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Abstract. The classical image denoising technique intro-
duced by Rudin, Osher, and Fatemi [17] a decade ago, leads
to solve a constrained minimization problem for the total vari-
ation (TV) of the image. The formal first variation of the
minimization problem is a nonlinear and highly anisotropic
boundary value problem. In this paper, a computational PDE
method based on a nonlinear multigrid scheme for restor-
ing noisy images is suggested. Here, we examine different
discretizations for the Euler–Lagrange equation as well as
different smoothers within the multigrid scheme. Then we
describe the iterative total variation regularization scheme,
which starts with an isotropic (“smooth”) problem and leads
to smooth edges in the image. Within the iteration the prob-
lem becomes more and more anisotropic and converges to an
image with sharp edges. Finally, we present some experimen-
tal results for synthetic and real images.

1 Introduction

Image denoising is the process of reconstructing an unknown
image u(x, y) from given data z(x, y) satisfying

z(x, y) = u(x, y)+η(x, y) . (1)

Here, η(x, y) is an additive noise, which is usually assumed
to be random with known mean value zero and variance σ2.
In order to compute meaningful solutions we use regulariz-
ing techniques that incorporate additional information about
the image u(x, y). Tikhonov H1 regularization, which aims
at smooth solutions, is poorly when u(x, y) includes discon-
tinuities or steep gradients. The model proposed by Rudin,
Osher, and Fatemi [17] leads us to choose the total variation
TV[u] = ∫

Ω
|∇u|dΩ or a smooth approximation TVβ[u] with

a smoothing parameter β and to search for a solution among
the minima of the functional

Jα,β[u(x, y)] = ||u(x, y)− z(x, y)||2L2(Ω) +αTVβ[u(x, y)] ,

(2)

which penalizes the total variation of the image u.
The parameter α ∈ R+ allows us to balance the influence

of both terms in the functional, and the larger β the smoother
the problem.

To solve the TV-penalized image denoising problem
Rudin et al. [17] used an artificial time marching technique.
Vogel and Oman [23] used a relaxed fixed point iteration,
which is speeded up by a multigrid correction scheme as in-
ner iteration (see [15]) and requires in general many iterations
(e.g., see [21], 400 multigrid iterations). The application of
a primal dual version of Newtons method is presented in [7].
Chan et al. [6] combine Newtons method with a continua-
tion scheme for β. Li and Santosa [14] have developed an
alternative algorithm for this problem based on interior point
methods for convex optimization.

This paper is organized as follows. First, in Sect. 2 we
will present more precisely the minimization problem studied
here, as well as the assumptions to impose on the model.
For the minimization of the functional in Sect. 3 a nonlin-
ear multigrid method in the form of the full approximation
scheme (FAS) is applied. Additionally we will analyze the
behavior of the FAS dependent on the underlying norm in
TV[u] as well as on different smoothers and transfer operators
within the FAS.

A minimizer of the image denoising functional (2) de-
pends significantly on the choice of the parameter β. In the
solution process β plays a dual role. First, it can be regarded
as a smoothing or regularization parameter. Second, it can
be considered as a continuation parameter [6]. Theoretically,
decreasing β should give a better approximation of the total
variation (e.g., see [1]), but in practice a too small β leads to
strong anisotropic and nearly degenerated PDE’s which are
difficult to solve.

Increasing β removes these anisotropies and aims at
smooth solutions similar to the L2 case. In Sect. 4, we present



200 C. Frohn-Schauf et al.

an algorithm which successively reduces the parameter β
within a sequence of minimization problems.

2 The image denoising problem

In order to restore the image u we have to solve (1) for u. To
compensate for the absence of information in (1), one must
apply methods which retain desired features to the solution.
This is done usually in the form of a smoothness assumption,
i.e. it is assumed that

∫
Ω

|∇u(x, y)|2dxdy is small. This leads
us to solve the constrained minimization problem

min
u

∫

Ω

|∇u|2dxdy s.t. ||u − z||2 = σ2 .

Fig. 1. Left: Original image u (128×128 pixels). Right: Image z = u+ Gaussian white noise

Fig. 2. Left: Result found with Tikhonov H1 regularization. Right: Functional representation of the image row 60 of the noisy image z (blue) and the resulting
image u (red) displayed left

An equivalent approach is to use a Lagrange multiplier α and
to solve the unconstrained minimization problem

min
u






∫

Ω

(u(x, y)− z(x, y))2dxdy+α

∫

Ω

|∇u(x, y)|2dxdy





.

