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Abstract 

The time-space threshold vector error correction (TS-TVEC) model is proposed and developed 

in this research for short term (hourly) traffic state prediction. The theory and method of 

cointegration with error correction mechanism is employed in the general design of the new 

statistical model TS-TVEC. An inherent connection is revealed between the error correction 

model and the transformed fundamental diagrams in macroscopic traffic flow theory. Error 

correction model is a linear model established on difference space, whereas, the fundamental 

relations between traffic variables exhibit piecewise linearity when they are transformed to 

difference space. Meanwhile, dynamics of traffic variables can be reflected in difference space. 

A threshold regime switching framework is implemented to deal with unknown structural breaks 

in non-stationary traffic time series to capture multiple traffic states. Spatial cross-correlated 

information is incorporated with a piecewise linear vector error correction model. As the TS-

TVEC model is designed for nonlinear multivariate forecasting, it is compared to Neural 

Network, and Support Vector Regression model that are commonly used in this regard to test the 

effectiveness and robustness of the new statistical model. The TS-TVEC model was 

experimented on a small scale case in our empirical study and applied on a larger scale case 

thereafter. Both cases show that the TS-TVEC model is an effective tool that is capable of 

modelling the complexity of stochastic traffic processes and potentially applicable to real time 

traffic state prediction.    

Key words: cointegration, vector error correction, threshold regime switching, short term 

traffic state prediction, neural network, support vector regression   
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Chapter 1  
Introduction 

1.1 Introduction  

Traffic state prediction is an essential component of Intelligent Transportation Systems (ITS) and 

applications. With an accurate prediction of traffic state, we are able to use Advanced Traffic 

Management System (ATMS) and Advanced Traveller Information System (ATIS) to effectively 

manage traffic flow with proactive dynamic traffic control and traveler’s route guidance.  

It is often debatable whether to increase capacity by construction of new roads with enormous 

investments or improve utilization of the existing road network with intelligent traffic control 

strategy. The latter is preferable when adding more roads as a measure of capacity expansion is 

infeasible in high density urban areas due to limited space and the prohibitive cost. However, the 

success of proactive dynamic traffic control depends on the premise that accurate prediction of 

traffic state is available and reliable.   

Traffic state estimation or prediction is to estimate, or forecast, macroscopic traffic quantities 

including flow, density, and speed at critical locations on networks of transportation 

infrastructure. Many methods for traffic state estimation or prediction are investigated in the 

literature. Although these studies in the literature constitute a rich body of knowledge to build 

upon and are indeed useful, ample room exists for improvement. None of the existing methods 

and models comprehensively captures all at once the challenges exhibited in modelling and 

forecasting traffic flow due to its stochastic and dynamical properties, and some special 

statistical characteristics as will be shown in this thesis. In this research, we developed an 

alternative interdisciplinary methodology and applications that show both theoretical and 

practical significance in traffic state prediction.   

Our ultimate goal is to contribute to bridging the gap between infrastructure supply and traffic 

demand, maximize capacity utilization of existing infrastructure, timely formulate traffic 

management solutions to mitigate traffic congestion, and reduce travel time in a complex urban 

environment.   



2 

 

1.2 Challenges of traffic modelling and forecasting  

The evolution of highway traffic state is a dynamic and stochastic process (Jia et al., 2010) that is 

predictable. However, the challenges that arise in traffic state estimation or prediction primarily 

stem from the autonomous and interactive dynamics of stochastic traffic variables and their 

intricate statistical characteristics. Hence, the state prediction has to consider combinatorial 

factors including the fundamental relation of traffic variables, autocorrelation and multivariate 

cross-correlation over time and space, multiple traffic states, seasonality, non-stationarity, 

cointegration of multivariate traffic time series, and unknown structural change in the time series 

that leads to non-linearity, etc. Details are elaborated in the following sections.  

1.2.1 Data source   

In order to study the characteristics of traffic processes, the time series of traffic volume, speed, 

and occupancy are collected from various locations on the highway system in the Greater 

Toronto Area (GTA), Ontario, Canada. A data map in Fig.1.1 shows three groups of locations 

where traffic data are collected. These locations include Highway 400 northbound at north of 

Sheppard Avenue, Highway 401 eastbound expressway at east of Highway 400, and Highway 

401 eastbound expressway at east of Yonge Street. The locations of prediction are indicated with 

red dots, and their adjacent upstream and downstream loop detectors are indicated with blue dots. 

The traffic data are collected by the Ministry of Transportation Ontario (MTO) and provided to 

researchers at the ITS (Intelligent Transportation Systems) Center of the University of Toronto. 

From those nine loop detectors in Fig.1.1, twenty-seven hourly time series, including traffic 

volume, speed, and occupancy, are collected and analyzed in our empirical study, and presented 

in chapter 1 and 4. These data sets are used for testing the effectiveness and robustness of the 

new statistical model. Later in chapter 5, we expand the scope to test the new models on a larger 

freeway network (Fig. 5.1 and 5.2).   
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Fig. 1.1 Data map for empirical study  

1.2.2 Stochastic and dynamic traffic variables   

• Stochasticity   

Definition: A stochastic process y  on a set Χ  is a random quantity indexed by x∈ Χ . 

This means that for every x , we get a random quantity ( )y x  taking values in R , or 

more generally, in a set ℜ . A stochastic process is characterized by the joint probability 

distributions of y  on arbitrary finite subsets of Χ ; in other words, of ( ) ( )( )1
, ,

m
y x y xL . 

(Scholkopf and Smola, 2002)  

A traffic process is a stochastic process that is predictable. It is a non-deterministic process that 

varies over time, and can be expressed as Eq. (1.1).  

( ){ }, , ,  y s t s t T∈Ω ∈    (1.1)  

where ( ),y t⋅  is a random variable on the sample space Ω  for each time t T∈ . s  denotes a 

location of transportation network. A sequence of realization of this random process is given by 
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( ),y s ⋅  for each s ∈Ω  at each time t T∈ . In contrast to a chaotic process such as Brownian 

motion or white noise, a stochastic process is predictable, because a probability distribution 

function with finite variance usually can be drawn from the successive random quantities 

generated from ( ),y s t  where the random quantities are not independent. However, functions of 

a chaotic process are so erratic that no information is contained in ( )x t  about the value ( )x t δ+ , 

no matter how small δ  is, therefore, a chaotic system is not predictable.   

• Dynamics  

Traffic dynamics includes autonomous and interactive dynamics. The autonomous dynamics 

reflect the change of an individual macroscopic traffic variable over time and space. The 

interactive dynamics indicate the fundamental relations between traffic variables and lead to 

statistical cross-correlation analysis of multivariate traffic time series.  

Autonomous dynamics and stochastic characteristics of traffic variables can be easily observed 

by the mode of variations, their intensive oscillation, magnitude of fluctuation, extreme values, 

outliers, trend, and cyclical pattern from the plots of traffic flow, speed, and occupancy time 

series. These characteristics can be observed in both hourly and a finer resolution traffic profile 

as shown in Fig.1.2 and Fig.1.3. The interactive dynamics of traffic variables are reflected by the 

3D scatter plots of flow, speed and occupancy in Fig.1.4 which implies the intrinsic connections 

between traffic variables.   

• Fundamental relations between macroscopic traffic variables    

Traffic flow Q (veh/hr), speed V (km/hr), and density ρ (veh/km) are three major variables used 

to describe the state of traffic flow at a macroscopic level. These traffic variables constitute three 

pairs of fundamental relationships which are revealed by the Fundamental diagram. Fig. 1.5 

shows a plot of the Fundamental Diagram using the samples from location 3. Since the density of 

traffic flow is scarcely available from a direct survey, sensor occupancy o  is usually used 

instead. In traffic theory, the Greenshields (1935) or Greenberg (1959) models are commonly 

used to describe these relationships that are subject to the hydrodynamic equation of volume 

equals multiplication of speed and density (i.e. Q V ρ= ⋅ ).    
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Fig. 1.2 Profile of daily traffic volume, speed, and occupancy  

The Fundamental Diagram such as Fig.1.5 can interpret not only the long run relationship of 

traffic variables, but also show the traffic states. In Fig.1.5, 13% occupancy is a critical point that 

splits traffic flow between free flow and congested states. The diagram of speed vs. occupancy 

shows that traffic flow is able to maintain the posted speed or above when occupancy is less than 

13%. In a free flow state, as density increases, speed slightly drops but not significantly. 

However, both diagrams of volume vs. occupancy and speed vs. volume show that volume 

would still increase even though the speed of the traffic flow drops slightly until occupancy 

reaches a critical point. If traffic demand increases further (e.g. during rush hours) such that the 

occupancy reaches a critical point (13%), the diagram of volume vs. occupancy shows that traffic 

volume approaches the capacity of the roadway, then becomes unstable. When the occupancy 

surpasses the critical point (>13%), all diagrams show that both traffic volume and speed would 
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quickly decline. The traffic flow enters an unstable or mildly congested state. The congestion 

would deteriorate to a traffic jam state as soon as more vehicles join in the flow. When the 

occupancy approaches its maximum point, traffic speeds approach zero.    

 

 

 

Fig. 1.3 Time series plot of traffic volume, speed, and occupancy  

 

Fig. 1.4 3D scatter plot of traffic volume, speed and occupancy, location 3  
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Fig. 1.5 Fundamental Diagrams, traffic data from location 3  

• Traffic states  

Traffic states are closely associated with the balance between traffic demand and roadway 

capacity. Traffic flow operates at a free flow state when the demand is lower than the roadway 

capacity, whereas, traffic flow operates at a congested state when the demand exceeds the 

roadway capacity. The two traffic states, free flow and congestion, can be easily identified based 

on the fundamental diagram of a flow-density relationship.  

A recent study more comprehensively classifies traffic states into three phases: free traffic, wide 

moving jams, and synchronized flow (Kerner 2004, 2009, van Hinsbergen et al., 2007). 

According to three-phase traffic theory, the congestion state is further divided into two states: 
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synchronized flow (S) and wide moving jams (J). In the synchronized flow, the speed of vehicles 

drop significantly, and the density of vehicles increases, therefore, there is no noticeable change 

in the flow rate observed. At wide moving jams, both flow rate and speed drop significantly, 

traffic flow becomes relatively uniform than synchronized flow. In order to show Kerner’s three-

phase traffic flow model, Fig. 1.6 directly cited Figure 12.1(c) on pp. 246 of Kerner’s book 

(Kerner, 2009). Interested readers may also refer to transportation research Circular E-C149 on 

pp. 22-42 (Greenshields 75 Symposium, 2011) for this theory. However, Treiber, Kesting and 

Helbing (2010) argued that Kerner’s three-phase traffic theory can be reproduced with simple 

two-phase models with a fundamental diagram if the model parameters are suitably chosen.  

 

Fig. 1.6 Kerner’s three-phase traffic flow theory 

that is directly cited from Figure 12.1(c) on pp. 246 of (Kerner, 2009)  

Yang and Qiao (1998) use two-layer self-organizing pattern recognition neural network to 

classify highway traffic states into distinctive cluster centers. The method is found to be more 

flexible than Highway capacity manual (HCM) and feasible for online application. In addition, 

based on the neural clustering approach to the analysis of high frequency traffic data collected 

from arterial roads in Athens, Vlahogianni et al. (2005, 2008a, 2008b) identified four traffic 

regimes by clustering traffic patterns from the flow-occupancy relationship. These traffic states 

include free-flow condition where no queue forms, two synchronized conditions that reflect 

traffic flow evolution near capacity, and congested condition. Two synchronized conditions are 

classified based on diverging statistical behavior including a stochastic structure where volume 

highly fluctuates with low occupancy, and a deterministic structure where volume highly 

fluctuates with sharp increase in occupancy. In order to show the four traffic states classified by 
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Vlahogianni et al., Fig.1.7 directly cited Figure 3 of the paper authored by Vlahogianni et al. 

(2005).  

 

Fig. 1.7 Four traffic states in the flow-occupancy diagram 

that is directly cited from the paper authored by Vlahogianni et al. (2005).  

1.2.3 Statistical characteristics   

From a statistical viewpoint, the characteristics of traffic flow may exhibit seasonality, non-

stationarity, conditional heteroscedasticity (Anand et al., 2008), unknown structure break, 

temporal and spatial correlations, and cointegration.   

• Seasonality   

Seasonality in a time series is a predictable pattern of change that recurs or repeats over a fixed 

and known period d , where d  defines the length of seasonality. It can be expressed as 

t d tS S+ =  , where tS  is a function with known period d  and referred to as a seasonal component 

in a time series. A traffic time series that is collected long enough likely shows multi-seasonality 

including yearly, weekly, and daily pattern. The seasonality is mainly reflected in traffic volume 

series rather than speed and occupancy time series. Fig.1.8 shows the plot of traffic volume 

series from location 3, its autocorrelogram (ACF), and spectral density. The definition of 

autocorrelation and spectral density can be referenced to (Brockwell and Davis, 2002). The 

repeated pattern in the plot of traffic volume series and the ACF indicate the existence of 
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seasonality in the time series. Seasonality can also be clarified by frequency analysis with 

spectral density.   

 

Fig. 1.8 Plot of traffic volume, ACF, and spectrum  

• Stationary and non-stationary 

A stochastic process 
ty  is said to be (weakly) stationary if both Eq. (1.2) and Eq. (1.3) hold. 

Namely, both mean function and covariance function are independent of time t  and finite over 

time. The covariance 
hγ  in Eq. (1.3) is a function of time lag h  which is an integer for short 

memory time series.   

( ) ,  
t

E y tµ= < ∞ ∀ ∈ Ω    (1.2)  

( )( ) , ,    t t h hE y y t hµ µ γ−− − = ∀ ∈Ω     (1.3)  
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A stationary normal process has a property known as time reversibility, i.e. the joint probability 

distribution of the process does not change as the process is reversed in time. In general, a 

stationary process is a statistical equilibrium such that statistical inferences about the stochastic 

process structure can be easily made (Cryer, 2008).   

However, the evolution of traffic state appears to be a non-stationary and time-irreversible 

process. A typical daily traffic volume profile is analogous to an asymmetric M shape as such 

shown in Fig.1.2 with a slow rise before the morning peak and gradual decay after the evening 

peak. Some irregular abrupt declinations with slow rises appear in the speed profile. From the 

plots, it can be easily identified that traffic process is non-stationary and time-irreversible 

because it has a non-constant mean function. As well, the process reversed in time does not have 

the same distribution as the original process (Kamarianakisa et al., 2012).   

The degree of non-stationarity can be examined by unit root tests. These statistical tests include 

the Augmented Dickey-Fuller (ADF) (Dickey and Fuller 1979, 1981), DF-GLS (Elliott et al., 

1996), and KPSS (Kwiatkowski et al., 1992) and Zivot-Andrews unit root test (Zivot and 

Andrews, 1992). Table 1 shows the results of four types of unit root tests to check the degree of 

non-stationarity in the traffic time series. These results indicate that the hypothesis of unit roots 

cannot be rejected such that the traffic time series from the three locations are non-stationary.  

Non-constant variance, known as conditional heteroscedasticity, can be identified by the 

difference technique that is usually used to remove the trend and seasonal component from a 

time series. Fig.1.9 shows the differenced time series of traffic volume and speed respectively. It 

can be easily identified from the plots that the variance of differenced traffic volume and speed 

are not constant. The magnitude of fluctuation around the mean changes over time.   
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Table 1.1 Unit Root Test   

 

 

Fig. 1.9 Differenced time series of traffic volume, and speed  

Test Statistic p-value Test Statistic p-value Test Statistic p-value

test 1:

Volume -0.3495 p > 10% -0.1751 p > 10% -0.0985 p > 10%

Speed -0.0962 p > 10% 0.1628 p > 10% 0.3826 p > 10%

Occupancy -0.0434 p > 10% -1.2046 p > 10% -1.0247 p > 10%

test 2:

Volume -0.4936 p > 10% -0.4241 p > 10% -0.2335 p > 10%

Speed -0.4892 p > 10% -0.5413 p > 10% -0.8017 p > 10%

Occupancy -0.1867 p > 10% -0.48 p > 10% -0.6446 p > 10%

test 3:

Volume 0.2436 p < 1% 0.1853 1% <p< 2.5% 0.2197 p < 1%

Speed 0.2718 p < 1% 0.175 2.5% < p < 5% 0.2267 p < 1%

Occupancy 0.2458 p < 1% 0.1772 1% < p < 2.5% 0.2605 p < 1%

test 4:

Volume -2.8991 p >10% -3.6017 p >10% -3.58 p >10%

Speed -4.0613 p >10% -3.6495 p >10% -4.0012 p >10%

Occupancy -3.2978 p >10% -4.3414 p >10% -4.4776 p >10%

Unit Root Test (Stationarity Test)

Elliot, Rothenberg and Stock (DF-GLS) Test, H0: unit roots, non-stationary

Critical values (cv) for a significance level of:  1% cv= -2.57,  5% cv= -1.94,  10% cv= -1.62

KPSS Unit Root Test, H0: stationary

Critical values (cv) for a significance level of: 10% cv = 0.119,   5% cv = 0.146,  2.5% cv = 0.176,  1% cv = 0.216

 Zivot-Andrews Unit Root Test, H0: unit roots in the case of a structural break

Critical values (cv) for a significance level of: 1% cv= -5.57,   5% cv= -5.08,  10% cv= -4.82  

Traffic Series
Location 1 Location 2 Location 3

Augmented Dickey-Fuller (ADF) Test, H0:  unit roots, non-stationary

Critical values (cv) for a significance level of: 1% cv = -2.58,   5% cv = -1.95,  10% cv = -1.62
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• Structural change  

Unknown structural change may occur in the first, the second, or higher order moment of a time 

series. This phenomenon can be visualized by abrupt declination or inclination in the plot of the 

time series. The point where the structural shift takes place is usually unknown before the change 

occurs.  

