l-th compo-

nent of a d-dimensional random vector x with the Fourier

density fΨ(x) is given as

Cll = E{(xl − x̂l)
2}

=
2

3
π2γ0 + 2(2π)d

κl,o
∑

κl=−κl,o

κl �=0

γ(δl�κ)

κ2
l

(−1)κl − x̂2
l .

Fig. 2. The approximation of the 2D-Density f(x, y) = N (
p

x2 + y2 −
2, 0.09) with a 63 × 63-order Fourier density.

PROOF. Obviously,

Cll = E{(xl − x̂l)
2} = E{x2

l − 2xlx̂l + x̂2
l }

= E{x2
l } − E{2xlx̂l} + E{x̂2

l } = E{x2
l } − x̂2

l .

Determining E{x2
l } can be performed analogously to E{xl}.

�

THEOREM 5 (COVARIANCE) The covariance of the l-th
and the q-th component of a d-dimensional random vector

x with the Fourier density fΨ(x) is given as

Clq = Cov{xl, xq} = E{(xl − x̂l)(xq − x̂q)}

= (2π)d

κl,o, κq,o
∑∑

κl=−κl,o, κl �=0
κq=−κq,o, κq �=0

γ((δl+δq)�κ)(−1)(κl+κq)

κlκq

− x̂lx̂q .

γ((δl+δq)�κ) is the coefficient with all indices being zero,

except κq and κl. The covariance matrix

Cov{x} =

⎡

⎢

⎢

⎣

C11 . . . C1d

...
. . .

...

Cd1 . . . Cdd

⎤

⎥

⎥

⎦

can be constructed from the covariances.

PROOF. Obvioulsy,

E{(xl − x̂l)(xq − x̂q)} =

E{xlxq} − E{xl}x̂q − x̂l E{xq} + x̂lx̂q =

E{xlxl} − x̂lx̂q .

Determining E{xlxq} can be performed in analogy to

E{xl}. �

IV. APPROXIMATING ARBITRARY DENSITIES

Determining the Fourier series from an arbitrary function

can be accomplished via the Fourier integral [12]. Generally,

exact Fourier representations of a given probability density

function are not possible, because it would yield a Fourier

series with an infinite number of coefficients. Thus, a trun-

cated Fourier series has to be used. Unfortunately, truncating

a Fourier series does not preserve its non-negativity. To



ensure valid Fourier density functions, the approximation is

performed indirectly. A function Ψ(x), a so-called Ψ-density,

is determined, of which the absolute square |Ψ(x)|2 = fΨ(x)
corresponds to the Fourier density.

DEFINTION 2 (Ψ-DENSITY) If a d-dimensional Fourier

expansion

Ψ : x = [x1, x2 . . . xd]
T ∈ Ωd := [−π, π]d �→ C

of the form

Ψ(x) =
∑

κ∈K

γκejκTx =
∑

κ∈K

(ακ + jβκ)ejκTx ,

analogously to Eq. (4) fulfills the condition

Ψ(x)Ψ∗(x) = |Ψ(x)|2 = fΨ(x) ,

then Ψ(x) is called a Ψ-density of the Fourier density fΨ(x).
With the Ψ-densities, we are able to approximate arbitrary

density functions.

THEOREM 6 (APPROXIMATION) Consider a d-dimensional

probability density function f : x ∈ Ωd = [−π, π]d �→ R
+
0 ,

the optimal coefficients of the Ψ-density with respect to the

Hellinger metric

G(f, fΨ) =

∫

Ωd

(

√

f(x) − Ψ(x)
)2

dx

are given by the Fourier integral

cκ = aκ + jbκ =
1

(2π)d

∫

Ωd

√

f(x)e−jκTx dx . (9)

The Fourier density fΨ(x) = Ψ(x)Ψ∗(x) can be obtained

by taking the absolute square of Ψ(x, y).
PROOF. For determining a minimum, the first derivative1

G−κ = ∂G/∂a−κ has to be zero, which results in

G−κ =

∫

Ωd

∂

∂a−κ

(

√

f(x) − Ψ(x)
)2

dx

= −2

∫

Ωd

(

√

f(x) − Ψ(x)
)

e−jκTx dx .

Since
∫ π

−π
ejlx dx = 0 for all integer l 	= 0, we obtain

G−κ = −2

∫

Ωd

√

f(x)e−jκTx dx + 2
(

(2π)dcκ

)

.

With setting G−κ = 0, we obtain (9). Since it can easily

be shown that ∂2G−κ/∂a2
−κ is greater than zero, (9) is the

condition for a minimum. The same result is obtained, when

using b−κ instead of a−κ. �

Note that the fast Fourier transform [13] can be employed

for efficiently calculating all coefficients at once. It has

an algorithmic complexity of O(n log n), with n being the

number of sampled data points.

Determining the Ψ-density from a given Fourier density

is also possible. This is important for reducing the order of

a given density when performing multiple filtering steps.

1∂/∂cκ cannot be used, since ∂c∗κ/∂cκ is not defined for complex cκ ∈
C, but occurs when approximating real functions.