This kind of regularization is known as Tikhonov H1 regular-
ization (see, e.g. [2, 10]). Tikhonov H1 regularization, which
aims at smooth solutions, is poorly when u includes disconti-
nuities or steep gradients, cf. Figs. 1–2. The model proposed
by Rudin, Osher, and Fatemi [17] leads us to choose the total
variation of the image u

TV[u] =
∫

Ω

|∇u|dxdy =
∫

Ω

sup
||v||≤1

∇uT ·vdxdy
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=
∫

Ω

sup
||v||≤1

(ux ·v1 +uy ·v2)dxdy .

This yields

TV[u] =
∫

Ω

|ux|+ |uy| dxdy =
∫

Ω

√
u2

x +
√

u2
y dxdy

if || · || = || · ||1 and

TV[u] =
∫

Ω

√
u2

x +u2
y dxdy

for || · || = || · ||2.
The total variation idea can be traced back to shock cap-

turing methods in Computational Fluid Dynamics (CFD).
In image processing the total variation model can be used
to model denoising, deblurring, as well as image inpainting
(e.g. restoring old scabbed photos). Total variation methods
in image processing were extensively studied during the last
ten years, both theoretically and practically; in particular, well
posedness is shown in [5]. Unfortunately the integrand is not
differentiable where ∇u = 0. In the literature several ways
are suggested to overcome this problem. One approach is to
regularize the functional itself by replacing its value near sin-
gularities by the usual L2-Norm. Another method (see [16])
is to replace the gradient ∇ by a bounded operator Lh , so that
the resulting functional becomes differentiable over L2(Ω).
The authors in [8] propose a wavelet based procedure which
does not need any auxiliary regularization method. In this
paper we use a common method (see e.g. [1]) which ob-
tains a regularization by replacing the total variation TV[u] by
a smooth approximation

TVβ[u] =






∫

Ω

√
u2

x +β +
√

u2
y +β dxdy if | · | = | · |1

∫

Ω

√
u2

x +u2
y +β dxdy if | · | = | · |2

Fig. 3. Result found with iterative total variation regularization. Left: By using || · ||1. Right: By using || · ||2

with a smoothing parameter β > 0. We search for a solution
among the minima of the functional

Jα,β[u] = ||u − z||2L2(Ω) +αTVβ[u] . (3)

According to the fundamental lemma of calculus of variations
(cf. [9]) the formal first variation (Euler–Lagrange equation)
of Jα,β[u] is given by the boundary value problem (cf. [22])

(

L+ 2

α
I

)

u(x, y)= 2

α
z(x, y) for all (x, y) ∈ Ω

∂u(x, y)

∂n
= 0 for all (x, y) ∈ ∂Ω (4)

with the nonlinear differential operator

Lu(x, y) =






div



 ∇u(x, y)
√

u2
x(x, y)+β +

√
u2

y(x, y)+β



 if | · | = | · |1

div



 ∇u(x, y)
√

u2
x(x, y)+u2

y(x, y)+β



 if | · | = | · |2 .

This nonlinear and highly anisotropic elliptic type equation
must be solved numerically. Due to the typical image-size
with up to Nx × Ny = 1024 × 1024 pixels or even more
it is extremely important to use a very efficient solver.
Methods which do not take into account the O(N2) (where
N = max(Nx, Ny)) condition of the regularization term will
have convergence rates strongly dependent on the number of
picture elements.

3 Multigrid image denoising

Nonlinear multigrid methods can be used to provide effi-
cient numerical solutions for the image denoising problem.
In this section, a multigrid algorithm to solve the nonlinear
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and highly anisotropic PDE in (4) is presented and analyzed
numerically. First, we introduce the discretization and ap-
proximation of the PDE. Then, for this discretization robust
intergrid transfer functions and smoothing techniques for the
multigrid algorithm are presented.

3.1 Discretization

Images are typically encoded as two-dimensional arrays.
Each element in the matrix represents a pixel (picture elem-
ent) with gray intensity between black and white (0 and 255).

The resulting image-array is a finite-dimensional approxi-
mation of a continuous image and is represented on a rectan-
gular equidistant grid

gh
i, j = (

xi, yj
) = (

ihx, jhy
) ∈ Ω, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny

with (Nx +1)× (Ny +1) grid points with pixel-wide hx and
pixel-height hy given by

h = (hx, hy) = (
N−1

x , N−1
y

)
.

3.2 Approximation

Let uh
i, j , zh

i, j and |∇uh
i, j| denote the grids of functions de-

fined by uh
i, j = u(gh

i, j), zh
i, j = z(gh

i, j) and |∇uh
i, j | = |∇u(gh

i, j)|
as well as their second-order finite difference approximations
at staggered grid points

D
hx
2

x uh
i+ 1

2 , j
=

(
uh

i+1, j −uh
i, j

)
/hx

and

D
hy
2

y uh
i, j+ 1

2
=

(
uh

i, j+1 −uh
i, j

)
/hy .