Traffic flow is generally classified as either a free flow state or congested state as discussed 

earlier. In the free flow state, traffic variables exhibit simple symmetric fluctuation around the 

steady state. In the congested state, asymmetric fluctuation deviates from the steady state. The 

abrupt declination, or inclination of traffic variables caused by unexpected disturbances to traffic 

flow, instability, or incidents can be defined as outliers in the context of conventional time series 

modelling. However, from a viewpoint of traffic flow theory, those outliers cannot be simply 

removed in traffic modelling because they imply traffic congestion state, which is of primary 

interest in traffic management. This instability of the data generating process often results in 

structural changes in most traffic time series. Abrupt structural changes can be easily observed in 

the plot of speed time series in Fig.1.2, Fig.1.3, and in the plot of the differenced volume and 

speed in Fig.1.9.   

Unknown structural changes can be detected by the Zivot-Andrews unit root test. The null 

hypothesis 
0H  is a unit root process with drift (random walk) that excludes exogenous structural 

change. The alternative hypothesis is a trend stationary process that allows for a one-time break 

in the level, the trend, or both. Fig.1.10 shows a Zivot-Andrews unit root test resulted from a 

daily traffic speed time series. The test statistic equals -5.9528 (critical values: 0.01= -5.57, 

0.05= -5.08, 0.1= -4.82). The null hypothesis is rejected at 1% significance in favor of a one-time 

structural break at position 354 as shown in Fig.1.10. The Zivot-Andrew test estimates the 

breakpoint to be at a place where the ADF unit root t -test statistic is minimized.   
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Fig. 1.10 Zivot test for unknown structural change in traffic speed time series  

• Nonlinearity   

Non-stationarity in the first two order moments and unknown structural change in traffic time 

series lead to nonlinear model representation because a global linear approximation is often 

inappropriate. The most common nonlinear models are the threshold autoregressive (TAR) 

models of Tong (1978, 1983), and the autoregressive conditional heteroscedastic (ARCH) 

models of Engle (1982) and the generalized ARCH (GARCH) models of Bollerslev (1986). The 

threshold model is suitable for conditional mean functions, whereas, the ARCH model for 

conditional variance functions.   

• Temporal and spatial correlation   

Temporally, traffic process exhibits correlation between time t  and t h+ . The current traffic 

state has immediate impact on the traffic state at the next time instant at the same location. The 

impact becomes weaker as the time lag gets further apart, also known as ergodicity in the context 

of time series analysis. In other words, the current traffic state is closely related to the traffic 

state in the most recent past.   

Autocovariance and autocorrelation reflect a linear dependence between two random variables at 

different time points within a single time series. In the literature, there are about thirteen different 

ways to quantify the correlation coefficient (Rodgers and Nicewander, 1988). The formula 
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commonly adopted is based on Pearson’s product moment correlation coefficient (PMCC) 

(Pearson, 1920). The autocovariance function (ACVF) and the autocorrelation function (ACF) of 

time series { }tX  at lag h  are shown in Eq. (1.4) and Eq. (1.5) respectively.    

( ) ( ) ( )( ), ,,   x t h t t x t t h x t hh Cov X X E X Xγ µ µ+ − −
 = = − −    (1.4)   

( )
( )
( )

( ),
0

x

x t h t

x

h
h Cor X X

γ
ρ

γ +≡ =   (1.5)   

The sample autocorrelogram of traffic volume time series in Fig.1.11 provides great insight on 

temporal autocorrelations.   

 

Fig. 1.11 Autocorrelogram (ACF) of traffic volume   

Spatially, traffic processes exhibit correlation between the traffic flows at two adjacent locations. 

Traffic flow at any location of the roadway network may receive impact from its upstream and 

downstream. The impact gets weaker as the spatial distance between two locations gets greater. 

The correlation also exists between two traffic variables at the same location such as traffic 

volume series and speed series. These local and spatial linear dependences between traffic 

variables and between spatial neighborhoods can be verified by cross-covariance and cross-

correlation of multivariate time series.   
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Given the m -dimension time series vector { }1 2, , ,t t t mtx x x= LX , where each ( ) 1,2, ,itx i m= L  

represents a single time series, the cross-autocovariance function (CACVF) and the cross-

autocorrelation function (CACF) of vector 
tX  at lag h  are shown in Eq. (1.6) and Eq. (1.7) 

respectively.    

( ) ( ) ( )( ), ,,R X X X μ X μX t h t t X t t h X t hh Cov E+ − −
 = = − −     (1.6)    

( )
( )
( )

( ),
0

R
ρ X X

R

X

X t h t

X

h
h Cor +≡ =    (1.7)     

Fig.1.12 shows the sample cross-correlograms of two pairs of traffic time series. The top cross-

correlogram reflects the cross-correlation between the traffic volume and speed at the same 

location; the bottom correlogram indicates the spatial cross-correlation between the upstream 

traffic volume and the volume at the site of prediction.   

 
Fig. 1.12 Cross-correlograms of multivariate traffic time series  
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• Integration and cointegration   

In this research, a key finding is that cointegration exists between macroscopic traffic variables. 

Loosely speaking here, a non-stationary time series variable x  becomes stationary after taking d  

times difference, then x  is said to be integrated order d , denoted as ( )~x I d . Moreover, a 

linear combination of non-stationary time series variables becomes stationary or has their 

integration order reduced, then the variables are said to be cointegrated. Their precise definition, 

resulting model, and statistical test are presented in Chapter 3 and Chapter 4.   

1.3 Contributions of the research  

In order to model and forecast traffic state more accurately using advanced time series 

techniques, all the aforementioned challenges presented in section 1.2 including stochasticity and 

dynamics of traffic processes, the fundamental relation of traffic variables, multiple traffic states, 

seasonality, non-stationarity, serial and cross-section dependence over time and space, 

cointegration, and unknown structural change in traffic time series have to be taken into account 

and captured during the course of modelling and forecasting. While many modelling methods 

and models have been developed during the last two decades in this domain, there is no single 

time series model available in the literature that can incorporate these factors all at once. It is 

therefore natural and intuitive to seek and devise a model structure that is able to concurrently 

take care of all these challenges and factors for network-wide application. Following this train of 

thought, the time-space threshold vector error correction (TS-TVEC) model is proposed for short 

term (hourly) traffic state prediction. The details of TS-TVEC model and theoretical basis are 

elaborated in chapter 3. The experiments and practice are shown in chapters 4 and 5 respectively. 

The contributions and potential impact of the TS-TVEC model include:   

1. As cointegration is found to exist between traffic variables, the theory and method of 

cointegration with the vector error correction mechanism are employed, for the first time, 

in the general design of the proposed statistical model TS-TVEC for short term traffic 

state prediction that deals with multivariate traffic time series.   

2. A strong inherent connection between error correction model and traffic flow theory is 

revealed through the transformation of the well-known Fundamental Traffic Diagrams. 
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The piecewise linear relationship among the differenced traffic variables justifies the 

appropriateness of using an error correction model to reveal the dynamics between traffic 

variables.  

3. A threshold regime switching framework with a threshold identification mechanism is 

implemented to overcome any unknown structural changes in non-stationary traffic time 

series. The regime switching structure enables TS-TVEC to capture symmetrical and 

asymmetrical deviation, multiple traffic states, and conditional heteroscedasticity of 

traffic variables.   

4. Spatial and temporal cross-correlated information is incorporated with piecewise linear 

vector error correction model.   

5. MSE (mean squared error) of prediction with cross validation method is employed as a 

criterion in the TS-TVEC model selection.   

6. The empirical study in chapter 4 shows that the TS-TVEC model outperformed MLP 

Neural Network and Support Vector Regression in forecasting traffic volume with 

approximately 6% of improvement on average. In chapter 5, the larger scale applications 

are performed to 35 freeway locations with approximately 315 time series. The mean 

absolute percentage error (MAPE) in traffic volume prediction is between 4.66% and 

23.03% with median 7.45%, the coefficient of variation is between 5.87% and 41.29% 

with median 9.29%, and the mean square error is between 18864 and 296926 with 

median 109632.   

1.4 Scope of the research  

The modelling and forecasting efforts in this research focus on macroscopic traffic quantities 

including flow, speed, and occupancy which are important indicators of traffic state on a 

roadway. There is no rigorous definition for the “short-term” prediction which depends on a 

specific application. Most short term traffic state predictions in literature are concerned with an 

hourly interval or less (van Hinsbergen et al., 2007). This research focuses on hourly interval 

one-step-ahead rolling prediction.   
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Advanced time series techniques are adopted for short term traffic state prediction at data 

collecting locations. The proposed nonlinear TS-TVEC model employs a threshold regime-

switching structure to deal with multi-state and non-stationary multivariate traffic time series 

with unknown possible structural breaks. The vector error correction model as a piecewise linear 

model is embedded in the regime-switching structure to deal with cointegration of traffic 

variables. The proposed methodology is tested and applied to the 400 series of Highways in the 

Greater Toronto Area (GTA). The details of its experiment and large-scale application are 

presented in chapters 4 and 5.  

The indicators used to measure the accuracy of predictions include MSE (mean squared error), 

MAPE (mean absolute percentage error) and Coefficient of Variation. MSE is a primary index 

assessing prediction capacity. It is the second moment of prediction error and thus incorporates 

both the variance of the predictive model and its bias. MAPE measures the average absolute 

error in percentage, and the Coefficient of Variation equals to ratio of the standard deviation of 

prediction to the mean. It measures the magnitude of prediction error per unit. 

The next sections are organized in the following order: literature review in chapter 2, theoretical 

elaboration and model specification in chapter 3, empirical study in chapter 4, large scale 

implementation in chapter 5, and discussion and conclusion in chapter 6.    
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Chapter 2  
Literature review 

Literatures in the domain of short term traffic state estimation and prediction show that many 

methods have been attempted in the past few decades. There are different ways to categorize the 

methods of prediction. From a methodological perspective, this chapter reviews those methods 

based on two classes of research works: traffic state estimation and traffic state prediction.   

In our review, traffic state estimation refers to methods that are mainly based on traffic flow 

theory to approximate the traffic situation at the middle section of a road stretch from boundary 

conditions. Traffic state prediction refers to methods that forecast the traffic situation at a given 

location of a highway stretch based on historical time series data collected from the loop detector 

at the location of prediction and its adjacent upstream and downstream locations.   

A major part of traffic flow theory that associates with traffic state estimation is second order 

macroscopic traffic flow models. Those models are developed from kinematic physics, fluid or 

gas-kinetic, and wave theory among others to describe traffic phenomena. They are initially 

taken the form of partial differential equations (PDE) known as continuum second order models. 

The numerical solution to continuum second order models lies in the space and time 

discretization. Discrete second order models with a supply-demand method results in application 

of cell transmission model (CTM) to traffic state estimation (Daganzo 1993, 1994, 1995a).   

On the other hand, many methodologies developed in the past can be aligned with the stream of 

traffic state prediction. Those methods include, but are not limited to, Neural Networks, Kalman 

Filter, Support Vector Regression, Nonparametric regression, and time series, etc. Those 

methods are developed on the basis of statistical error theory where an optimal solution is found 

by minimizing error between the model predictions and observed values.   

This chapter reviews second order macroscopic traffic flow models for traffic state estimation, 

and various methodologies for traffic state prediction.   
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2.1 Traffic state estimation   

Model-based traffic state estimation is to estimate macroscopic traffic quantities for any 

intermediate point on a freeway or arterial segment based on theoretical traffic flow models and 

boundary conditions. Many researchers use the continuum section-based or discrete cell-based 

modelling approach. Representative works include the Cell Transmission Model (CTM) 

(Daganzo 1993, 1994, 1995a), variational kinematic waves (Daganzo 2005), CTM-based traffic 

state estimation models (Muñoz et al., 2003), second-order traffic flow model with Kalman filter 

(Nanthawichit et al. 2003, Wang and Papageorgiou 2005, 2008), CTM-based second-order 

traffic flow model with particle filtering (Mihaylova et al., 2007), the LWR partial differential 

equation (Lighthill and Whitham 1955, Richards 1956) with the Lagrangian measurements 

(Herrera and Bayen 2010), Newell’s simplified kinematic wave model (Newell, 1993), stochastic 

Newell’s three-detector method (Laval et al., 2012, Deng et al., 2013), etc.   

Second order macroscopic traffic flow models as the most relevant models and a major approach 

to traffic state estimation are briefly reviewed in this section. Their application to traffic state 

estimation and limitation are discussed as well. There is a great body of literature in traffic flow 

theory that is related to second order macroscopic traffic flow models. Interested readers may 

refer to relevant articles and books (TRB report 165-1975, Papageorgiou 1983, Leutzbach 1988, 

Hoogendoorn 1999, Garavello and Piccoli 2006, Palais 2008, and Treiber and Kesting 2013, etc.) 

for more details.  

2.1.1 Second order macroscopic traffic flow models  

The LWR model and Payne’s model (Payne 1971) are established on the assumption of a simple 

homogeneous road section. Hence, their application is limited. In the context of inhomogeneous 

road section where merging or diverging zones of on-and-off ramps are present, or the number of 

lanes is varying due to lane closure or open, Treiber and Kesting (2013) derived more generic 

macroscopic traffic dynamic models including continuity equation, acceleration equation, and 

flow-conserving equation. The three equations are able to describe dynamics of traffic speed, 

density, and flow in a more general road situation where different type of bottleneck can be 

included.  
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Let us assume that the traffic flow, density and speed are differentiable functions of time and 

space denoted by ( , ),  ( , )Q x t x tρ and ( , ) V x t  respectively on the ( , )x t  plane where x  denotes 

the distance in the driving direction along road stretch and t  denotes time. The continuity 

equation and flow-conserving equation can be written compactly in the vector form as Eq. (2.1).   

( )
( )

F UU
S U   

t x

∂∂
+ =

∂ ∂
    (2.1)   
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In Eq. (2.1), U  denotes the components of the traffic state, F denotes the associated density and 

flow, and S  denotes the sources of road inhomogeneities. D  and η  are coefficients, D
x x

ρ∂ ∂ 
 

∂ ∂ 
 

denotes a diffusion term, rampg  is the generation (dissipation) rate in vehicles from on-ramps 

(off-ramps) per unit time per unit length, I  denotes number of lanes at merging and diverging 

zone that is a continuous function of road spatial coordinate x ,  
P

x

∂

∂
 denotes traffic pressure, 
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 is the source term associated with road inhomogeneities, 
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⋅ ⋅
 denotes the rate of the mean speed change at the on-ramp merging and 

off-ramp diverging zone, L is the length of merging and diverging zone.   

The acceleration equation takes the form of Eq. (2.2).  
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     (2.2)   

The acceleration equation consists of three components including convective rate of change, 

relaxation source, and the spatial anticipation where 
V

x x
η

∂ ∂ 
 

∂ ∂ 
 denotes diffusion term.  
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If the model parameters are properly adjusted, the acceleration equation and continuity equation 

can be respectively reduced to Payne’s model (Payne 1971) and LWR model (Lighthill and 

Whitham 1955, Richards 1956). Interested readers may refer to Treiber and Kesting (2013) for 

detailed derivation of those equations.  

Mathematically speaking, dynamics of macroscopic traffic variables can be described with both 

differential equation and difference equation. Differential equation is to emphasize the trend and 

rate of change, whereas, difference equation is to focus on the relation of the current and past 

time. Therefore, a discrete version of second order models is suitable for traffic state forecasting. 

The continuum second-order macroscopic traffic models in the form of hyperbolic partial 

differential equations are barely useful for the traffic state estimation unless they are discretized 

in time and space. 

The method of choice for time and space discretization is explicit finite difference that is a 

numerical integration scheme based on the Taylor series. Due to its asymmetric finite-difference 

approximation for gradients, the discretization is classified as forward finite difference in time 

and backward in space denoted as FTBS (also known as upwind method), and forward finite 

difference in time and forward in space denoted as FTFS (also known as downwind method). 

The discretization divides the highway stretch into cells of length x∆ , and time into time steps 

with constant intervals t∆ . The partial differential equations are approximately decomposed into 

groups of N difference equations. The discrete speed model is presented in Eq. (2.3). The 

discrete density and flow model are given in Eq. (2.4).   
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2.1.2 Cell transmission model for traffic state estimation 

Daganzo (1993, 1994, and 1995a) among others proposed a major approach to traffic state 

estimation using discrete second order macroscopic traffic flow models with a supply-demand 

method that is known as cell transmission model (CTM).  

       

Fig. 2.1 Illustration of cell transmission model  

Briefly, a cell transmission model is illustrated in Fig.2.1 where a unidirectional highway stretch 

is divided into iterated coupled cells of length x∆  with the index k  increasing in a downstream 

direction, and time is discretized into time interval t∆ . The outflow from an upstream cell is 

equal to the inflow to the immediate neighbor cell in the downstream during each time interval 

t∆ . The 
k

C  denotes maximum capacity of cell k . The supply and demand method is to 

determine the value such as 1

down up

k kQ Q +=  at cell boundaries, whereas, the discrete second order 

macroscopic traffic flow models in Eq. (2.3) and (2.4) are used to update the state variables such 

as ,  and k k kQ Vρ in a cell.  

The supply and demand method is to determine the flows transmitting cell boundaries from 

Eq.(2.5) by taking the minimum value of supply 1k
S +  provided by the ( )1

th
k + cell or demand 

kD  required by the 
thk  cell. The supply provided by cell ( )1k +  is either limited to its capacity 

1kC +  for free flow traffic situation or given by the actual flow of moving jam in this cell. The 

demand is either given by the actual outflow from cell k  for free flow traffic situation or equal to 

the maximum value of its capacity for congested situations.  

1 1min( , )
down up

k k k kQ Q S D+ += =      (2.5)  

where   
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Methods of asymmetric finite difference with a dynamically switching mechanism between 

upwind and downwind method depending on the local characteristic velocities are called 

Godunov schemes (Treiber and Kesting 2013). The state variables in each cell are updated by 

discrete second order macroscopic traffic flow models in Eq. (2.3) and (2.4) using Godunov 

schemes. The switching mechanism depends on the dominant factor among supply and demand. 

The upwind method is used if demand dominates (i.e. free traffic, characteristic velocity 0c > ), 

while the downwind method is employed if supply dominates (i.e. congested traffic, 

characteristic velocity 0c < ).  