[x1, y1]
T

[x2, y2]
T[x, y]T

landmark 1

landmark 2

robot

d
1

d
2

Fig. 3. Robot localization example. The distance dl is measured to different
landmarks with known position.

LEMMA 1 (CALCULATING
√

fΨ(x)) A Ψ-density Ψ(x) =
√

fΨ(x) can be determined by solving the equation system

Ψ(x)Ψ∗(x) = fΨ(x) .

It can be solved recursively, since the equation

cκ0
c∗−κ0

= γ2κ0

has one unknown variable. Decreasing any component of the

index vector κ by one adds one unknown variable. Note that

when solving the latter equation system recursively, it is very

sensitive to numeric deviations in cκ0
.

We conclude this section with an approximation example.

EXAMPLE 1 (2D APPROXIMATION) Consider the proba-

bility density

f(x, y) = N (
√

x2 + y2 − 2, σ2)

with the variance σ2 = 0.09 and the Gaussian

N (z − ẑ, σ2
z) =

1
√

2πσ2
z

e
− 1

2
(z−ẑ)2

σ2
z .

f(x, y) resembles a Gaussian pulled along a circle with

center (0, 0) and a radius
√

2. Fig. 2 shows an approximation

of the order 63×63. The Gaussian ring can clearly be seen.

V. NONLINEAR FILTERING WITH FOURIER DENSITIES

As discussed in Sec. II the Bayesian estimator consists of

a filtering step and a prediction step.

A. The Bayesian Prediction Step

The prediction step (3) is a generalized convolution inte-

gral, which simplifies to a summation over a product of two

coefficients when Fourier densities.

LEMMA 2 (PREDICTION STEP) Consider a Fourier density

fe
Ψ(xk) =

∑

μ∈Kk

γe
μejμTxk

and a transition density

fT
Ψ (xk+1, xk) =

∑

κ∈Kk+1

μ∈Kk

γe
κ,μejκTxk+1+jμTxk .

The generalized convolution integral is given by

fp
Ψ(xk+1) =

∑

κ∈Kk+1

γp
κeκTxk+1 =

∫ d

Ω

fT
Ψ (xk+1, xk)fe

Ψ(xk) dxk

with γp
κ =

∑

μ∈Kk+1

γe
−μγT

κ,μ .



An interesting property of the prediction step with

Fourier densities is that the order of the resulting density

fΨ(xk+1) depends only on the order of the transition density

fT
Ψ (xk+1, xk) but not on the order of prior density fe

Ψ(xk).
Hence, the prediction step automatically limits the algorith-

mic complexity of the Bayesian estimator.

B. The Bayesian Filtering Step

For the case of having low-dimensional measurements y
k
,

determining the conditional density f(y
k
|xk) off-line can be

more efficient. For a given measurement ŷ
k
, the likelihood

can then be calculated on-line by evaluating fL(xk) =
f(y

k
= ŷ

k
|xk). That can be interpreted as slicing the

conditional density along ŷ
k
.

LEMMA 3 (CALCULATING A SLICE) Consider a d-

dimensional Fourier density fΨ(x). Setting one component

of x to xl = x0
l results in a Fourier density, which is reduced

by one dimension,

fΨ(z) =
∑

μ∈Kz

γ0
μejμTz with γ0

μ =

κl,o
∑

κl=−κl,o

γκejlx0
l , (10)

where the vector z consists of the components

zj =

{

zj = xj j < l

zj = xj−1 j > l
, j = 1 . . . (d − 1)

and the set Kz = K\{−κ0
l . . . κo

l } is a subset of K excluding

the indices of the l-th dimension. For slicing in higher

dimensions, (10) can be applied repeatedly.

The main part of the filtering step is a multiplication of two

densities. For Fourier densities this results in a convolution.

LEMMA 4 (PRODUCT) Consider two Fourier densities fa :
x ∈ Rd �→ R

+
0 and f b : x ∈ Rd �→ R

+
0 . The product is

given as

fc(x) = fa(x)f b(x) =
∑

κ∈Kc

γc
κejκTx with

γc
κ =

∑

μ∈Kc

γ̄a
μγ̄b

(μ−κ) ,

where the bar denotes a valid index

γ̄(.)
μ =

{

γ
(.)
μ μ ∈ K(.) ,

0 otherwise

of γa or γb. The order of f c
Ψ is

∏d
l=1(κ

o,a
l + κo,b

l ), i.e., the

number of coefficients is significantly higher than of fa
Ψ and

of f b
Ψ. When performing recursive filtering steps, the number

of coefficients increase exponentially. To limit the complex-

ity, Lemma 1 can be used to calculate a corresponding Ψ-

density and then eliminate coefficients. A simple heuristic

would be the removal of the highest order coefficients, which

does not guarantee satisfactory results. A better approach is

given by the following Theorem. It allows the removal of

the coefficients with minimal influence on fΨ.