We can now replace the spatial derivatives in the operator L
by their second-order finite difference approximations. For || ·
||1, the discretized differential operator L becomes

L[1]
h =









0 ay

i, j+ 1
2

0

ax
i− 1

2 , j
Σ

[1]
i, j ax

i+ 1
2 , j

0 ay

i, j− 1
2

0









with

ax
i, j = h−2

x√(

D
hx
2

x uh
i, j

)2

+β

, ay
i, j = h−2

y√(

D
hy
2

y uh
i, j

)2

+β

(5)

and

Σ
[1]
i, j = −

(

ax
i− 1

2 , j
+ax

i+ 1
2 , j

+ay

i, j−1
2
+ay

i, j+1
2

)

respectively for || · ||2

L[2]
h =








0 ai, j+ 1
2

0

ai− 1
2 , j Σ

[2]
i, j ai+ 1

2 , j

0 ai, j− 1
2

0








with

ai, j =
(
hxhy

)−1

√(

D
h
2
x uh

i, j

)2

+
(

D
h
2
y uh

i, j

)2

+β

(6)

and

Σ
[2]
i, j = −

(
ai− 1

2 , j +ai+ 1
2 , j +ai, j− 1

2
+ai, j+ 1

2

)
.

The resulting equation for all inner grid points gh
i, j , e.g., for

the || · ||1 case is given by








0 ay

i, j+ 1
2

0

ax
i− 1

2 , j
Σ

[1]
i, j + 2

α
ax

i+ 1
2 , j

0 ay

i, j− 1
2

0









uh
i, j = 2

α
zh

i, j .

Central second order approximations are used to approximate
the outward normal of the boundary value problem (4) and
to eliminate the external grid-points (“ghost-points”) in the
discretized differential operators L[ν], ν ∈ {1, 2}. This leads,
e.g., for L[1] to the following equation








0 ay

i, j+ 1
2

0

ax
i− 1

2 , j
+ax

i+ 1
2 , j

Σ
[1]
i, j + 2

α
0

0 ay

i, j− 1
2

0









uh
i, j = 2

α
zh

i, j

for grid-points at the right boundary.
This is a stable second order approximation of the bound-

ary value problem (4), therefore we have second order conver-
gence for smooth right hand side z, cf. [11].

The constants however depend on 1√
β

and are large for
small β. This is not really interesting in this situation: One
wants reasonable discrete solutions with not too large total
variation, not an approximation of a continuous solution.

3.3 Multigrid

With the Euler–Lagrange equation discretized by finite dif-
ferences as described in the previous section, the nonlinear
functional TVβ[u] is naturally defined on the finest level with
grid-size h = (hx, hy) given by the pixel size (Nx +1, Ny +1)
of the image z (see Sect. 3.1). The basic idea of the multi-
grid full approximation scheme (FAS) for nonlinear prob-
lems ([3, 19]) is to smooth the errors of the solution in one
or two smoothing steps such that they can be approximated
on a coarser grid. Here we use standard coarsening, which
means that we double the step length h = (hx, hy) in x- and
y-direction, so that the coarse image has a fourth of the pixels
of the corresponding fine one. On the coarse grid, a nonlinear
defect equation is solved and then the coarse grid corrections
are interpolated back to the fine grid, where the errors are
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smoothed again. This strategy is applied recursively down to
the coarsest grid consisting of 9 grid points (only one inner
grid point).

The FAS is characterized by the so-called multigrid-com-
ponents. Designing a FAS for total variation image denoising
has to be done carefully. One has to specify the multigrid-
components to preserve steep edges. Straightforward multi-
grid-components may violate the intend of total variation
image denoising.

3.3.1 Intergrid transfers. To use efficient solution methods
like FAS for the nonlinear PDE we have to define the problem
also on coarse grids. By coarsening the fine grid functions uh

i, j

and zh
i, j , a corresponding discrete problem can be defined also

on the next coarser resolution. There are several possibilities
for the intergrid transfer functions (see, e.g. [19]).

In principle, the images are coarsened by collecting sev-
eral picture elements into one coarse picture element. Here to
preserve steep edges, we use the injection operator

u2l+1h
i, j = u2l h

2i,2 j for l = 0, 1, . . .

to transform the images to a coarser resolution. I.e. we just
take all pixel values that lie on the fine and the coarse grid as
coarse grid values. In image processing this operator is sim-
ply a sampling scheme and corresponds to a lowpass filter
for uh

i, j . Applied recursively, this procedure yields a sequence
of coarser and coarser images which contain only information
about corresponding coarse structures.