2.1.3 Critiques and limitation 

In traffic state estimation with CTM, the forecasting interval is determined by discretized time 

interval t∆  in discrete second order macroscopic traffic flow models. However, the second order 

models may exhibit instabilities if t∆  is improperly chosen for discretization. Hence, t∆  is 

usually restricted by the first and second Courant–Friedrichs–Lévy (CFL) conditions in Eq. (2.6) 

and Eq.(2.7) respectively (Treiber and Kesting 2013).   

     first CFL condition 
max f

x x
t

c V

∆ ∆
∆ < ≈       (2.6)   

 
( )

2

    second CFL condition
2

x
t

D

∆
∆ <             (2.7)   

where c  denotes characteristic velocity; 
fV  denotes free flow speed, D  is coefficient of 

diffusion term in the second order traffic models.  Therefore, the choice of t∆  according to 

Eq.(2.6) and Eq. (2.7) hardly meets the need of hourly interval forecasting in this research. The 

application of CTM is not only restricted by the first and second CFL conditions, but also suffers 

from discretization errors, convergence issues, and numerical instabilities (Treiber and Kesting 

2013). 
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It is noteworthy that discrete second order traffic flow models use first order difference equations 

of density, speed, and flow to predict the traffic state. However, first order difference equations 

only consider the correlation between current time and one-step time lag, and ignore potential 

correlation with other time lags. This limitation impacts the accuracy of prediction.   

In addition, physical boundary conditions have to be clearly specified when traffic state at a road 

stretch is simulated by second order traffic flow models. For instance, the traffic demand at the 

entry and exit of the road stretch, on-and-off ramps, as well as the velocity distribution and 

variance of the inflow vehicles must be known.   

Many critiques arise when traffic flow operations cannot be accurately simulated by second 

order models. Papageorgious (1998) argued that any macroscopic traffic flow theory will 

unlikely reach the descriptive accuracy attained in other domains of science such as Newtonian 

physics. Daganzo (1995b) pointed out that the higher order models exhibit a fundamentally 

flawed model structure because they can produce negative flows and negative speeds at the tails 

of congested regions. Aw and Rascle (2000) attempted to remedy second order model by 

replacing the space derivative with a convective derivative to overcome Daganzo's observations. 

Helbing (1996, 1997) argues that most macroscopic traffic flow models neglect the finite space 

requirement of vehicles, the velocity variance, and the finite reaction and braking times of driver-

vehicle units, thus, may result in unrealistic jam density.  

It is worth mentioning that second order traffic flow models are not established on the basis of 

statistical error theory, hence, lack capability to reflect statistical characteristics of traffic 

processes. However, traffic processes are stochastic processes where statistical methods are 

necessary.  

2.2 Traffic state prediction   

Research works classified as traffic state prediction focus on forecasting traffic situation at 

selected locations with local time series data. The methodologies involve multi-disciplinary 

research such as control theory, artificial intelligence, applied mathematics, statistical science, 

etc. Over the past two decades, the attention and effort devoted to modelling and forecasting 

macroscopic traffic states from univariate temporal correlation to multivariate temporal-spatial 

correlation and from linear to nonlinear form. Those models may be loosely classified as 
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statistical and non-statistical methods. Some representatives include the class of Time Series 

models, e.g. seasonal ARIMA (Autoregressive Integrated Moving Average) (Williams et al., 

2003) and STARIMA (Space-Time ARIMA) (Kamarianakis and Prastacos, 2003), Kalman Filter 

State-Space model (Antoniou et al., 2005, Garside 1997, Okutani and Stephanedes, 1984), 

Neural Network (Qiao et al., 2001, Abdulhai et al., 2002, Zheng et al., 2006), Nonparametric 

Regression (Chang et al., 2012, Smith et al., 2002), and Support Vector Regression (Wu et al., 

2004), Bayesian Network (Castillo et al., 2008).   

2.2.1 Neural Network  

Neural Network models have found widespread applications in many fields such as data mining, 

pattern recognition, classification, and prediction when large data sets are available. They are 

frequently adopted for short-term traffic forecasting (Chan et al., 2012, Abdi et al., 2010, 

Vlahogianni et al., 2008). Neural Networks have been widely used as a prevailing alternative to 

time series modelling. The major advantage of the Neural Network model lies in its capacity to 

deal with multivariate nonlinear problems and its flexibility to easily accommodate any unknown 

relationship between variables. Neural Networks are good at recognizing the patterns out of 

training data and stores the patterns in its weight matrix, and relies on said patterns to forecast 

the future. However, its dilemma is difficulty with interpreting autocorrelations and cross-

correlations between variables such that it cannot be used for statistical inference. In the 

literature, there is debate about its capacity and efficiency to deal with seasonality of time series. 

Some argue that Neural Networks are able to deal with seasonality of time series (Sharda et al. 

1992), but others argue that Neural Networks are not able to deal with seasonality and pre-

processing of data is required (Zhang and Qi, 2005).    

Neural Network provides a mapping mechanism from the input to the output space with an input 

and output pairwise data set and a topology structure that consists of multiple layers of neurons 

and sets of weights indicating the strength of connections between neurons. From a mathematical 

viewpoint, Neural Network is a nonlinear function :
N M

f R R→  mapping n  dimension real 

space to m  dimension real space. The weight vector is the coefficient that stores mapping 

information. From a statistical viewpoint, Neural Network is a class of nonlinear regression 

models without an explicit mathematical expression. Being analogous to coefficient estimation 

of a regression process, the network training process is to adjust weight vectors with an error 
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backward propagation method to minimize the error between actual model output and desired 

output. The Neural Network model is flexible and adaptive in the sense that it relaxes the 

assumption that the residuals need to be white noise for the standard regression model, and the 

explicit correlation between pairwise data is not required (Kutner, 2005).   

There are three major elements to determine the properties of a Neural Network: (1) network 

architecture (neurons, layers, and connections), (2) activation function, (3) learning rules for the 

weight adjustment. Usually, different types of problems require different specifications of Neural 

Network. Neural Networks developed for the purpose of traffic prediction include BP Neural 

Networks (BPNN) (Liu et al., 2009, Zhu et al. 2010, Guo and Zhu, 2009, Li et al. 2010), Time 

Delay Neural Networks (TDNN) (Abdulhai et al., 2002), Elman Neural Network (ENN) (Gao et 

al., 2007) and Radial Basis Function (RBF) (Yang et al., 2010, Wang and Xiao, 2003). A 

multilayer perceptron (MLP) Neural Network is set up for traffic state prediction in this research. 

The MLP Neural Network architecture for traffic state prediction refers to Fig.4.3 in chapter 4.  

However, some limitations exist that make it difficult to apply the approach to large-scale 

network-wide forecast. (1) The application of Neural Network to traffic state prediction is based 

on the assumption that the historical traffic pattern would repeatedly occur in the future such that 

the traffic pattern at a future time instance could be matched by a similar one in the historical 

data set which was used for network training. Hence, large and comprehensive data sets are 

required for training the network in order to cover all the patterns possible. (2) There lacks 

systematic ways and theoretical basis to determine optimal architecture of Neural Network 

including the number of neurons, layers and connections for a specific problem. In fact, no clear 

and consensus guidelines in the literature are available to determine the number of layers and 

neurons in the hidden layer. (3) Neural Network parameters are not interpretable and may not 

provide useful insights in the investigation of causal relationships in traffic dynamics 

(Kamarianakisa et al. 2012). (4) Statistical diagnostic tests are currently not available for Neural 

Network models such as the tests for goodness of fit, identification of influential observations, 

outliers, and significance effect of the various predictors. It is difficult to infer confidence 

interval. The overparameterization problem will appear if the number of neurons in the hidden 

layer is more than just a few. This is analogous to keeping insignificant predictors in a linear 

regression model. Neural Network does not produce unique solutions to the weight vector 

because there are infinitely many sets of parameters that can lead to the correct model, thus any 
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particular set of parameters may lose intrinsic meaning. In addition, the problem of being trapped 

in the local optimum when minimizing network training errors is a challenge of Neural Network 

(Kutner et al., 2005).   

2.2.2 Kalman recursion   

Kalman recursion model is a typical version of the Structural State Space model family. It may 

be classified as Kalman prediction, filtering and smoothing model (Brockwell and Davis, 2002). 

The original design of Kalman prediction model is intended to forecast unobservable (implicit) 

system variables by observable (explicit) exogenous variables. It is a one-step-ahead prediction. 

The Kalman prediction model uses the linear relationship between the exogenous variables and 

the system variables, and uses forecast errors (innovations) of the observable exogenous 

variables at the previous step to recursively correct the forecast of the system variables at the 

current step.   

The essence of the Kalman prediction is the same as the vector ARMA (autoregressive moving-

average) model (Brockwell and Davis, 2002). The algorithm is analogous to the innovation 

forecasting algorithm for a ARMA(1,1) process, but replaces innovations of an endogenous 

variable with an observable exogenous variable. The Kalman Gain coefficient matrix is 

calculated in a way analogous to the calculation of the innovation term coefficient by the 

innovation algorithm for the ARMA(1,1) process. Stathopoulos and Karlaftis (2003) reported 

that the state space model reduced into an ARIMA model in some cases of predictions.   

Kalman recursion model consists of state equation (2.8) and observation equation (2.9) 

(Brockwell and Davis, 2002).   

t+1 t t tX  = X +VΦ       (2.8)   

t t t tY  = X  + WΗ        (2.9)   

where tX  denotes an unobservable system variable,  tY  an observational variable,  ,t t Φ Η  are 

coefficient matrices,  t tV ~WN(0, Q )  is a system error vector with a zero mean and covariance 

t
Q ,  t tW ~WN(0, R )  is a measurement error vector with a zero mean and covariance 

t
R ,  

t
V  and 

t
W are linearly independent. The system equation in the Kalman recursion is a vector form of the 



30 

 

AR(1) model and any AR( p ) model can be transformed into a vector form of the AR(1) model. 

The observation equation in the Kalman recursion is equivalent to the innovation part of the 

ARMA model, which continuously measures model deviations and updates the system equation. 

Given 0 ,. . . , tY    Y  , the one-step-ahead prediction is recursively computed by Eq. (2.10), and then 

corrected by Eq. (2.11).    

1/ 1,
ˆ ˆ

t t t  t tX X   + += Φ       (2.10)   

1 1/ 1
ˆ ˆ ˆ( )t t t t t t tX   X  K Y X  + + += + − Η        (2.11)   

where 1/t t+  are the intermediate steps, 1/
ˆ

t tX +  denotes forecast value prior to correction,  1
ˆ

tX +  

denotes forecast value posterior to correction,  the Kalman Gain matrix 
1tK +  is computed by 

Eq.(2.12) as to minimize the error covariance 
1tP+  that is calculated by Eq. (2.13).   

-1

1 1/ 1 1 1/ 1 1( )T T

t t t t t t t t tK P P R+ + + + + + += Η Η Η +        (2.12)   

1 1 1 1/( )t t t t tP I K P+ + + += − Η       (2.13)   

where   

( )1/ 1 1 1 0 0 0 0 0 0 0 0~ , , [( )( ) ] ,       
T

t t t t t tP P Q X N P P E X Xµ µ µ+ + + +
′= Φ Φ + = − −

,
  

0
X  denotes the initial information known about the system at 0t = . In the context of traffic state 

predictions, the Extended-Kalman-Filtering (EKF) method is recently combined with second 

order macroscopic traffic flow models (Wang et. al, 2008, Bellemans et al., 2006, Tampere and 

Immers, 2007). This approach requires a complicated transformation to fit traffic variables into 

the rigid Kalman recursion structure because observable (explicit) traffic variables are also 

system variables (implicit) themselves. The vector transformation of traffic variables from their 

explicit to implicit form is barely justifiable from the viewpoint of the time series-based model.   

As both the Kalman recursion structure and the second order macroscopic traffic flow models are 

first order difference equations, it implies that the future traffic state is only correlated with the 

traffic state at one-step-past time instant and the current measurement. Other possible 
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correlations between the future state and the past and spatial correlations are not taken into 

account.  

In addition, the Kalman recursion is a linear model. Its prediction performance is compromised 

from a steady traffic state to a state with significant fluctuations. The shorter the forecast horizon 

is the less accurate the prediction is, because the nonlinear characteristics of stochastic traffic 

process become more significant.   

2.2.3 Support vector regression  

Support Vector Regression (SVR) is the pith of Support Vector Machine (SVM) algorithms. 

SVM can efficiently perform both linear and nonlinear classification by mapping the input data 

points into high-dimensional feature spaces through a kernel function. SVM is to construct a set 

of hyperplanes and find the best hyperplane (called the maximum-margin hyperplane, also 

known as maximum margin classifiers) that separates the data points in high dimensional feature 

spaces. Hyperplane is defined by a linear vector function. During the process of searching an 

optimal hyperplane, the empirical classification error is minimized and the geometric margin of 

hyperplane is maximized (Moore, 2003).   

Recently, researchers take advantage of the regression optimization process SVR out of SVM for 

traffic prediction. In essence, SVR is to determine a suitable predictive function through a 

nonlinear regression process with pairs of input and output data in a high dimensional feature 

space based on quadratic programming optimization techniques. Analogous to the perceptron 

Neural Network, SVR regression process is a training process where the parameter vector of an 

optimal hyperplane function are determined with a set of training data by minimizing an overall 

error objective function. The estimated predictive function is then used for traffic variable 

prediction (Yang and Lu, 2010). Mathematical details of SVR are presented in section 4.3 in 

chapter 4.   

It is reported that SVR outperforms BPNN and SARIMA for traffic variable prediction (Hong et 

al., 2010, Theja and Vanajakshi 2010). Similar to Neural Network, one drawback of the SVR is 

that the model parameters are hardly interpretable.   
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2.2.4 Nonparametric regression  

Parametric methods mean that the model structure is predefined, and only the parameters of the 

model need to be estimated from data. Nonparametric methods mean that both the model 

structure and the parameters are determined from data (van Hinsbergen et al., 2007).   

Nonparametric regression, i.e. K-Nearest Neighborhood (KNN), is often adopted for clustering 

and classification. The K-Nearest Neighborhood nonparametric regression is developed based on 

chaotic system theory rather than stochastic system theory which are the basis of time series 

models. In their research, Disbro and Frame (1989) argue with some evidence that traffic flow 

exhibits chaotic behavior. Wang et al. (2005) also argue that traffic system is a nonlinear system 

and traffic flow data exhibits chaotic properties. Shang et al. (2005) argue that traffic time series 

has a strong chaotic signature due to the positive largest Lyapunov Exponent and the low 

correlation dimension estimated using phase space techniques. The KNN nonparametric 

regression consists of four elements including state space, distance metric, forecast generation 

method, and neighbor database management (Smith et al., 2002).  

With the K-Nearest Neighborhood method for traffic prediction (Chang et al., 2012, Yuan and 

Wang, 2012), K observations are selected from a historical database based on their nearness to 

the current observation of traffic variable to form a nearest neighborhood. In order to determine k 

nearest neighborhood, a state vector has to be defined for the purpose of comparison between the 

current observation and each historical observation. A typical state vector ,j tx  can be constructed 

as Eq. (2.14).  

, , , 1 ,[ , , ]j t j t j t j t dx  Q  Q ,Q  − −= L   (2.14)   

where 1, ,j n= L  is the index of historical cases in the state space, ,j tQ  denotes traffic 

measurement such as flow rate at current time t  in historical case j ,  d  is an integer number of 

time lags. However, there are no clear rules available to define state vector. The state vector may 

contain more information other than lagged observations. Nearness can be defined by a distance 

metric. Among various distance metrics, the Euclidean distance is commonly used to measure 

the similarity between current traffic observation and historical traffic data in KNN regression 
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based prediction. Eq. (2.15) shows a typical example to calculate the Euclidean distance based 

on the state vector defined in Eq. (2.14).   

( )
1 2

2

, . , ,

0

1 1

1 1

d

j c t j t c t i j t i

i

ED x x Q Q    
d d

− −
=

 
= − = −  + +  

∑   (2.15)   

where c  denotes index of the current case to be forecast, ,c tx  is the current state vector.  

The nearest neighbor selection is a process of matching the historical state vector ,j tx  with the 

current state vector ,c tx . After the neighbor search procedure identifies k  neighbors, the 

historical state vectors, their corresponding traffic observations , 1i tQ +  at time ( )1t +  and 

Euclidean distance iED  , 1, ,i k= L  are sorted in order according to their nearness. An example 

is shown in Table 2.1 based on the state vector defined in Eq. (2.14).   

Table 2.1 Selected K -nearest neighbors  

1, 1, 1 1, 1, 1 1

, , 1 , , 1

, , ,

, , ,

t t t d t

k t k t k t d k t k

1   Q  Q Q           Q         ED

                                                            

k  Q  Q Q          Q        ED

− − +

− − +

L

M M M M M M

L

 

Given the , 1i tQ +  and iED  , 1, ,i k= L  , the forecast can be calculated for the current state. Many 

different forms of forecasting equation are attempted in the literature. A typical forecasting 

equation weighted by inverse of distance is shown as Eq. (2.16) (Smith et al., 2002, Chang et al., 

2012).   

, 1
, 1

1 1

1k k
i t

c t
i ii i

Q
Q  

ED ED

+
+

= =

=∑ ∑    (2.16)   

where  , 1c tQ +  denotes the forecast value for the current state, , 1i tQ + , 1, ,i k= L  denotes the 

neighbor historical traffic observations at time ( )1t + , iED , 1, ,i k= L  denotes the neighbor 

Euclidean distance.  

Smith, William, and Oswald (2002) investigated the prediction performance of KNN 

nonparametric regression by comparing with refined heuristic methods and the seasonal ARIMA 
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model. They concluded that KNN nonparametric regression did not match the performance of 

the seasonal ARIMA forecasts, thus providing some evidence for the argument that traffic 

process is more stochastic than chaotic. They also suggested that defining different traffic states 

may lead to better prediction results.   

The efficiency of nonparametric regression is directly dependent on the quality and size of the 

database. It is desirable to possess a large database including as many likely conditions as 

possible. However, execution time searching for the nearest neighbor will be compromised as the 

database expands. This is a significant issue for real-time applications of KNN to traffic flow 

prediction (Smith and Oswald, 2000).     