THEOREM 7 (ORDERING FOURIER TERMS) The coefficient

cmin of a Ψ-density Ψ(x), which minimally influences the

Hellinger metric, has to satisfy

cminc∗min ≤ cκc∗κ for κ ∈ K , (11)

π-π
-π

π

x→

y
→

π-π
-π

π

x→

y
→

Fig. 4. Likelihoods for landmark 1 at position (0, 0) (left) and landmark

2 at position (1, 1) (right). The distance is both times d1 = d2 =
√

2.

where cmin is the cκ with the minimal influence. I.e., the

coefficients cκ can be ordered with respect to the Hellinger

metric by ordering them by their squared magnitude.

PROOF. By applying a Ψ-density reduced by one element

Ψ�κ(x) := Ψ(x) − cκejκTx

to the Hellinger metric, we obtain

G(ΨΨ∗, Ψ�κΨ∗
�κ) = cκc∗κ ,

Choosing the cκ, which changes G minimally leads to (11).

�

NOTE: When exclusively performing filtering steps, the

product can also be calculated directly with a convolution of

the Ψ-densities instead of the convolution with the Fourier

densities.

Normalizing a Fourier density is quite simple, as the

following Theorem shows.

THEOREM 8 The normalization constant of a Fourier density

is ∫

Ωd

fΨ(ξ) dξ =
1

(2π)dγ0
.

PROOF. This result can be easily derived using Eq. (7). �

Dividing the Fourier density by the normalization constant

concludes the filtering step.

VI. EXAMPLE: FILTERING STEP

In this section a simple localization problem is discussed.

A position of a robot is determined using distance measure-

ments as depicted in Fig. 3. The measurement equation

y = h(

[

x

y

]

,v) =
√

(x − xl)2 + (y − yl)2 + v

with (xl, yl) being the known landmark position and v

is additive zero-mean Gaussian noise with a variance of

0.09. In this example there is no prior knowledge, i.e.,

f0(x, y) = 1
4π2 is uniform distribution. Two measurements

to landmark 1 with the position (0, 0) and landmark 2 with

the position (1, 1) are performed. Both measurements are

given by ŷ1 = ŷ2 =
√

2. Fig. 2 depicts the Fourier densities

of the likelihood of ŷ1 and Fig. 4 show the likelihoods

of ŷ1 and ŷ2. These functions have been sampled with

125 × 125 values and then been transformed with a fast

Fourier transform. To avoid aliasing, the likelihoods have

632 = 4225 components. It can be seen that approximation

is quite precise. Only some small ripples can be seen.



Fig. 5. Unnormalized position estimate after filtering. The peaks denote
the intersection of the two rings.

Fig. 6. Error of the reduction of the position estimate to 1000 components.

Performing the filtering step with a uniform distribution

results in the likelihood. The result of the second filtering

step is depicted in Fig. 5. It has 1252 = 15625 components.

The peaks are at the intersection points of the two circles.

The bumps show that the approximation of the likelihoods

is not exact. Using a higher sampling rate for determining

the coefficients would reduce those bumps considerably.

That a reduction can be performed without significantly

changing the shape of the density is demonstrated in Fig. 6.

There the error is depicted of the density of Fig. 5 and its

reduction from 15625 to 1000 components. It can be seen

that only a small amount of “density mass” was taken away.

VII. SUMMARY AND FUTURE WORK

In this work, Bayesian estimation with Fourier densities

is generalized to the multidimensional case. In Sec. II the

d-dimensional Bayesian estimator is reviewed. In Sec. III

d-dim. Fourier densities as probability densities are intro-

duced. The most important density properties, particularly

cumulative distribution, expected value, and covariance are

derived. Interestingly, the moments of the l-th components

depend solely on the coefficients of that dimensions. That

opens perspectives for developing a decentralized estimator.

Sec. IV discusses the procedure of approximating arbitrary

probability densities with Fourier densities. With a fast

Fourier transform, the coefficients can be calculated very

efficiently. Additionally, it is shown that the complexity of a

Fourier density can easily be reduced, since an ordering of

coefficients exists. This allows to adjust the computational

demands.

Sec. V derives a recursive Bayesian estimator consisting

of a filtering step and a prediction step. It is addressed that

the prediction step bounds the complexity of the estimator.

Furthermore, it is shown that the complexity, i.e., the number

of coefficients, can be adjusted optimally with respect to

the Hellinger metric. This is helpful for performing a large

number of filter steps without intermediate prediction steps.

Sec. VI discusses a simple localization example. It is

shown that reducing the number of coefficients is reasonable,

because it changes the shape of the density insignificantly.

A main aspect of future work is the implementation of an

efficient d-dimensional C++ library. A first version was used

in example of Sec. VI. This also includes the investigation

of the required number of coefficients of a Fourier density to

perform efficient Bayesian estimation. Furthermore, the use

of the fast Fourier transform to reduce the computational

complexity of the filtering step is planned.

Some further aspects are the introduction of slideable and

scalable domains as well as investigating orthogonal function

series for coping with densities that need a large number of

coefficients in the Fourier space.
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