For the coarse to fine transfer of the corrections we use
bilinear interpolation.

3.3.2 Relaxation. During relaxation we must linearize our
discretization. This is simply, but without damage done by the
use of ‘frozen coefficients’ given in (5) and (6) resp., i.e. local
linearization of the principal terms.

The choice of the relaxation method for the discrete image
denoising problem is important in both the traditional relax-
ation – and multigrid solution methods. Here, the problem
contains variable coefficients and the directions of strong and
weak coupling are not known in advance or change inside
the domain. So if we use a pointwise Gauss–Seidel scheme,
we possibly go forward in the complete wrong direction, so
that the maximum norm of the solution may not change in
the first relaxation steps and we cannot achieve good smooth-
ing in a few steps. For the image denoising problem, streak-
ing artifacts have been observed when a classical pointwise
smoothing scheme (e.g. pointwise Gauss–Seidel) is used.

Therefore, an alternating line Gauss–Seidel must be em-
ployed as a robust relaxation method, because in this method
for all grid points of the considered line the equations are
solved simultaneously. The alternating line Gauss–Seidel re-
laxation (ALR) in lexicographic order performs one sweep
of line Gauss–Seidel relaxation along the x-coordinate direc-
tion, followed by another sweep of line Gauss–Seidel relax-
ation along the y-coordinate direction, see [3, 4, 20].

3.4 Numerical results

Consider the image displayed in Fig. 1. For this example, we
will give some asymptotic rates of convergence, given by

	 := lim
k→∞

d
(
uk+1

)

d
(
uk

) (estimated) .

For the nonlinear multigrid scheme the pointwise Gauss–
Seidel (pGS(ω)) relaxation and the alternating line Gauss–
Seidel (ALR(ω)) with an relaxing-parameter ω are compared.
The rates become good (as expected) as long as β is greater
or approximately equal to the radicand of the term within
the total variation functional, i.e.

√
u2

x,
√

u2
y or

√
u2

x +u2
y on

the different image resolutions. One consequence is that the
multigrid scheme does not any longer converge in general
when β becomes smaller than 103. We now turn our attention
to the convergence rates dependent on the smoothing parame-
ter β. The convergence results are shown in Table 1. By using
the pointwise Gauss–Seidel relaxation we observe no con-
vergence (n.c.) of the multigrid scheme for relatively small
β. Note, that an ALR is approximately four times as expen-
sive as a pointwise Gauss–Seidel relaxation in lexicographic

Fig. 4. Functional representation of the image row 60 of the noisy image z
(blue) and the original image u (red) displayed in Fig. 1

Fig. 5. Functional representation of the image row 60 of the original
image u (red) and the result (by using || · ||1) displayed in Fig. 3 left
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Fig. 6. Functional representation of the image row 60 of the original
image u (red) and the result (by using || · ||2) displayed in Fig. 3 right

Fig. 7. History of the functional J for the || · ||1 norm (red) and the || · ||2
norm (blue)

Table 1. Rates of convergence for a V(2, 2)-Cycle with initial guess z, for
the images depicted in Fig. 1

TV-Norm || · ||1 || · ||2 || · ||1 || · ||2

Relaxation ALR(0.8) pGS(0.8)

β = 104 0.87 0.83 n.c. n.c.
β = 105 0.44 0.27 0.79 0.68
β = 106 0.19 0.13 0.54 0.50

Relaxation ALR(1.0) pGS(1.0)

β = 104 0.66 0.62 n.c. n.c.
β = 105 0.35 0.18 0.73 n.c.
β = 106 0.11 0.06 0.42 0.37

Relaxation ALR(1.3) pGS(1.3)

β = 104 0.79 0.47 n.c. n.c.
β = 105 0.29 0.10 0.69 0.68
β = 106 0.03 0.02 0.27 0.20

order. The best convergence rates are observed for the over-
relaxed ALR by using the || · ||2 norm. Due to the fact that
the discretization operator L[1]

h in general is more anisotropic
than L[2]

h the rates for the || · ||2 norm are better than the rates
for the || · ||1 norm.