2.2.5 Time series   

Time series researchers believe that the future can be predicted from information hidden in the 

dust of history. The essence of time series modelling techniques is to perform autocorrelation 

analysis through covariance structure of time series to establish a finite difference equation 

where the value of a stochastic process at the current time can be expressed as a linear 

combination of past observations and unobservable white noise. Hence, given historical data, it is 

viable to extrapolate the future behavior of a stochastic process based on the relation between the 

current and past time (Brockwell and Davis, 2002, Cryer, 2008). The parameters of a time series 

model are interpretable and may reveal insightful causal relationships in the stochastic process 

(Kamarianakisa et al., 2012).    

There are many classes of time series models that have been applied to traffic state predictions, 

such as ARIMA, SARIMA (Guo, 2005, Williams et al., 1998), ARIMAX (Williams, 1999), 

VARMA, STARMA (Kamarianakis and Prastacos, 2005, 2003), STAR (Sun and Liu, 2011), and 

SETAR (Liu et al., 2010, Al-Deek et al., 2001, D'Angelo et al., 1999, Ishak and Al-Deek, 2002). 

Among others, a few representative time series models are introduced in the next sections.  

• ARIMA  

ARIMA (Autoregressive Integrated Moving Average) (Box and Jenkins, 1976) was introduced 

to traffic prediction by Ahmed and Cook (1979) and Levin and Tsao (1980). It has been 

extensively applied to short term traffic state prediction as a benchmark of univariate time series 
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model. The specification of an ARIMA(p, d, q) model is shown in Eq. (2.17) (Brockwell and 

Davis, 2002).   

( )(1- ) ( )d
t tB B X B Zφ θ=     (2.17)   

where  
tX  is time series variable, { } ( )2~ WN 0,tZ σ , 1( ) 1 p

pB B Bφ φ φ= − −…−  and

1( ) 1 q
qB B Bθ θ θ= + +…+  are p th and q th-degree polynomials, 1, , pφ φ…  and 1, , qθ θ… are 

coefficients, d  denotes the order of difference, B is the backward shift operator, p  and q  

represent the autoregressive and moving average order, respectively.   

Prediction performance of ARIMA models for traffic prediction is mixed (Kamarianakis and 

Prastacos, 2005, Williams, 2001, Smith et al., 2002, Hamed et al., 1995, Lee and Fambro, 1999, 

Lee and Choi, 1998, Kirby et al., 1997, Nihan, 1980) due to its limitations: (1) it is a linear 

model, but the traffic evolution is a nonlinear stochastic process; (2) it is unable to reflect spatial 

correlation of topology structure of a road network because it only copes with a single time series 

of traffic data from the location of interest; (3) it is unable to capture rapid and sudden 

fluctuations caused by structural change in time series (Davis et al., 1991, Hamed et al., 1995).   

• SARIMA  

SARIMA (Seasonal ARIMA) is introduced by Williams et al. (1998) to model seasonality of 

traffic variables. The results indicated that SARIMA outperforms ARIMA and significantly 

improved prediction accuracy. The specification of a SARIMA(p, d, q)×(P, D, Q) model is 

shown in Eq. (2.18) (Brockwell and Davis, 2002).   

( ) ( ) ( ) ( )s s
t tB B Y B B Zφ θΦ = Θ      (2.18)   

where  (1 ) (1 )d s D
t tY B B X= − −  , 

tX  is time series variable, tY  is transitional variable, 

{ } ( )2~ WN 0,tZ σ , 1( ) 1 p
pB B Bφ φ φ= − −…−  and 1( ) 1 q

qB B Bθ θ θ= + +…+  are p th and q th-

degree polynomials, 1( ) 1s s s P
PB B B •Φ = − Φ −…− Φ  and 1( ) 1s s s Q

QB B B •Θ = + Θ +…+ Θ  are 

P th and Q th-degree polynomials, 1, , pφ φ…  , 1, , qθ θ…  , 1, , PΦ … Φ  , and 1, , QΘ … Θ  are 
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coefficients, d  and D  denote the order of ordinary and seasonal differencing, s  denotes the 

length of seasonal period, B is the backward shift operator, p  and q  represent the 

autoregressive and moving average order, respectively. P  and Q  represent the autoregressive 

and moving average order at the length of seasonal period, respectively.   

However, SARIMA is a linear model that deals with traffic time series with temporal correlation 

techniques. It lacks competence to incorporate spatial correlation and deal with any structural 

change in time series which leads to nonlinear problems. It does not consider the dynamics 

between traffic variables.   

• STARIMA   

STARIMA (Space-Time ARIMA) model is a recently developed time series model for traffic 

prediction. The advancement of STARIMA is to incorporate both spatial correlations and 

temporal autocorrelation in one model. It shows a tendency to reflect the spatial dynamics of 

traffic flow in time series models. It was first proposed by Pfeifer and Deutsch (1980). Spatial 

correlations are typically analyzed with the VARMA (vector autoregressive moving average) 

model, which was criticized for having too many parameters. STARIMA is a variant of VARMA 

such that it is refined to drastically reduce the number of parameters by grouping sets of time 

series according to their spatial order, i.e. a function of distance to the location under study. A 

linear combination of grouped time series is nested in the time lags of the ARIMA model.  

STARIMA was introduced for traffic flow forecasting by Kamarianakis and Prastacos (2003), 

and was also investigated most recently by Cheng et al. (2012), Min and Wynter (2011), and Min 

et al. (2010). The specification of the STARIMA model is shown in Eq. (2.19).   

( ) ( )
, , , , , ,

1 0 1 0

(1- ) (1 )
k k

m np q
d h d h

i t k h i t k i t k h i t k

k h k h

B Z W B Z Wφ ε θ ε− −
= = = =

= − + +∑∑ ∑∑     (2.19)    

where   
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,  traffic variable at time  and location  

 is autoregressive order

 is moving average order
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The success of the model is conditional on the construction of the spatial weight matrix. In a 

typical scenario, the spatial weight matrix is assumed to be a constant matrix for the same spatial 

order over time steps (Kamarianakis and Prastacos 2005).   

Cheng et al. (2012) provide insight into determining a spatial weight matrix for its spatial order 

and weights. Cheng et al. (2012) argued that it is not always reliable to use a distance function to 

determine spatial order. An effective spatial order is dynamic such that it becomes larger under a 

free flow traffic state and smaller under a congested traffic state. Taking into account link speed, 

Min and Wynter (2011) construct a set of dynamic spatial weight matrices by using historical 

data where each spatial weight matrix is associated with a time period (time of day, day of 

week). A GSTARIMA (Generalized STARIMA) is a more flexible model proposed to capture 

the dynamics of network process allowing the AR (autoregressive) and MA (moving average) 

parameters to vary per location, but it has N multiple number of parameters of a regular 

STARIMA model for a traffic network with N nodes (Min et al., 2010). It is noteworthy that 

these models are multivariate linear models that cannot deal with nonlinearity in traffic time 

series.   

• Regime Switching   

A three-regime SETAR (self-exciting threshold autoregressive) model is employed for modelling 

and forecasting hourly traffic volume (Liu et al., 2010). The structural change of traffic time 

series is detected with CUSUM (cumulative sum), and the ARIMA-EM (expectation 
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maximization) model is built for forecasting by Cetin and Comert (2006). However, these studies 

focus on univariate traffic time series.  

More recently, a temporal regime switching model is proposed for traffic volume prediction 

(Kamarianakis et al., 2012). Time-based thresholds are predefined and fixed to partition 24 hours 

into five time regimes: morning and afternoon peak periods, off-peak period, first-half and 

second-half night periods. A linear autoregressive model is constructed for each time-based 

regime. Regime switching occurs at fixed times of day. However, traffic demand fluctuation or 

incidents does not occur at precisely the same time each day of the week or at the same locations. 

Fixed temporal thresholds might yield significantly biased predictions. In addition, a Neural 

Network model is used with predetermined uncongested and congested regimes to perform short-

term traffic flow and speed prediction (Dunne and Ghosh, 2012). However, these regime 

switching models for traffic flow prediction have no structural change detection and threshold 

identification mechanism involved.   

2.3 Summary  

In this chapter, we reviewed various methodologies for traffic state estimation and prediction. 

Every method has its own strengths as well as limitations. Comparatively speaking, time series 

models are promising candidates for short term traffic state prediction because they have more 

advantages than other methods. In general, time series models have a parsimonious model 

structure, are well interpretable, and may provide insightful interpretation of traffic dynamics. 

Time series models are able to capture spatial and temporal correlations of traffic flow evolution 

and provide statistical inference about the causal relations. Advanced time series analysis 

techniques can competently handle various challenges of modelling stochastic traffic processes.   
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Chapter 3  
Methodology 

3.1 General design of the proposed statistical model  

In this research, a time-space threshold vector error correction (TS-TVEC) model is proposed for 

short term traffic state prediction to concurrently address multi-state, seasonality, non-

stationarity, temporal and spatial correlations, and dynamics between traffic variables that lead to 

the interaction of multivariate traffic time series. In addition, it is found that an inherent 

connection exists between the error correction model and the transformed fundamental diagrams 

in macroscopic traffic flow theory. Error correction model is a linear model established on 

difference space, whereas, the fundamental relations between traffic variables exhibit piecewise 

linearity when they are transformed to difference space. Meanwhile, dynamics of traffic 

variables can be reflected in difference space. 

The new statistical model (TS-TVEC) is designed based on comprehensive considerations of 

traffic flow characteristics, structure of traffic data, and integration with the fundamental traffic 

theory. The design principles have encompassed many factors including long run relationship of 

traffic variables, multiple traffic states, cointegration of traffic variables, short run dynamics 

between traffic variables, multivariate time series, seasonality, non-stationarity, unknown 

structural change in the time series, and temporal and spatial correlations. Combining all these 

considerations, the newly designed model TS-TVEC has the following capacities and features: 

(1) cointegration technique with an error correction mechanism is employed to account for long 

run equilibrium, short run dynamics, and temporal correlation between multivariate traffic series; 

(2) a threshold regime switching framework is employed to capture multiple traffic states and 

deal with unknown structural change in traffic time series conditional on the threshold vector 

detected; (3) the model provides different adjustment speeds to perform error correction within 

the regime switching framework, thus improving accuracy of prediction; (4) the model is capable 

of capturing both symmetrical deviation from long run traffic equilibrium under free flow traffic 

state and asymmetrical sudden shift under traffic congestion state; (5) spatial correlations are 

incorporated in the piecewise linear error correction model via exogenous terms which take the 

differenced spatial information between the location of prediction and neighborhood sites.    
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3.2 Theoretical rationale  

The new statistical model TS-TVEC is designed to concurrently use the information of multiple 

traffic time series and their dynamics to improve the accuracy of traffic prediction. This section 

elaborates multivariate time series regression theory, method, and modelling technique. The 

relevant concepts include integration, spurious regression, cointegration of multivariate time 

series, error correction model, and threshold regime switching framework. The definition of 

integration is given by Engle and Granger (1987, pp 252) as follows:   

Definition A series with no deterministic component which has a stationary, 

invertible, ARMA representation after differencing d times, is said to be integrated 

of order d, denoted ( )~tx I d .    

3.2.1 Spurious regression and cointegration   

Spurious regression is a pitfall that may appear in the multivariate time series regression when all 

the regressors are not cointegrated. The problem of spurious regression is first pointed out in a 

simulation study by Granger and Newbold (1974). The traditional statistical inferences do not 

hold in spurious regression according to the asymptotic distribution theory in Phillips (1986). For 

instance, let 
1 2 and t ty y  be two independent (1)I  processes that are not cointegrated and 

1 ,   it it ity y ε−= +  where ~ (0,1),  1,  2it WN iε = . Regressing 
1 2 on t ty y  gives the fitted model 

1 2
ˆ ˆ

t t ty y uβ= + . This is a spurious regression and its statistical implications include (1) the 

residual series ˆ
tu is usually autocorrelated and its order of integration is not reduced; (2) the true 

value of the coefficient β  is zero, but the estimated coefficient β̂  does not converge in 

probability to zero, instead it converges in distribution to random variables with a non-

degenerated distribution; (3) let T  denote the sample size. The OLS (ordinary least squares) t  

statistics diverge to ±∞  as T → ∞ resulting in the null hypothesis of a zero coefficient wrongly 

rejected; (4) the coefficient of determination 2R  from the regression converges to unity as 

T → ∞  so that the model appears to fit well even with wrong specifications (Zivot and Wang 

2006).   
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Multivariate regression between (1)I  variables only makes sense when they are cointegrated. 

The concept of cointegration is introduced by Granger (1981) and Granger and Weiss (1983), 

and is precisely defined in Engle and Granger (1987, pp 253) as follows:   

Definition The components of the vector 
tx  are said to be cointegrated of order d, 

b, denoted ( )~ ,tx CI d b , if (i) all components of tx  are ( );I d  (ii) there exists a 

vector ( )0α ≠  so that ~ ( ),   0t tz x I d b bα ′= − > . The vector α  is called the 

cointegrating vector.    

Campbell and Perron (1991) added that if r  linearly independent vectors ( )1, ,i i rα = L  exist,  

tx  is said to be cointegrated with cointegrating rank r .  In other words, the non-stationary time 

series in vector 
tx  are cointegrated if a linear combination of the components has its order of 

integration reduced. In case of 1d = , and 1b = , a linear combination ( )~ 0tz I  is stationary, 

which implies that the components of 
tx  do not drift too far apart.    

3.2.2 Error correction representation   

The relationship between error correction model and cointegration was first pointed out in 

Granger (1981). The theorem showing precisely that cointegrated time series can be represented 

by an error correction model is known as the Granger Representation Theorem and has been 

proven in Engle and Granger (1987), one of the essential papers for which Granger received the 

Nobel Prize in 2003. We only cite the most important part, statement (4), of the Granger 

Representation Theorem for the purpose of the research. A full version of the theorem can be 

found in Engle and Granger (1987, pp 255) for interested readers.   

Granger Representation Theorem: If the components of 1N ×  vector 
tx  are co-

integrated with 1,  1d b= =  and with co-integrating rank r , then:   

Statement (4) There exists an error correction representation with 
t tz xα ′=  that is a 

1r×  vector of stationary random variables:   

1( )(1- )  = -  +   t t tA B B x z ε−Φ     (3.1)   

with  ( )0 NA I=    
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where ( )A B  is th
p -degree polynomials and B  is backshift operator. 

1
z

t −
 are error correction 

term. 
t

ε  are zero mean white noise with standard deviation σ  . However, in order for the 

symbols to be consistent with the convention in our research, let ( ) 11 p

pA B B Bγ γ= − − −L , 

(1- ) t tB x x= ∇  and 
1 1zt tECT− −= , we rewrite Eq. (3.1) in the form of:   

1

1

   
p

t t i t i t

i

x ECT xγ ε− −
=

∇ = −Φ + ∇ +∑     (3.2)   

Eq. (3.2) is a familiar form of the error correction model that is consistent with the convention 

used for our new model development. The Granger Representation Theorem shows that 

cointegration implies the existence of an error correction model (ECM), and vice versa, if 

~ (1)tx I  are generated by an error correction model, and then 
tx  is necessarily cointegrated.   

Reiteration of these definitions and theorem can also be found for interested readers in the 

publications authored by Johansen (1995), Zivot and Wang (2006), Pfaff (2008), and 

Kirchgässner et al. (2013).   

3.3 Inherent connection  

In this research, it is found that (1) macroscopic traffic variables are cointegrated; (2) an inherent 

connection exists between error correction model in statistics and macroscopic traffic flow 

theory through the transformed fundamental diagrams.   

3.3.1 Cointegration between traffic variables  

Multivariate time series are usually cointegrated if they are generated by or share a common 

stochastic process. Although traffic volume, speed and occupancy time series collected from a 

loop detector are three individual time series, they are actually generated by the same stochastic 

process and describe the characteristics of the same traffic flow from three perspectives. 

Therefore, it is natural to see that they are cointegrated and share a common stochastic drift. 

Cointegration tests in our empirical study (Chapter 4) provide us statistical evidence to justify the 

existence of non-spurious regressive relations between traffic variables.  
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3.3.2 Transformed fundamental diagrams and error correction model  

As a counterpart of the traditional Fundamental Diagrams in Fig.1.4 and 1.5, we construct the 

fundamental relationships between the differenced traffic variables as shown in Fig.3.1 and 3.2. 

The value of the difference represents the change of a traffic variable over a time interval. The 

relationships between the changes reflect the dynamic interaction of three traffic variables as 

traffic flow is temporally evolving. It is noteworthy that Fig.3.2 provides us clear evidence 

showing the existence of piecewise linear relationships among differenced traffic variables 

which coincide with the mathematical form of error correction model, because an error 

correction model is a linear regression model that works on differenced variables. Therefore, the 

evidence from Fig.3.2 justifies the appropriateness that we employ the family of error correction 

model to reveal the dynamics between the differenced traffic variables. From Fig.1.5 to Fig.3.2, 

the transformation of the fundamental diagrams from the level traffic variables to the differenced 

traffic variables has revealed a strong inherent connection between the macroscopic traffic flow 

theory and the family of error correction model in statistics. Similar to location 3, the 

fundamental diagrams that are constructed respectively with the level traffic variables and the 

differenced traffic variables for location 1 and 2 can be found in Appendix B. To the best of our 

knowledge, this is the first time that this finding is established and is one of the contributions of 

the research.    

 

Fig. 3.1 3D scatter plot of differenced volume, speed, and occupancy, location 3  
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Fig. 3.2 Fundamental relationships between differenced traffic variables, location 3 

3.4 Time-space vector error correction model    

The error correction model in Eq. (3.2) is expanded to accommodate spatial correlations with 

exogenous terms. The resulting time-space vector error correction model is given by Eq. (3.3) 

which is referred as TS-VEC in this research. The error correction term is given by Eq. (3.4).   
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 1 01, 1 1 0 , 1

2

where        
n

t t k k t

k

ECT x xβ− − − −
=

= −∑        (3.4)   

and 
,sk tx denotes the  ( 0,1, , )

th
k k n= L  traffic variable at the location s  at time t . s  denotes the 

location, s =0 represents the location of prediction; [1, ]s m∈  denotes the neighborhood site 

spatially correlated to the location of prediction; 
0 ,k tx∇  denotes traffic variables in the 1

st
 order 

difference.  and i j  denote time lag. 
1 nφ φL  denote intercepts. 1tECT −  is the error correction 

term defined by Eq. (3.4) that accounts for the cointegration and long run equilibrium of traffic 

variables. 01 0nφ φL  are the coefficients of the error correction term. 
01, 0 ,t i n t ix x− −∇ ∇L  

( 1, 2, , )i p= L  are the p-order autoregressive lag terms which reflect short term dynamics and 

temporal evolution of traffic flow.  γ  measures the short-term effect and immediate response of 

0 ,k tx  to a short term change in lag variable 
01, 0 ,t i n t ix x− −L . The terms 

01, 1, 0 , ,( ) ( )t j s t j n t j sn t jx x x x− − − −− −L  are defined as exogenous spatial terms which represent the 

difference between traffic variables at the location of prediction and its neighborhood site 

1, 2, ,s m= L  for time lag 1,2,j l= L . The coefficients 
s

jπ  measure the spatial correlations 

between the location of prediction and neighborhood sites. 
tε  represent white noise residuals 

with 2( ) 0,   ( ) 0,   Var( )t t s tE Eε ε ε ε σ= = = .    

The spatial correlations are taken into account via exogenous terms that contain the differenced 

traffic time series between the location of prediction and its neighborhood sites. The benefit is 
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that the differenced spatial information is more stationary with less noise. A numerical 

verification is provided in the empirical study, sub-section 4.1.3 differencing between spatial 

time series of chapter 4. In addition, the difference between traffic variables can reflect the 

change of traffic situation at neighborhood sites relative to the location under study. The 

exogenous terms in the model are flexible and elastic to accommodate any number of time lags 

and spatial orders without the need of constructing a spatial weight matrix that changes over 

time. It is much easier to construct spatial correlations in this way than constructing a spatial 

weight matrix in the STARIMA model.    

3.5 Threshold regime switching framework  

A linear model is sufficient to model stationary time series processes. However, non-stationary 

time series or structural breaks that may appear in any order moments of a time series leads to 

nonlinear problems. A threshold regime switching framework provides an approach to solving 

this type of nonlinear problem.  

3.5.1 Prototype of threshold model  

The original threshold model was first proposed by Tong (1978) and was further studied by 

Hansen (1999), and Bai and Perron (1998), among others. The time series between structural 

breaking points can be modeled by a piecewise linear model that is nested in a regime of the 

regime switching framework that is controlled by a threshold mechanism. When the transition 

variable exceeds a threshold value, the regime switching framework can use a different 

piecewise linear model by switching to a different regime. This mechanism involves structural 

change detection coupled with threshold identification. In his original threshold framework, 

Tong adopted the autoregressive model ( )AR p  as a piecewise linear model in each regime 

known as SETAR (self-exciting threshold autoregressive) model that has been widely applied to 

a variety of areas (Tong, 1983, 1990, 2010).  Let 
tY  be a univariate time series. A 

( ), , ,SETAR m p pL  model takes the form   

( ) ( ) ( ) ( ) ( )
0

1 1

,   
pm

j j j j

t t i t i t

j i

Y I d Y eγ β β −
= =

 
= + + 

 
∑ ∑    (3.5)   
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where m  denotes the number of regimes, j  denotes the th
j regime ( )1,2, ,j m= L , the vector γ  

is called the threshold parameter, ( )0 1 1
,  , , ,  

T

m m
γ γ γ γ γ−= L  a linearly ordered subset of the real 

numbers, such that 
0 1 1< <m mγ γ γ γ−−∞ = < < = ∞L  which defines a partition of the real line R. 

d  is called the time delay parameter which may be any strictly positive integer with upper 

bound p , and 
( )j

iβ  denotes the coefficient in the th
j regime where ( )0,1, ,i p= L , and  

( ) ( ) ( )1,
j

t j t d jI d I Yγ γ γ− −= < ≤     

where ( )I •  is the indicator function  

( )
1   if  is true

0   otherwise

a
I a


= 


    

The error 
( )j
te  in Eq. (3.5) is a uniformly square integrable martingale difference sequence, hence 

( )1 2| , ,  0t t t tE e Y Y Y− − =L  and ( )2 2

tE e σ= < ∞ . A ( ), , ,SETAR m p pL  model has m  regimes 

where the th
j  regime occurs when ( ), 1j

tI dγ = . The class ( )1,SETAR p  is the class of linear AR 

model of order p . For analytical reasoning, it is convenient to rewrite Eq. (3.5) in the following 

matrix form:  

( ) ( ) ( ) ( )( )1

1

,   
m

j j jT

t t t t

j

Y I d eγ −
=

= +∑ X β    (3.6)   

where ( )1 1 21     
T

t t t t pY Y Y− − − −= LX  a 1k ×  vector with 1k p= + , and ( ) ( ) ( ) ( )( )0 1=    
T

j j j j

pβ β βLβ  a 

1k ×  coefficient vector.  

A more general class of threshold models may include SETARMA, TARSO, TARSC, and EAR, 

etc. The interested readers may refer to the books or articles authored by Tong (1983, 1980, and 

1975), Tong and Lim (1980), Bartlett (1966), Lawrance and Lewis (1980), etc.  
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3.5.2 Threshold cointegration vector error correction model   

Considering multiple states, non-stationarity, and structural break in traffic time series, we adopt 

threshold regime switching framework. However, in this research, a linear time-space vector 

error correction model is developed for each regime because cointegration exists in traffic time 

series. Hence, based on TS-VEC model and the concept of threshold cointegration, we propose 

the time-space threshold vector error correction model for short term traffic state prediction, 

named as TS-TVEC model. The multiple TS-VEC piecewise linear models are nested in a 

regime switching framework to formulate the TS-TVEC model. The resulting model 

specification is given by Eq. (3.7).   

1 1 1 1
0 1 0, , 0, , 1 1

1 1 1

0,

( )
p l m

t i t i j s t j s t j t t

i j s

t

ECT Y Y Y                    if  ECT

                                                                                                 

Y

ε θ− − − − −
= = =

Φ + Φ + Γ ∇ + Π − + ≤

∇ =

∑ ∑∑

K K L

0 1 0, , 0, , 1 1

1 1 1

( )
p l m

k k k k
t i t i j s t j s t j t k t k

i j s

              

ECT Y Y Y                  if  ECT

                                                                                     

ε θ θ− − − − − −
= = =

Φ + Φ + Γ ∇ + Π − + < ≤∑ ∑∑

L

K K L

1 1 1 1
0 1 0, , 0, , 1

1 1 1

( )
p l m

r r r r
t i t i j s t j s t j t r t

i j s

 

                          

ECT Y Y Y        if  ECTε θ+ + + +
− − − − −

= = =













Φ + Φ + Γ ∇ + Π − + <


∑ ∑∑

L

 (3.7)   

where ( ), 1, ,  s t s t sn tY x x ′= L , s  denotes the location, s =0 represents the location of prediction, 

and other values represent neighborhood sites.  
kθ  is the threshold parameter, the usual TS-VEC 

model parameters 0
kΦ , kΦ , k

iΓ  and ,
k
j sΠ have now the superscript k  referring to the 

thk regime 

when the 
1tECT −  is between the threshold 

1kθ −  and 
kθ .  

1tECT −  as a transition variable indicates 

the deviation from the long run equilibrium. The deviation can be positive or negative where 

asymmetry may occur and jog among regimes. The coefficient kΦ  indicates how the error 

correction is made and the adjustment speed towards the equilibrium. Different regimes have 

different adjustment speeds for error correction. The sign of kΦ  is expected to be opposite to the 

sign of 
1tECT − .  

1( , , ) 'rθ θΘ = L  is the threshold vector that determines the number of regimes 

and tells when regime switching occurs.  
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3.5.3 Capacity of threshold structure   

It is demonstrated in the literature that threshold models have very rich structure to capture many 

frequency-domain phenomena of nonlinear system including limit cycles, synchronization, sub-

harmonics, higher harmonics, jump resonance, time-irreversibility and amplitude-frequency 

dependency (Tong, 1983). The concept of threshold cointegration was introduced to capture 

asymmetric deviation in the case of structural change in time series (Hansen and Seo 2002, 

Stigler and Tortora 2011).   

In the context of traffic time series modelling and forecasting, the structural changes often appear 

in most traffic time series due to abrupt disturbances to traffic flow that may change the stability 

of the data generation process (Cetin and Comert, 2006). When traffic flow is in a free flow state, 

traffic variables fluctuate evenly around the long run equilibrium; when traffic flow is in a 

congestion state, the traffic variables exhibit asymmetrical deviation, such as volume and speed 

appear to abruptly decline from high to low values, whereas, occupancy appears to abruptly 

spike from low to high. Those deviated values may appear to jump from one regime to another 

regime.  

The TS-VEC model is a linear model that performs a symmetrical error adjustment and is good 

for modelling the free flow situation, but lacks the capacity to capture asymmetric deviation in 

congested situation. However, the TS-TVEC model with threshold regime switching framework 

can provide a mechanism for correcting asymmetric deviation with different error adjustment 

speed in a different regime.  

3.6 Model estimation  

The estimation of a threshold regime switching error correction model is to determine the 

number of regimes, time delay parameter, threshold vector, order selection and coefficients. This 

task can be converted to a multilayer optimization problem. The determination of the number of 

regimes is a process of structural change detection coupled with threshold identification. A few 

conventional statistical tests can be used to detect structural change, i.e. the threshold effect. 

These statistical tests include the CUSUM test (Page, 1954) and the Likelihood Ratio (Hansen, 

1999). However, their validity relies on the assumption of (weak) stationarity under the null 
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hypothesis. In the cases where the covariance structure of the time series is varying, i.e., the 

second- and higher-order non-stationarity appear in time series, these conventional tests of a null 

hypothesis may lead to inconsistent and biased testing results. In a recent research, a simple 

bootstrap procedure is proposed and shown to be consistent under no assumption of stationarity 

under the null hypothesis in the temporal dynamics of the time series (Zhou, 2013).  The 

distribution of threshold variable is non-standard and complicated. The estimation of its 

distribution and determination of critical value p  are challenging due to the presence of a 

nuisance parameter that is not identifiable under the null hypothesis. For testing threshold 

effects, the Bootstrap method is suggested for estimating its asymptotic distribution and critical 

value p  (Hansen, 1999). A few methods are proposed for threshold identification such as 

Tong’s method (Tong, 1983, 1990), Genetic Algorithm (Baragona et al., 2004), Least Squares 

(Hansen, 1999) and AIC criteria (Chen et al., 2012), etc.  

Least Squares and grid search techniques (Narzo et al., 2014) are currently employed in our 

research to identify the threshold vector. To estimate a typical SETAR model as defined in 

Eq.(3.6) given ( ), dγ  , the conditional least square (CLS) estimator for ( )j
β  is defined as  

( ) ( ) ( ) ( )( ) ( ) ( )( )
1

ˆ , , ,  
j j jT Td I d I dγ γ γ

−

=β X X X Y   (3.8)  

The residual sum of squared errors for given ( ),dγ  is  

( ) ( ) ( ) ( )( )
2

1

1 1

ˆ, ,  
T m

j jT

T t t t

t j

RSS d Y I dγ γ −
= =

 
= − 

 
∑ ∑ X β    (3.9)   

 and we define the estimator of ( ), dγ   as the value that minimizes ( ),TRSS dγ :  

( ) ( )
,

ˆˆ, arg min  ,  T
d

d RSS d
γ

γ γ=   (3.10)  

The structural estimators evaluated at the estimated threshold values are defined as:  

( ) ( ) ( ) ( )( ) ( ) ( )( )
1

ˆ ˆ ˆˆ ˆ ˆ ˆ, , ,   
j j jT Td I d I dγ γ γ

−

=β X X X Y   (3.11)  

While AIC (the information criterion of Akaike, 1973) or BIC (Akaike, 1978) criterion are 

usually used in most practice for model order selection, they are not designed to minimize the 
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prediction error. Instead, they are designed for selecting a parsimonious version of the model 

with a better goodness of fit. AIC or BIC criterion is robust for statistical inference. However, 

they are not necessarily a guarantee for the chosen model to have good performance of 

prediction, and vice versa.  

As the goal of the research is to perform prediction and the mean squared error (MSE) of 

prediction is the most important indicator that is directly related to prediction, hence, MSE is 

employed as a criterion with cross validation method for order selection. Because the mean 

squared error of prediction depends not only on the white noise variance of the fitted model, but 

also on errors arising from the estimation of the parameters of the model, therefore, choosing a 

model with minimum MSE value of out-of-sample prediction accounts for both goodness of fit 

of the model and its predictive performance.  

The data structure in Eq. (3.7) can be rearranged to be analogous to Eq. (3.6). Hence, the TS-

TVEC model can be estimated in such a way that is similar to aforementioned SETAR 

estimation. The algorithm for TS-TVEC model estimation is summarized as follows. Let 

( )1 1 0, 1 0, 0, 1 1, 1 0, ,1,  E ,   , ( )  ( )
T

t t t t p t t t l m t lCT Y Y Y Y Y YL L− − − − − − − −= ∇ ∇ − −X , where 

( )1 0, 1
T

t tECT Yα α− −= , and ( )0 1 1,1 ,,  ,    ,    
T

p l mL L= Φ Φ Γ Γ Π Πβ , then the TS-TVEC model 

as defined in Eq. (3.7) may alternatively be written in a matrix form as Eq. (3.12).   

( ) ( ) ( ) ( )( )0, 1

1

,   
m

j j jT

t t t t

j

Y I α θ ε−
=

∇ = +∑ X β   (3.12)   

where ( ) ( ) ( )1 -1,
j

t j t jI I ECTα θ θ θ−= < ≤  is the indicator function, α  is cointegrating vector, θ  

denotes threshold variable, and 
( )j

iβ  denotes the coefficient in the th
j regime.  

1. Construct a grid search space on ,low upα α    and ,low upθ θ    based on the linear estimate 

α , and 
1tECT − .  

2. Fix pair value ( ),i k , where lag order 1,2, ,i pL= , and the number of threshold 1,2k = .   

3. For each pair value ( ),α θ  on this grid, calculate  

( ) ( ) ( ) ( )( ) ( ) ( )( )
1

ˆ , , ,  
j j jT TX I X X I Yβ α θ α θ α θ

−

=   and  
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( ) ( ) ( ) ( )( )
2

1

1 1

ˆ, ,  
T m

j jT

T t t t

t j

RSS Y I Xα θ α θ β−
= =

 
= ∇ − 

 
∑ ∑ , respectively.   

4. Find ( ) ( )
,

ˆˆ , arg min  ,TRSS
α θ

α θ α θ=  on this grid that yields the lowest value of TRSS .   

5. Determine model coefficient ( ) ( )ˆ ˆˆ ,
j α θβ as defined in 

( ) ( ) ( ) ( )( ) ( ) ( )( )
1

ˆ ˆ ˆ ˆˆ ˆ ˆ, , ,  
j j jT TI Iα θ α θ α θ

−

=β X X X Y .   

6. For each pair value ( ),i k , use the estimated model at step 5 to perform prediction using 

test data set, and calculate MSE.   

7. Determine ( ),i k  for the best model that yields the lowest value of MSE.   

The threshold regime switching model has not been systematically investigated and applied to 

traffic modelling and forecasting. Most of regime switching models in the literature do not 

involve the process of structural change detection and threshold identification. To the best of our 

knowledge, this is the first time that such a model structure as TS-TVEC is proposed and applied 

to traffic state prediction.    
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Chapter 4  
Testing and evaluation 

The empirical study with true time series data is presented in this chapter. The study includes (1) 

building the TS-TVEC model, a multilayer feed-forward Neural Network, and Support Vector 

Regression model; (2) performing one-step-ahead rolling prediction; (3) comparing the accuracy 

of their predictions to verify the effectiveness and robustness of the TS-TVEC model. The 

Neural Network and Support Vector Regression models are commonly used for nonlinear 

multivariate prediction in the literature. At each of three locations in Fig. 1.1, three pairs of 

traffic time series, i.e. volume vs. speed, volume vs. occupancy, and speed vs. occupancy, are 

used respectively to estimate the models. Those models are then used to perform one-step-ahead 

rolling predictions for the next 48 hours (2 days in a row).   

4.1 TS-TVEC model   

In this section, the statistical tests are performed to verify cointegration and threshold effect 

among traffic time series; TS-TVEC models are estimated and their specifications are presented; 

model order selection, residual check, and differencing technique applied to spatial time series 

are discussed.   

4.1.1 Test cointegration and threshold effect   

The application of TS-TVEC model is based on two hypotheses that need to hold in time series: 

(1) cointegration exists between time series; (2) threshold effect exists or a structural break is 

detected in the time series. Statistical tests are performed to verify the two hypotheses in traffic 

time series.   

The hypothesis of cointegration is tested with the Phillips-Ouliaris cointegration test (Phillips 

and Ouliaris, 1990) and verified by the Johansen cointegration test (eigenvalue & trace) 

(Johansen, 1995). The null hypothesis of no cointegration is rejected at 5% significance by all 

tests. The results of the cointegration test for nine pairs of traffic time series from three locations 

are presented in Tables 4.1, 4.2, and 4.3 respectively.  
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Table 4.1 Phillips-Ouliaris cointegration test  

  

Table 4.2 Johansen cointegration test (eigenvalue)  

  

Table 4.3 Johansen cointegration test (trace)  

  

The hypothesis of threshold effect is tested by the Hansen test and its extension (Hansen, 1999) 

for both univariate and multivariate time series. The threshold cointegration joint effect is tested 

by the Hansen and Seo test (Hansen and Seo, 2002). The results of testing linear vs. threshold 

effect for both univariate and multivariate time series are shown in Tables 4.4 and 4.5 

respectively. The test results for threshold cointegration joint effect are presented in Table 4.6. 