We conclude that the nonlinear multigrid method with
ALR relaxation, as presented in this section, is a robust and
efficient numerical method for solving the Euler–Lagrange
equation (4) for a particular β with unknown size. On the
other hand the quality of a minimizer u of the functional Jα,β

depends significantly on the choice of the smoothing param-
eter β. Theoretically, decreasing β should give a reconstruc-
tion of the steep edges in u. Increasing β leads to multigrid
schemes with good convergence rates. The aim of the next
section is to overcome this problem and to develop a method
for the efficient and robust solution of the image denoising
problem.

The observed multigrid convergence rates are much worse
than for model problems due to several difficulties. First, the
problem has highly jumping coefficients. Additionally the
coefficients are approximately O(h) near steps so that one
observes the same difficulties as for artificial viscosity dis-
cretizations (see, e.g. [20]).

4 Iterative total variation regularization

In the previous section we have described a nonlinear multi-
grid algorithm which computes an approximation of a mini-
mizer of the functional (3) for a given smoothing parameter β.
To recover an image with homogeneous zones and sharp vari-
ations at edges, we have to choose a β small compared to u2

x
and u2

y. Unfortunately, the smaller β the more degenerated is
the differential operator L and the solution of the PDE by
a multigrid method becomes delicate (e.g., see Table 1). On
the other hand the larger β the more isotropic (“smoother”) is
the problem, but the resulting images hold smooth edges.

To overcome this problems, in this section we present an
approach, which is closely related to the iterative Tikhonov
regularization method [12, 13, 18]. We solve a sequence of
minimization subproblems

u(k+1)
βk

= arg min
u

{
∣
∣u(k) − z

∣
∣2 +α div

(
∇u(k)

√|∇u(k)|2 +βk

)}

(7)

with decreasing βk → 0 for k → ∞. The solution is deter-
mined by calculating the approximations for a exponentially
decreasing sequence of parameters βk+1 = βk ·κ with a factor
κ ∈ (0, 1) and a sufficiently large β0. As initial guess u(0), we
use the noisy image z. The solutions u = u(k+1) crucially de-
pend on the choice of the parameter βk > 0. Each subproblem
is well posed for β sufficiently large and can be solved by the
proposed FAS efficiently. For smaller β the problem is still
anisotropic but by the use of the smooth initial guess u(k) the
problem becomes solvable. We get the following algorithm:

Algorithm 1 Iterative TV Regularization.

1: function DENOISE (z, u)
2: k ← 0
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3: u(k) ← z
4: β0 ← M(	 0)
5: repeat
6: solve (4) approximately by a FAS
7: βk+1 = κk ·β0

8: until
TV

[
u(k+1)

]−TV
[
u(k)

]

TV
[
u(k)

] ≤ ε

9: u ← u(k)

10: end function

5 Experimental results

In this section results are given that demonstrate the per-
formance of the iterative total variation regularization based
on a nonlinear multigrid scheme. The first test image shown

Fig. 8. Left: Original image u (128×128) pixels. Right: Image z = u+ Gaussian white noise

Fig. 9. Result found with iterative total variation regularization. Left: By using || · ||1. Right: By using || · ||2

in Fig. 1 (left) is a part of the emblem of the Heinrich-Heine
University Düsseldorf. The image consists of 128×128 pic-
ture elements. Figure 1 (right) displays the original image
degraded by Gaussian noise. The images shown in Fig. 3 are
the results of the iterative TV regularization (Algorithm 1)
by using α = κ = 1

2 and β0 = 104 as well as a FAS V -cycle
with maximum number of coarse grids (i.e. seven grids),
one pre and one post smoothing step by the ALR applied
with an over-relaxing parameter ω = 1.3 and the grid trans-
fer functions as described in Sect. 3.3.1. Differences between
the two results are hardly visible to the naked eye. Therefore
in the Figs. 4–6, we present the gray-values of the 60-th row
in the noisy image and in the resulting images for the two
used norms. Comparing the graph displayed in Fig. 5 with
the graph for the || · ||2 norm in Fig. 6 shows that sharp edges
in the images could be restored better by the iterative TV
regularization algorithm when using the || · ||1 norm. These
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Fig. 10. Functional representation of the image row 100 of the original image (red) and the result (blue) displayed in Fig. 9. Left: By using || · ||1. Right: By
using || · ||2

Fig. 11. History of the functional J for the || · ||1 norm (red) and the || · ||2
norm (blue)

findings can be stressed by the graph in Fig. 7. Here, the de-
creasing functionals J for the two norms are displayed. The
graphs show the decreasing values of the energy-functional J
during the iteration. The iteration using the || · ||2 norm actu-
ally converges toward a value with a larger magnitude than in
the || · ||1 case.

The same behavior of the algorithm concerning the norms
is observed for the next example depicted in Fig. 8 with cor-
responding results in Fig. 9.
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