The null hypothesis of linear cointegration is rejected at 5% significance. Asymptotic threshold 

Test Statistic p-value Test Statistic p-value Test Statistic p-value 10% 5% 1%

Pu 272.37 p < 1% 279.84 p < 1% 285.58 p < 1% 27.85 33.71 48.00

Pz 244.92 p < 1% 275.58 p < 1% 257.56 p < 1% 47.59 55.22 71.93

Pu 312.86 p < 1% 284.88 p < 1% 318.84 p < 1% 27.85 33.71 48.00

Pz 381.22 p < 1% 320.40 p < 1% 367.11 p < 1% 47.59 55.22 71.93

Pu 477.53 p < 1% 372.99 p < 1% 345.13 p < 1% 27.85 33.71 48.00

Pz 278.35 p < 1% 257.70 p < 1% 232.37 p < 1% 47.59 55.22 71.93

Phillips-Ouliaris: Cointegration test with H0: no cointegration

Location 1 Location 2 Location 3

Volume vs. Occupancy 

(q-o)

Speed vs. Occupancy 

(v-o)

Critical Values

Volume vs. Speed 

(q-v)

TypePair of Traffic Variables

Test Statistic p-value Test Statistic p-value Test Statistic p-value 10% 5% 1%

r<=1 108.35 p < 1% 127.41 p < 1% 123.47 p < 1% 6.5 8.18 11.65

r=0 229.27 p < 1% 185.94 p < 1% 189.99 p < 1% 12.91 14.9 19.19

r<=1 116.66 p < 1% 119.84 p < 1% 121.56 p < 1% 6.5 8.18 11.65

r=0 267.86 p < 1% 167.49 p < 1% 193.46 p < 1% 12.91 14.9 19.19

r<=1 79.01 p < 1% 94.35 p < 1% 66.76 p < 1% 6.5 8.18 11.65

r=0 209.11 p < 1% 212.22 p < 1% 190.08 p < 1% 12.91 14.9 19.19

Johansen cointegration test (eigenvalue) with H0: no cointegration

Location 1 Location 2 Location 3

Volume vs. Speed 

(q-v)

Volume vs. Occupancy 

(q-o)

Speed vs. Occupancy 

(v-o)

Critical Values
Pair of Traffic Variables Rank

Test Statistic p-value Test Statistic p-value Test Statistic p-value 10% 5% 1%

r<=1 108.35 p < 1% 127.41 p < 1% 123.47 p < 1% 6.5 8.18 11.65

r=0 337.62 p < 1% 313.35 p < 1% 313.47 p < 1% 15.66 17.95 23.52

r<=1 116.66 p < 1% 119.84 p < 1% 121.56 p < 1% 6.5 8.18 11.65

r=0 384.52 p < 1% 287.33 p < 1% 315.02 p < 1% 15.66 17.95 23.52

r<=1 79.01 p < 1% 94.35 p < 1% 66.76 p < 1% 6.5 8.18 11.65

r=0 288.13 p < 1% 306.58 p < 1% 256.84 p < 1% 15.66 17.95 23.52

Location 1

Volume vs. Occupancy 

(q-o)

Speed vs. Occupancy 

(v-o)

Volume vs. Speed 

(q-v)

Location 2 Location 3

Johansen cointegration test (Trace) with H0: no cointegration

Pair of Traffic Variables Rank
Critical Values
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distribution is estimated by the bootstrap method and an example is shown in Fig.4.1. All these 

statistical tests are performed using the package of urca in the statistical software R (Pfaff and 

Stigler, 2013). Results of the threshold cointegration effect test indicate that threshold 

cointegration effect exists in the traffic time series under study. Therefore, the application of the 

TS-TVEC model is appropriate in this circumstance.   

4.1.2 Order selection for the TS-TVEC model  

Usually, AIC or BIC is commonly used to determine the order of a time series model. However, 

a TS-TVEC model is mainly used for prediction purpose. Therefore, MSE is proposed as a 

criterion for order selection. For comparison purpose, AIC, BIC, and MSE are computed 

respectively for each combination of lag and threshold. Table 4.7 shows the details of the AIC, 

BIC, and MSE for the three locations. The minimum values of the AIC, BIC and MSE are 

highlighted in yellow. The selected order p   is highlighted in green. It is interesting to see that 

the choice of the number of lags given by the BIC and MSE criterion is very close most of the 

time in our experiments. It indicates that the MSE method is robust. The choice of order p  from 

AIC criterion is usually too large for prediction.    

 
Fig. 4.1 Asymptotic threshold distribution estimated by bootstrap method   
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Table 4.4 Hansen threshold effect test (univariate)   

 

Table 4.5 Hansen threshold effect test (multivariate)   

 

Table 4.6 Hansen and Seo threshold cointegration test   

 
 

Test Statistic P-value Test Statistic P-value Test Statistic P-value

0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

1vs2 706.79 0.00 28.09 29.12 29.94 523.01 0.00 30.74 31.21 31.60 529.34 0.00 23.92 24.35 24.70

1vs3 1015.73 0.00 57.94 60.23 62.06 667.45 0.00 52.13 52.18 52.23 938.25 0.00 47.81 47.99 48.14

1vs2 311.25 0.00 31.38 33.77 35.68 191.97 0.00 28.69 29.00 29.25 165.22 0.00 23.73 24.25 24.67

1vs3 339.73 0.00 63.72 64.13 64.47 332.01 0.00 55.82 56.73 57.46 204.24 0.00 53.36 54.89 56.12

1vs2 862.19 0.00 27.58 27.91 28.17 257.93 0.00 21.24 21.39 21.51 376.08 0.00 27.70 28.19 28.58

1vs3 1075.85 0.00 52.90 55.04 56.76 338.27 0.00 54.31 54.91 55.39 456.62 0.00 52.51 52.72 52.90

Test Linearity against Threshold: Univariate, Hansen (1999), with Bootstrap Distribution

Linearity against 2 or 3 Regimes

Occupancy

Regime 

Type
Univariate

Location 1 Location 2 Location 3

Bootstrap Critical Values Bootstrap Critical Values Bootstrap Critical Values

Volume

Speed

Test Statistic P-Value Test Statistic P-Value Test Statistic P-Value

0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

1vs2 509.59 0.00 23.99 24.45 24.82 340.92 0.00 15.05 15.73 16.28 340.92 0.00 18.17 18.66 19.05

1vs3 798.36 0.00 47.16 48.43 49.44 479.73 0.00 31.73 31.85 31.95 479.73 0.00 37.89 38.72 39.38

1vs2 536.42 0.00 23.23 23.36 23.46 346.00 0.00 16.53 16.80 17.01 346.00 0.00 25.33 25.99 26.51

1vs3 760.38 0.00 39.06 39.48 39.81 506.59 0.00 41.08 41.66 42.12 506.59 0.00 44.78 45.50 46.07

1vs2 547.74 0.00 28.16 28.34 28.48 298.66 0.00 28.27 29.32 30.15 298.66 0.00 16.89 16.99 17.07

1vs3 610.61 0.00 53.25 53.96 54.53 356.65 0.00 31.66 31.92 32.14 356.65 0.00 42.53 44.08 45.32

Location 1 Location 2

Test Linearity against Threshold: Multivariate Extension, Hansen (1999), with Bootstrap Distribution

Linear VAR against 2 or 3 Regime VAR

Speed vs. Occupancy 

(v-o)

Location 3

Bootstrap Critical Values Bootstrap Critical Values Bootstrap Critical Values

Volume vs. Occupancy 

(q-o)

Volume vs. Speed 

(q-v)

 Multivariate
Regime 

Type

0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

Volume vs. Speed 

(q-v)
62.70 0.00 11.17 12.63 16.02 45.15 0.00 12.34 13.48 16.20 52.18 0.00 11.94 13.48 16.12

Volume vs. Occupancy 

(q-o)
74.59 0.00 9.02 10.64 12.98 50.42 0.00 9.53 10.72 14.13 37.71 0.00 9.28 10.69 13.70

Speed vs. Occupancy 

(v-o)
101.15 0.00 16.29 18.00 22.83 27.60 0.00 15.09 16.60 20.32 80.87 0.00 15.83 17.35 20.81

Location 1

 Multivariate

Test of Linear Cointegration versus Threshold Cointegration of Hansen and Seo (2002) with Bootstrap Distribution

Number of Bootstrap Replications:  1000

Location 2 Location 3

Test Statistic P-Value
Bootstrap Critical Values

Test Statistic P-Value
Bootstrap Critical Values

Test Statistic P-Value
Bootstrap Critical Values
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Table 4.7 Model order selection based on AIC, BIC, and MSE criterion   

  
 

Model

Threshold #

Lag Order AIC BIC MSE(p) AIC BIC MSE(p) AIC BIC MSE(p) AIC BIC MSE(p) AIC BIC MSE(p) AIC BIC MSE(p)

p = 1 7539.47 7710.42 406929.40 7404.98 7663.50 878253.50 6490.51 6661.46 434432.50 6360.22 6618.73 1568832.00 2446.98 2617.93 873.73 2403.73 2662.25 857.79

p = 2 7522.98 7727.19 462216.20 7383.40 7691.80 1220558.00 6446.78 6650.99 464982.50 6330.29 6638.69 1676715.00 2418.52 2622.73 950.28 2380.21 2688.61 1107.26

p = 3 7504.04 7741.47 591770.20 7368.74 7726.96 1338586.00 6413.64 6651.07 906361.20 6316.84 6675.07 1355085.00 2392.24 2629.67 1079.76 2274.75 2632.98 1497.12

p = 4 7479.27 7749.88 652591.90 7317.66 7725.67 2706680.00 6373.66 6644.27 910494.80 6308.50 6716.50 1655299.00 2362.45 2633.07 1065.09 2245.36 2653.36 2238.09

p = 5 7464.80 7768.57 1228177.00 7304.38 7762.11 1989160.00 6355.12 6658.89 1731674.00 6291.28 6749.02 2774018.00 2349.84 2653.61 858.22 2232.98 2690.71 3110.55

p = 6 7453.19 7790.08 1294465.00 7284.51 7791.92 2703999.00 6347.30 6684.19 2161066.00 6283.02 6790.43 1048825.00 2336.87 2673.76 6445.87 2194.79 2702.20 6085.33

p = 7 7347.81 7717.78 1679181.00 7247.72 7804.76 1725764.00 6302.39 6672.36 1819287.00 6226.57 6783.60 1908345.00 2334.55 2704.53 2312.40 2185.38 2742.42 7921.58

p = 8 7332.84 7735.86 2723634.00 7237.58 7844.19 2560302.00 6281.80 6684.82 2693122.00 6196.31 6802.92 2819964.00 2328.54 2731.57 2128.03 2117.49 2724.10 2688.68

p = 9 7315.56 7751.60 6890541.00 7235.66 7891.79 4217225.00 6275.16 6711.19 545132979.00 6194.94 6851.07 2784259.00 2315.33 2751.37 1618.33 2091.59 2747.72 1470263.00

p = 10 7375.83 7844.85 1153613.00 7199.70 7905.30 3915630.00 6292.50 6761.52 2506014.00 6168.16 6873.76 2505531.00 2310.37 2779.39 1448.73 2062.99 2768.59 50672.98

Lag Order AIC BIC MSE(p) AIC BIC MSE(p) AIC BIC MSE(p) AIC BIC MSE(p) AIC BIC MSE(p) AIC BIC MSE(p)

p = 1 8049.72 8220.67 546421.80 8035.74 8294.26 559438.10 6803.56 6974.51 458312.30 6784.59 7043.11 807054.90 3245.20 3416.15 1298.31 3211.84 3470.35 2373.15

p = 2 8031.37 8235.58 656624.80 8024.27 8332.67 522058.00 6783.90 6988.11 815202.40 6755.54 7063.94 845185.80 3236.25 3440.46 1363.48 3198.38 3506.78 2499.75

p = 3 8014.01 8251.44 641282.70 7996.43 8354.65 508418.80 6771.94 7009.37 754915.10 6753.39 7111.61 975177.10 3237.25 3474.68 1321.95 3207.95 3566.18 2391.65

p = 4 8007.10 8277.72 623179.10 7984.97 8392.98 660015.00 6764.95 7035.57 954285.70 6746.24 7154.24 909110.50 3229.22 3499.84 1270.05 3199.61 3607.61 2708.79

p = 5 8000.60 8304.36 671788.70 7967.57 8425.30 727666.90 6761.82 7065.59 915733.90 6764.60 7222.33 785773.10 3231.70 3535.47 2001.79 3202.71 3660.45 2782.66

p = 6 7949.35 8286.24 451051.00 7938.33 8445.74 466458.60 6744.08 7080.96 484261.60 6731.14 7238.55 497553.70 3223.80 3560.68 1421.79 3196.09 3703.50 3060.82

p = 7 7937.23 8307.20 451185.60 7932.07 8489.11 489677.80 6728.23 7098.20 521460.70 6707.60 7264.63 547806.80 3215.60 3585.57 1491.23 3171.43 3728.46 24770.29

p = 8 7924.42 8327.44 462855.40 7914.66 8521.27 502433.40 6732.95 7135.97 1784199.00 6717.00 7323.61 1505483.00 3210.17 3613.19 1886.34 3154.71 3761.32 3983.89

p = 9 7931.34 8367.38 899177.70 7881.76 8537.90 2051793.00 6722.22 7158.25 3355508.00 6691.49 7347.62 2496301.00 3213.29 3649.33 2094.87 3148.52 3804.65 49828.79

p = 10 7925.24 8394.26 747903.00 7891.26 8596.86 1051353.00 6719.04 7188.06 3279767.00 6693.83 7399.43 2535664.00 3219.08 3688.09 8330.12 3154.61 3860.22 20017.21

Lag Order AIC BIC MSE(p) AIC BIC MSE(p) AIC BIC MSE(p) AIC BIC MSE(p) AIC BIC MSE(p) AIC BIC MSE(p)

p = 1 7819.04 7989.99 323904.10 7758.28 8016.80 346550.80 6259.64 6430.59 376989.20 6209.73 6468.25 391255.90 2466.48 2637.43 221.87 2457.19 2715.71 227.69

p = 2 7812.34 8016.55 328810.80 7814.39 8122.78 609175.30 6243.67 6447.87 373933.20 6190.72 6499.12 386174.70 2442.84 2647.05 206.59 2427.65 2736.04 175.83

p = 3 7789.25 8026.68 330624.50 7789.75 8147.98 721817.20 6223.81 6461.24 375019.50 6194.03 6552.25 546219.20 2406.05 2643.48 241.13 2382.56 2740.78 263.89

p = 4 7771.88 8042.50 374564.10 7786.24 8194.24 658783.40 6174.51 6445.13 414492.90 6144.58 6552.58 434772.30 2401.94 2672.55 248.12 2379.86 2787.87 273.12

p = 5 7755.76 8059.52 430052.70 7751.41 8209.14 808389.30 6188.14 6491.90 494755.60 6154.23 6611.96 471317.50 2400.72 2704.49 241.21 2373.76 2831.49 245.14

p = 6 7740.49 8077.38 409979.80 7751.80 8259.21 566826.40 6172.94 6509.83 503652.50 6146.14 6653.55 2249988.00 2386.77 2723.66 239.62 2363.82 2871.23 246.57

p = 7 7725.30 8095.27 536348.90 7715.85 8272.89 469323.30 6149.92 6519.89 569097.80 6144.22 6701.25 588963.20 2384.08 2754.06 199.06 2341.92 2898.96 200.94

p = 8 7720.62 8123.64 553288.30 7714.19 8320.79 799360.10 6143.32 6546.34 658985.10 6073.21 6679.82 678934.90 2384.85 2787.88 197.39 2339.46 2946.07 236.02

p = 9 7714.37 8150.41 569116.30 7708.71 8364.84 676420.60 6139.41 6575.45 761688.30 6074.58 6730.71 1087431.00 2378.13 2814.17 195.78 2324.82 2980.95 280.77

p = 10 7703.84 8172.86 554019.60 7702.46 8408.07 971224.40 6135.03 6604.05 727154.10 6082.87 6788.47 1001785.00 2380.05 2849.06 192.79 2320.34 3025.94 577.10
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With the cross validation method, a TS-TVEC model with minimum MSE value of out-of-

sample prediction is chosen. According to the simplistic and parsimonious principle, the simpler 

model structure prevails if MSE values are the same.  

4.1.3 Differencing between spatial time series   

In the literature, differencing is a means of achieving stationarity for time series that is non-

stationary. Similarly, this technique is applicable between two non-stationary time series that are 

spatially close enough to share the same stochastic drift. Our study shows that a time series 

resulted from the difference between two original time series has less degree of non-stationarity 

and smaller variance. It is equivalent to the case where a cointegrating vector is ( )1, 1β ′= − . The 

essence of differencing between two time series is to cancel out their deterministic and/or 

stochastic trend.   

Four statistical tests are employed to verify the degree of non-stationarity of the time series 

before and after differencing. These statistical tests include the Augmented Dickey-Fuller (ADF), 

DF-GLS, KPSS, and Zivot-Andrews unit root test. The difference is taken between the time 

series from the location of prediction and its adjacent upstream and downstream sites.  

Tables 4.9, 4.10, 4.11, and 4.12 respectively show the results of four unit root tests. The results 

of all tests show that the degree of non-stationarity in the differenced time series is reduced 

according to the moving direction of p -value in contrast to the original time series. Table 4.13 

shows that the variance of the differenced time series is much lower than the original time series. 

All these results indicate that the spatially differenced time series between the location of 

prediction and its neighborhood sites become more stationary with less noise. In this research, 

one-lag spatial time series from upstream and downstream sites are used for the exogenous term 

in the model, i.e. 1l = , and 2m =  are specified in Eq. (3.7). The legend used in Tables 4.9, 4.10, 

4.11, 4.12, and 4.13 is defined in Table 4.8.  

4.1.4 Model specification   

Table 4.14 shows two model specification exemplars from nine estimated TS-TVEC models. 

The error correction term is denoted as 
1tECT −  in the tables. Model specifications include the 
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coefficient estimate, its standard error, t -statistic, and p -value. The significance level of 

coefficients is indicated by the number of stars in the legend as follows: *** [0, 0.001], ** 

[0.001, 0.01], * [0.01, 0.05]. The mathematical forms for the estimated TS-TVEC models in 

Table 4.14 are presented in Eq. (4.1), (4.2), (4.3), and (4.4). The estimated threshold is 50.78θ =  

for volume vs. speed model, and 498.9θ =  for volume vs. occupancy model.  The non-spurious 

equilibrium, Eq. (3.4), can be verified by the results of cointegration tests in Tables 4.1, 4.2 and 

4.3. It can also be justified by the negative sign of the error correction term ( )1tECT −  coefficient 

in model specifications in Table 4.14.    

4.1.5 Check residuals   

The residual series from each model is verified to be white noise by the Ljung-Box test available 

in the package of FitAR in the R software (McLeod and Zhang, 2008). Results of the Ljung-Box 

test for all 18 residual series from 9 TS-TVEC models are shown in Table 4.15. The p -values 

are all greater than 0.05. Therefore, the null hypothesis of independence cannot be rejected at 5% 

significance, which indicates that autocorrelations in the time series are well explained by 

adequate lag terms. Fig.4.2 shows an example of a standardized residual plot, autocorrelograms 

and p -values of the Ljung-Box statistics from ~q v  model at location 3 to verify that residual 

series is a white noise.   

Table 4.8 Legend used in Tables 4.9, 4.10, 4.11, 4.12 and 4.13  

 

 

Legend:

upvol : upstream volume

vol : volume at location of prediction

downvol : downstream volume

vol - upvol : differenced series between  volume at location of prediction and upstream volume

downvol - vol : differenced series between  downstream volume and volume at location of prediction

upspd : upstream speed

spd : speed at location of prediction

downspd : downstream speed

spd - upspd : differenced series between speed at location of prediction and upstream speed

downspd - spd : differenced series between  downstream speed and speed at location of prediction

upocp : upstream occupancy

ocp : occupancy at location of prediction

downocp : downstream occupancy

ocp - upocp : differenced series between  occupancy at location of prediction and upstream occupancy

downocp - ocp : differenced series between  downstream occupancy and occupancy at location of prediction
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Table 4.9 Augmented Dickey-Fuller (ADF) unit root test   

 

 

Table 4.10 DF-GLS unit root test   

 

 

Traffic Series

ADF 

Test Statistic
p-value

ADF 

Test Statistic
p-value

ADF 

Test Statistic
p-value

upvol -0.3409 p > 10% -0.4244 p > 10% -0.0599 p > 10%

vol -0.3495 p > 10% -0.1751 p > 10% -0.0985 p > 10%

downvol -0.2967 p > 10% -0.0633 p > 10% -0.2658 p > 10%

vol - upvol -1.8341 5% < p < 10% 0.0498 p > 10% -0.5549 p > 10%

downvol - vol -0.5747 p > 10% -2.3021 1% < p < 5% -0.6237 p > 10%

upspd 0.2899 p > 10% 0.1038 p > 10% 0.3505 p > 10%

spd -0.0962 p > 10% 0.1628 p > 10% 0.3826 p > 10%

downspd 0.2284 p > 10% 0.3569 p > 10% 0.3106 p > 10%

spd - upspd -0.6371 p > 10% -0.5366 p > 10% -0.5800 p > 10%

downspd - spd -1.6825 5% < p < 10% -2.1077 1% < p < 5% -3.1298 p < 1%

upocp 0.1860 p > 10% -1.0786 p > 10% -0.5572 p > 10%

ocp -0.0434 p > 10% -1.2046 p > 10% -1.0247 p > 10%

downocp -0.1329 p > 10% -1.0579 p > 10% -1.0675 p > 10%

ocp - upocp -2.4576 1% < p < 5% -12.8627 p < 1% -1.3016 p > 10%

downocp - ocp -0.5541 p > 10% -7.6040 p < 1% -1.2301 p > 10%

Location 1 Location 2 Location 3

Augmented Dickey-Fuller (ADF) Test, H0:  unit roots, non-stationary

Critical values (cv) for a significance level of: 1% cv = -2.58,   5% cv = -1.95,  10% cv = -1.62

Traffic Series

DF-GLS

Test Statistic
p-value

DF-GLS

Test Statistic
p-value

DF-GLS

Test Statistic
p-value

upvol -0.4774 p > 10% -0.554 p > 10% -0.201 p > 10%

vol -0.4936 p > 10% -0.4241 p > 10% -0.2335 p > 10%

downvol -0.4328 p > 10% -0.2842 p > 10% 0.2573 p > 10%

vol - upvol -0.4402 p > 10% -0.2713 p > 10% -0.2545 p > 10%

downvol - vol -0.7054 p > 10% -0.2121 p > 10% -1.001 p > 10%

upspd 0.5864 p > 10% -0.3908 p > 10% -0.7209 p > 10%

spd -0.4892 p > 10% -0.5413 p > 10% -0.8017 p > 10%

downspd -0.4667 p > 10% -0.6267 p > 10% -0.471 p > 10%

spd - upspd -1.8736 5% < p < 10% 0.475 p > 10% -1.4004 p > 10%

downspd - spd -0.9843 p > 10% -0.2896 p > 10% -1.6018 p > 10%

upocp 0.0669 p > 10% -0.4362 p > 10% -0.67 p > 10%

ocp -0.1867 p > 10% -0.48 p > 10% -0.6446 p > 10%

downocp -0.2874 p > 10% -0.9892 p > 10% -0.3093 p > 10%

ocp - upocp -0.9441 p > 10% -0.5029 p > 10% -0.9098 p > 10%

downocp - ocp -0.9569 p > 10% -0.0832 p > 10% -0.2539 p > 10%

Location 1 Location 2 Location 3

Elliot, Rothenberg and Stock (DF-GLS) Test, H0: unit roots, non-stationary

Critical values (cv) for a significance level of:  1% cv =  -2.57,   5% cv =  -1.94,  10% cv =  -1.62
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Table 4.11 KPSS unit root test   

 
 

Table 4.12 Zivot-Andrews unit root test   

 
 

Traffic Series

KPSS

Test Statistic
p-value

KPSS

Test Statistic
p-value

KPSS

Test Statistic
p-value

upvol 0.2429 p < 1% 0.1977 1% < p < 2.5% 0.2189 p < 1%

vol 0.2436 p < 1% 0.1853 1% < p < 2.5% 0.2197 p < 1%

downvol 0.2402 p < 1% 0.1791 1% < p < 2.5% 0.1762 1% < p < 2.5%

vol - upvol 0.1484 2.5% < p < 5% 0.1752 2.5% < p < 5% 0.2 1% < p < 2.5%

downvol - vol 0.2461 p < 1% 0.1504 2.5% < p < 5% 0.1941 1% < p < 2.5%

upspd 0.2323 p < 1% 0.1615 2.5% < p < 5% 0.2509 p < 1%

spd 0.2718 p < 1% 0.175 2.5% < p < 5% 0.2267 p < 1%

downspd 0.2226 p < 1% 0.2199 p < 1% 0.1966 1% < p < 2.5%

spd - upspd 0.1157 p > 10% 0.1092 p > 10% 0.1809 1% < p < 2.5%

downspd - spd 0.0903 p < 1% 0.1018 p > 10% 0.0859 p > 10%

upocp 0.2772 p < 1% 0.1534 2.5% < p < 5% 0.2659 p < 1%

ocp 0.2458 p < 1% 0.1772 1% < p < 2.5% 0.2605 p < 1%

downocp 0.2277 p < 1% 0.2452 p < 1% 0.2337 p < 1%

ocp - upocp 0.1483 2.5% < p < 5% 0.1063 p > 10% 0.1404 5% < p < 10%

downocp - ocp 0.0941 p < 1% 0.1211 5% < p < 10% 0.0999 p > 10%

Location 1 Location 2 Location 3

KPSS Unit Root Test H0: stationary 

Critical values (cv) for a significance level of: 10% cv = 0.119,   5% cv = 0.146,  2.5% cv = 0.176,  1% cv = 0.216

Traffic Series

Zivot-Andrews

Test Statistic
p-value

Zivot-Andrews

Test Statistic
p-value

Zivot-Andrews

Test Statistic
p-value

upvol -2.7905 p >10% -3.5443 p >10% -3.5287 p >10%

vol -2.8991 p >10% -3.6017 p >10% -3.58 p >10%

downvol -2.8962 p >10% -4.2777 p >10% -2.8799 p >10%

vol - upvol -3.5765 p >10% -3.3989 p >10% -2.9242 p >10%

downvol - vol -2.8136 p >10% -3.0726 p >10% -2.936 p >10%

upspd -4.1702 p >10% -3.72 p >10% -2.5345 p >10%

spd -4.0613 p >10% -3.6495 p >10% -4.0012 p >10%

downspd -3.9653 p >10% -3.7282 p >10% -4.2625 p >10%

spd - upspd -5.4957 1% < p < 5% -4.4323 p >10% -5.8844 p < 1%

downspd - spd -4.431 p >10% -4.4719 p >10% -2.8591 p >10%

upocp -4.3618 p >10% -3.8215 p >10% -4.7792 p >10%

ocp -3.2978 p >10% -4.3414 p >10% -4.4776 p >10%

downocp -2.505 p >10% -3.7395 p >10% -4.6391 p >10%

ocp - upocp -4.7359 p >10% -4.4035 p >10% -4.3937 p >10%

downocp - ocp -5.7881 p < 1% -5.5064 1% < p < 5% -2.3707 p >10%

Zivot-Andrews Unit Root Test, H0: unit roots in the case of a structural break

Critical values (cv) for a significance level of: 1% cv = -5.57,   5% cv = -5.08,  10% cv = -4.82  

Location 1 Location 2 Location 3
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Table 4.13 Comparison of variance   

  

The mathematical form for volume vs. speed model in Table 4.14, the estimated threshold 

50.78θ = .   

-1 -1 -1

-1 -1 1 -1

-1 -1 1 -1
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0.656 _ 43.323 _ +  ,     50.78
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 (4.2)  

The mathematical form for volume vs. occupancy model in Table 4.14, the estimated threshold 

498.9θ = .   

-1 -1 -1

-1 -1 1 -1

-1 -1

-1 -1 1 -

0.364 25.478 0.340 _
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686.040 0.656 0.306
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 (4.4)  

 

Location 1 Location 2 Location 3 Location 1 Location 2 Location 3 Location 1 Location 2 Location 3

upstream 6267967.00 1155107.00 2990877.00 204.21 722.81 345.48 27.64 76.87 31.14

at loc of pred 6320818.00 2427829.00 4708497.00 397.35 780.82 361.42 52.69 72.92 27.62

downstream 4795278.00 2352378.00 2477220.00 408.08 450.93 255.73 59.72 47.11 27.62

loc of pred - upstream 10212.91 240334.90 282030.00 85.30 26.31 35.69 8.52 2.56 1.68

downstream - loc of pred 148062.20 53790.95 437213.90 44.75 66.77 75.40 4.75 19.05 3.36

Occupancy

Variance

Traffic Series Volume Speed
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Table 4.14 Specification of estimated TS-TVEC Models (2 examples)   

 

 

Legend: significant  level (p-value) of the coefficient Location 3

*** [0, 0.001] Volume vs. Occupancy

** [0.001, 0.01] Regime-1

* [0.01, 0.05] Variable vol occ vol occ vol occ

Location 3 ECT -0.364 *** -0.002 ** 0.07 0.00 -5.22 -3.26 0.0000 0.0012

Volume vs. Speed Const 12.262  0.003  15.87 0.10 0.77 0.03 0.4403 0.9743

Regime-1 vol(t-1) 0.095  -0.001 * 0.06 0.00 1.64 -2.48 0.1021 0.0136

Variable vol spd vol spd vol spd occ(t-1) 25.478 ** -0.138 * 8.32 0.05 3.06 -2.52 0.0023 0.0122

ECT -0.287 * 0.006  0.11 0.00 -2.52 1.48 0.0121 0.1400 vol(t-2) 0.016  0.000  0.05 0.00 0.31 -0.23 0.7574 0.8167

Const -4.667  -0.928  25.42 0.91 -0.18 -1.02 0.8544 0.3097 occ(t-2) 5.457  -0.203 *** 7.71 0.05 0.71 -3.98 0.4792 0.0001

vol(t-1) 0.096  0.007 ** 0.07 0.00 1.40 2.84 0.1616 0.0048 i_upvol 0.340 * 0.003 ** 0.13 0.00 2.52 3.02 0.0120 0.0026

spd(t-1) -9.188 *** -0.351 *** 1.97 0.07 -4.67 -4.97 0.0000 0.0000 i_upspd -4.716  0.065 * 3.93 0.03 -1.20 2.48 0.2307 0.0134

i_upvol 0.289 -0.012 0.17 0.01 1.75 -1.94 0.0809 0.0527 i_upocc -29.424  0.234 . 20.75 0.14 -1.42 1.71 0.1568 0.0886

i_upspd -8.902 -0.798 *** 4.82 0.17 -1.85 -4.61 0.0656 0.0000 down_ivol 0.394 *** -0.001  0.12 0.00 3.41 -0.99 0.0007 0.3246

i_upocc -51.856 * -3.303 *** 26.35 0.95 -1.97 -3.49 0.0496 0.0005 down_ispd -1.425  0.032  3.40 0.02 -0.42 1.42 0.6758 0.1556

down_ivol 0.656 *** 0.009  0.16 0.01 4.19 1.55 0.0000 0.1227 down_iocc -33.923 * 0.168  16.48 0.11 -2.06 1.54 0.0402 0.1232

down_ispd -4.595  0.099  4.67 0.17 -0.98 0.59 0.3252 0.5527

down_iocc -43.323 * 0.535  20.91 0.75 -2.07 0.71 0.0388 0.4765 Regime-2

Variable vol occ vol occ vol occ

Regime-2 ECT 0.656 * -0.006 ** 0.32 0.00 2.03 -2.93 0.0428 0.0036

Variable vol spd vol spd vol spd Const -686.040 ** 3.622 * 231.49 1.53 -2.96 2.37 0.0032 0.0183

ECT -0.502 *** 0.008 0.12 0.00 -4.15 1.83 0.0000 0.0677 vol(t-1) -0.306 * 0.001  0.16 0.00 -1.97 0.49 0.0494 0.6246

Const 43.496  0.489  36.89 1.32 1.18 0.37 0.2389 0.7122 occ(t-1) 20.584  -0.530 *** 22.90 0.15 0.90 -3.50 0.3692 0.0005

vol(t-1) 0.078  -0.001  0.08 0.00 0.99 -0.48 0.3236 0.6282 vol(t-2) 0.041  -0.001  0.16 0.00 0.26 -1.38 0.7985 0.1696

spd(t-1) -2.107  -0.008  2.00 0.07 -1.05 -0.11 0.2927 0.9115 occ(t-2) 32.317  -0.341  34.65 0.23 0.93 -1.49 0.3514 0.1366

i_upvol 0.241  -0.014 * 0.18 0.01 1.36 -2.14 0.1750 0.0333 i_upvol 0.200  0.002  0.32 0.00 0.63 1.15 0.5321 0.2506

i_upspd -5.134  -0.768 *** 5.03 0.18 -1.02 -4.25 0.3084 0.0000 i_upspd -6.163  -0.016  11.64 0.08 -0.53 -0.21 0.5968 0.8356

i_upocc -43.767 -2.341 ** 23.61 0.85 -1.85 -2.76 0.0644 0.0060 i_upocc -121.500 -0.138  65.08 0.43 -1.87 -0.32 0.0625 0.7483

down_ivol 0.164  -0.007  0.16 0.01 1.00 -1.13 0.3193 0.2607 down_ivol 0.288  -0.001  0.32 0.00 0.91 -0.61 0.3614 0.5451

down_ispd -4.284  -0.121  4.59 0.16 -0.93 -0.74 0.3511 0.4612 down_ispd -28.870 ** 0.098  10.79 0.07 -2.68 1.38 0.0077 0.1694

down_iocc -63.847 ** -0.798  20.64 0.74 -3.09 -1.08 0.0021 0.2819 down_iocc -98.077 * 0.462  44.39 0.29 -2.21 1.57 0.0276 0.1163

coefficients Std. Error t-value Pr(>|t|)

vol occ

coefficients Std. Error t-value Pr(>|t|)

vol occ

coefficients Std. Error t-value Pr(>|t|)

vol spd

t-value Pr(>|t|)

vol spd

coefficients Std. Error
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Table 4.15 Ljung-Box Test for Residual series   

 

 

 

Fig. 4.2 Residuals, autocorrelogram, and p -values of Ljung-Box, Location 3  

4.2 MLP Neural Network    

Multilayer Perceptron (MLP) Neural Network is a class of commonly used feed-forward Neural 

Network architecture with full connection between neurons. Fig.4.3 shows a typical MLP Neural 

Network architecture used in the study. The MLP Neural Network is chosen among others to 

Location 1 Location 2 Location 3

p-value p-value p-value

vol 0.06 0.82 0.33

spd 0.08 0.52 0.05

vol 0.58 0.63 0.54

occ 0.27 0.21 0.20

spd 0.05 0.56 0.93

occ 0.13 0.14 0.39

Volume vs. Occupancy

Speed vs. Occupancy

Residuals 

from Equation
TVEC Model

Ljung-Box test White Noise for Residuals 

H0: independence
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comparatively assess the performance of the TS-TVEC model because it has been proved that 

multilayer feed-forward networks are a class of universal approximators that are capable of 

approximating any measurable function to any desired degree of accuracy. Details will be 

discussed in the following subsection of determining the number of hidden layers.   

 
Fig. 4.3 MLP Feed Forward Neural Network Architecture (Beck, 2014)   

The Neural Network architecture exhibited in Fig.4.3 approximates a time series model for 

prediction of traffic volume and speed using the sliding window technique for its input layer, 

where p  denotes the number of lags of a sliding window, the nodes I7 – I12 represent 

exogenous spatial information from upstream and downstream neighborhood locations including 

volume, speed, and occupancy with one time lag. Nodes H1 – H9 represent neurons in the 

hidden layer. B1 and B2 represent the bias term for each neuron in the hidden and output layers.  

Functionally, a MLP model can be expressed by Eq. (4.1) which is equivalent to a nonlinear 

autoregressive model.   
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where 
0

, k ty  represents a traffic variable in the output layer, k  denotes the number of traffic 

variables in the vector for prediction,  and p r  denote the number of time lags, m  denotes the 

number of neighborhood sites correlated to the site under study, q  denotes the number of traffic 

variables considered in spatial correlation (commonly equals 3),  s  denotes the location, s =0 

represents the location under study, the product of ( )( )p k r m k∗ + ∗ ∗  equals the number of 

input nodes, and n  is the number of nodes in the hidden layer. f  is a sigmoid transfer function 

such as the logistic 1
( )

1 exp( )
f x

x
=

+ −
 ,  

,  h kφ  is a vector of weights from the hidden to output nodes 

and 1, hθΛ  and 2, hθΛ  are weights from the input to the hidden nodes. 
0,  kφ  and 

0, hθ  denote the bias 

terms equivalent to the intercept term in a linear model. Most forecasting problems usually 

employ a linear function between the hidden and output layers as shown in Eq. (4.1).   

As there is no well-defined consensus guidance available in the literature for Neural Network 

specifications, we tried our best to follow some theoretical guidance in the literature as discussed 

next and use cross validation and early stopping techniques to construct the Neural Network.   

4.2.1 Input layer and output layer  

The sliding window technique is used to design the input layer of the MLP network in order to 

deal with time series data. The input layer includes both endogenous lag terms and exogenous 

terms. The lag terms are equivalent to the autoregressive part of the corresponding TS-TVEC 

model with order p , and the exogenous terms contain the same spatial information as the TS-

TVEC model. The output layer contains the number of neurons equivalent to the number of 

traffic variables under prediction.    

4.2.2 The number of hidden layers   

In theory, the MLP feed-forward Neural Network only needs a single hidden layer that is 

sufficient to approximate a nonlinear autoregressive model such as Eq. (4.1) in the context of this 

research. Kolmogorov (1957) proved the following theorem that becomes a theoretical basis of 

Eq. (4.1) in this regard.   
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Theorem  For any integer 2n ≥ there are continuous real functions ( ),p q xψ  on 

the closed unit interval  [ ]1 0;1E =  such that each continuous real function 

1( , , )nf x xL  on the n dimensional− unit cube nE  is representable as  

( )
2 1

1

1 1

( , , )  
q n n

pq

n q p

q p

f x x xχ ψ
= +

= =

 
=  

 
∑ ∑L   (4.6)   

where ( )q yχ  are continuous real functions 

Cybenko (1989) proved that a single hidden layer MLP feed-forward Neural Network can 

approximate any bounded continuous and multivariate function with arbitrary precision. Hornik 

et al. (1989) also rigorously proved that the standard multilayer feed-forward network with as 

few as one hidden layer is capable of approximating any measurable function to any desired 

degree of accuracy such that multilayer feed-forward networks are a class of universal 

approximators. Therefore, one hidden layer is employed for our final architecture of MLP in the 

sense that networks with more than one hidden layer can be converted to an equivalent network 

with just one hidden layer for the purpose of approximating a nonlinear Autoregressive model.   

4.2.3 Hidden layer neurons and training iterations    

The cross validation technique is commonly used to determine the number of neurons in the 

hidden layer. According to a popular forum of Neural Network, Neural Network FAQ, (Sarle, 

1997), an intelligent choice of the number of hidden neurons depends on whether the analyst is 

using early stopping or some other form of regularization. In our experiments, we used the cross 

validation technique with an early stopping policy to find the near optimal number of neurons in 

the hidden layer and the maximum number of training iterations for weight matrix optimization.  

The technique of cross validation and early stopping policy requires partitioning the data set into 

three complementary subsets including training, validation, and testing sets. The training set is 

used for performing model estimation with different numbers of neurons in the hidden layer. A 

validation set is used to estimate the generalization error as the iterative training proceeds. The 

generalization error is periodically measured with the mean squared error. Early stopping 

prevents the network from overfitting by monitoring the generalization error on a validation set 

during the course of the iterative training. If the generalization error shows no further 
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improvement in a certain number of iterations or even begins to increase with further 

optimization, then the iterative training stops from further optimization.  The number of neurons 

in the hidden layer that yields the minimum generalization error is chosen as the final parameter 

of Neural Network architecture.  

Early stopping uses a validation set to decide when to stop the training. It answers one of the 

difficult questions of optimization regarding stopping criterion, and is an efficient method in 

terms of computing time to decide the number of training iterations that affects both optimization 

and generalization. The test set of data is used for evaluation of prediction performance after the 

number of neurons in the hidden layer and the training iterations are determined. In our study, 

the grid search method is implemented for choosing the optimal number of neurons in the hidden 

layer and the maximum training iterations.  

Fig.4.4 shows how to determine the number of neurons in the hidden layer and training iterations 

for a ~q v  model from location 2 as an example using cross validation and early stopping 

techniques for its Neural Network architecture. A neuron is added to the hidden layer one at a 

time and the weight matrix is iteratively optimized until the generalization error of the validation 

set stops improving or begins to climb up. The optimal number of neurons in the hidden layer is 

identified as 17 with 27 training iterations to produce minimum error 0.1929.   

In the empirical study, three nonlinear optimization routines are used to train the Neural 

Networks including BPNN (standard backpropagation), BFGS (Broyden-Fletcher-Goldfarb-

Shannon), and SCG (scaled conjugate gradient). These algorithms are available in RSNNS and 

nnet packages in the open source software R.   
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Fig. 4.4 Choose hidden layer neurons and training iterations, q v− , location 2  

4.3 Support vector regression  

Support vector regression (SVR) is selected to compare with TS-TVEC model because of its 

excellent performances in regression and time series prediction (Muller et al., 1997, Drucker et 

al., 1997, Stitson et al., 1999, Mattera and Haykin, 1999, Scholkopf and Smola, 2002, Cortes and 

Vapnik, 1995). The SVR is a machine learning algorithm that is closely analogical to 

nonparametric estimation. Developed from statistical learning theory that concentrates on kernel-

based regression with quadratic optimization techniques, SVR is replacing Neural Network in a 

variety of fields.   

4.3.1 Kernel method  

In the context of support vector regression, kernels are introduced as similarity measures because 

they compute all geometric features including length of vector, angle and distance between 

vectors. Kernel is computed through an inner product function denoted by < >L  which has the 

appealing property that its value is maximal whenever its arguments are equal. In order to 

employ inner products to measure similarity between objects, we need to represent them in a 

normed space 
2

nl  which is defined next. As well, some important concepts are introduced as 

follows.   
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Definition (Features and feature space) (Herbrich, 2002) a function :i Rφ χ →  that 

maps each object x∈χ  to a real value ( )i xφ  is called a feature. Combining n  

features 
1, , nφ φL  results in a feature mapping 

2: nHΦ χ → ⊆ l  and the space H  is 

called a feature space, where, a normed space 2

nl  of sequences of length n  is defined 

by ( ){ }
2

2 1 1
, ,     

def
nn n

n ii
x x R x

=
= ∈ < ∞∑l L .     

Definition (Kernel) (Herbrich, 2002) Suppose we are given a feature mapping 

2: nHΦ χ → ⊆ l  . The kernel is the inner product function :k Rχ × χ →  in H  , i.e., 

for all ,i jx x χ∈ , ( ) ( ) ( ), ,  X , Xi j i j i j

def

k x x x xΦ Φ ==        

The inner product function k  is called the kernel. Any function involving the kernel complies 

with the Cauchy-Schwarz Inequality such that it is bounded and produces similar results.  

Proposition (Cauchy-Schwarz inequality) (Scholkopf and Smola, 2002) If k  is a 

positive definite kernel, and for all 
1 2,x x χ∈  input space, then 

( ) ( ) ( )
2

1 2 1 1 2 2, , ,k x x k x x k x x≤ • . For all X, X'∈ Η  a feature space, then 

X, X' X X'≤ •  .    

By the Cauchy-Schwarz inequality, we know that the difference of kernel function evaluated at 

two image vectors is bounded. Hence, if we only consider parameter vectors with a constant 

norm, it follows that whenever two points are close to each other, any linear function would 

assign similar real values to them as well.  

These two properties, linearity and bounded, make linear functions perfect candidates for 

designing the kernel classifier. Incorporating a kernel in the linear classifier, linear regression 

function is known as kernel classifier. The necessary and sufficient conditions of k  to be a 

kernel are given by Mercer’s theorem (Mercer, 1909).   
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Mercer’s Theorem (1909): Suppose ( )k L∞∈ χ×χ  is a symmetric function, i.e., 

( ) ( ), ' ',k x x k x x= , such that the integral operator ( ) ( )2 2:kT L Lχ → χ  given by  

( ) ( ) ( )( ) : , ' ' '
k

T f x k x x f x dx
χ

= ∫   

is positive semidefinite, that is, for all ( )2f L∈ χ , we have  

( ) ( ) ( ), ' ' ' 0k x x f x f x dxdx
χ χ

≥∫ ∫     

Let ( )2i Lψ ∈ χ  be the eigenfunction of 
kT  associated with the eigenvalue 0iλ ≥  and 

normalized such that  

( )
2 2

1i i x dx
χ

ψ = ψ =∫  , i.e. ( ) ( ) ( ): , ' ' '   
i i i

x k x x x dx x
χ

∀ ∈ χ ψ = λ ψ∫     

Then  

1. ( ) 1,i i∈
λ ∈


l    

2. ( ) ,i L∞ψ ∈ χ    

3. ( ) ( ) ( )
1

, ' 'i i i

i

k x x x x
∞

=

= λ ψ ψ∑  holds for all ( ), 'x x ∈χ  where the series converges 

absolutely and uniformly for all ( ), 'x x ∈χ .   

Loosely speaking, Mercer’s theorem means that if ( ) ( ) ( ), ' ' ' 0k x x f x f x dxdx
χ χ

≥∫ ∫  for all 

( )2f L∈ χ  holds, we can write ( ), 'k x x  as a dot product or inner product in some feature space. 

Mercer’s theorem not only gives necessary and sufficient conditions for k  to be a kernel, but 

also suggests a constructive way of obtaining features Φ  from a given kernel function k .   
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4.3.2 Support vector regression  

The support vector regression is to estimate a linear function in Hilbert space through the kernel 

method and quadratic optimization technique. The linear function involving a kernel is known as 

kernel classifier. The kernel classifier takes the form   

( ) ,  f x w x b= +   (4.7)  

where ,  bw R∈ χ ∈ . Regression of the kernel-based linear function (4.3) boils down to a 

quadratic optimization problem where the coefficients are estimated by maximizing soft margin 

as well as minimizing training error from the training samples. The primal objective function is  

( )2 *

1

*

*

1
minimize    

2

,

subject to    ,

,               0

m

i i

i

i i i

i i i

i i

w C

y w x b

w x b y

ξ ξ

ε ξ

ε ξ

ξ ξ

=

+ +

 − − ≤ +


+ − ≤ +


≥

∑

   (4.8)   

Introducing Lagrange multipliers * *, , ,i i i iα α η η  , the Lagrange function can be constructed by the 

primal objective function subtracting the sum of all products of constraints and corresponding 

Lagrange multipliers (Fletcher, 1989, Bertsekas, 1995). Hence, the Lagrange function L  takes 

the form  

( ) ( )

( )

( )

2 * * *

1 1

1

* *

1

1
 :   

2

         ,                 

         ,

m m

i i i i i i

i i

m

i i i i

i

m

i i i i

i

L w C

y w x b

y w x b

ξ ξ η ξ η ξ

α ε ξ

α ε ξ

= =

=

=

= + + − +

− + − + +

− + − + +

∑ ∑

∑

∑

   (4.9)  

The Lagrange function is a powerful theoretical mean that is employed to develop a dual 

objective function. Optimization can be achieved by minimizing the primal variables and 

simultaneously maximizing the Lagrange multipliers.  

Let the partial derivatives of L  in Eq. (4.5) with respect to the primal variables ( )*
, , ,

i i
w b ξ ξ  

equal to zero and substituting them into Eq. (4.4) yields the following dual optimization problem.  
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( ) ( )( ) ( )

( ) ( )

( )

* * *

1 1

* *

1 1

* *

1

1
maximize    W , ,

2

                                                   

subject to    0 ,   for all  1, , ,  and 0

m m

i i j j i j

i j

m m

i i i i i

i i

m

i i i i

i

k x x

y

C i m

α α α α α α

ε α α α α

α α α α

= =

= =

=

= − − −

− + + −

≤ ≤ = − =

∑∑

∑ ∑

∑L

   (4.10)   

where ε  is the error, C  is the upper bound, *,i iα α  are Lagrange multipliers, and 

( ) ( ) ( ), ,i j i jk x x x x= Φ Φ  is the kernel. Thus, the regression function turns to the form of 

Eq.(4.7) (Scholkopf and Smola, 2002).   

( ) ( )*

1

( , )   
m

i i i

i

f x k x x b
=

= α − α +∑     (4.11)   

In a summary, the SV regression procedures are shown in Fig.4.5. The input pattern is mapped 

into feature space by a mapping mechanism Φ . Then the kernel function ( ), 'k x x  is evaluated 

by computing the dot product of the images of the input patterns in feature space. Finally a linear 

combination of the dot products weighted by ( )*

i iα − α  plus the constant term b  yields the 

prediction output. The similarity of outputs is usually measured in terms of a loss function.  

 

Fig. 4.5 Architecture of SVR and related kernel method (Scholkopf and Smola, 2002)  

The process described here is very similar to regression in a neural network, with the difference, 

that in the SV case the weights in the input layer are a subset of the training patterns.  
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4.3.3 Parameter specification   

In the study, the RBF (radial basis function) is chosen as the kernel function. It is highly 

effective in mapping nonlinear relationships. The γ  is the key kernel parameter that needs to be 

chosen carefully, as it implicitly defines the structure of the high dimensional feature space and 

thus controls the complexity of the final solution.  C  is a general penalizing parameter for C -

classification indicating the cost of constraints violation. It is referred to as the regularized 

constant that determines the tradeoff between the empirical error and the regularized term in the 

Lagrange formulation. The ε  in the insensitive-loss function is called the tube size of SVR and 

is equivalent to the approximation accuracy placed on the training data.   

Kernel parameter γ  and cost parameter C  were determined based on the cross validation 

method and grid search from the training data. The data is split into a training set and a test set. 

Hence, the ( ).tune svm L  function in the e1071 package in R software is used for the purpose of 

parameter determination. The one-step-ahead rolling prediction is made based on the trained 

regression model.  

4.4 Comparison of predictions   

The effectiveness of the new TS-TVEC model is examined by comparing the accuracy of 

prediction performed by the TS-TVEC model, Neural Networks, and Support Vector Regression. 

Accuracy is measured in terms of MSE, Coefficient of Variation, and MAPE. The cross 

validation method with MSE criterion is used for the TS-TVEC model selection. Cross 

validation method with early stopping policy is used for Neural Network training and support 

vector regression.   

Three sets of 60-minute interval data collected from three locations in Fig.1.1 are used to test the 

effectiveness of the new TS-TVEC model. There are 27 time series from 3 locations involved in 

the modelling process. Three sets of 90-minute interval time series data are used to test the 

robustness of the TS-TVEC model. Table 4.16 shows the comparison of predictions between TS-

TVEC and Neural Network using 90-minute interval traffic volume and speed time series. Table 

4.17 shows the comparison of prediction performance between the new TS-TVEC models, 

Neural Network, and Support Vector Regression where one-step-ahead rolling predictions are 
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performed for 48-hour horizon based on 60-minute interval data. The comparison results indicate 

that the TS-TVEC model provides better prediction of traffic volume than Neural Network, and 

support vector regression. This observation holds in both 60-minute and 90-minute interval data. 

The average improvement in traffic volume prediction is approximately 6%. Numerically, the 

values of speed and occupancy are within a narrow range such that prediction error is more 

sensitive to a small change. The prediction coefficient of variation and MAPE of speed and 

occupancy by TS-TVEC model are close to the outcomes by Neural Network and support vector 

regression. Therefore, the cointegration model with regime switching mechanism provides a 

competitive approach to the non-linear forecasting problem for stochastic traffic processes in 

contrast to a gradient descent optimization method and kernel regression. Another observation is 

that the prediction errors by the 3 types of approaches are varying at different locations. It 

indicates that these models are data driven models. The selection of a forecasting method is 

associated with the data environment in question. As such, the method used in forecasting should 

be best suited for its corresponding data environment.  

Table 4.16 Comparison of 90-minute interval one-step-ahead rolling prediction for 2 days  

 

Fig.4.6 shows an example of overall model fitting and one-step-ahead rolling predictions of 

volume, speed and occupancy for a 48-hour horizon by the TS-TVEC model. It shows that the 

TS-TVEC model is able to capture both symmetrical deviation and asymmetrical sudden shifts. 

It is noteworthy that the predicted values oscillate closely around the observed values of three 

traffic variables. This justifies the error correction effect on deviations conditional on the 

threshold regime switching mechanism in the TS-TVEC model.  
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Table 4.17 Comparison of 60-minute interval one-step-ahead rolling prediction for 48 hours  

 

In contrast, Fig.4.7 and Fig.4.8 shows overall model fitting and one-step-ahead rolling 

predictions of volume, speed, and occupancy for a 48-hour horizon by the MLP Neural Network 

and Support Vector Regression, respectively. It shows that both MLP network and SVR model 

are able to capture seasonal patterns of volume and occupancy without pre-processing the data. It 

appears that both MLP and SVR predictions lack to follow the overall curve of observed values. 
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Fig. 4.6 TS-TVEC model fit and one-step-ahead rolling prediction for 48 hours, location 1  
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Fig. 4.7 MLP model fit and one-step-ahead rolling prediction for 48 hours, location 1 
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Fig. 4.8 SVR model fit and one-step-ahead rolling prediction for 48 hours, location 1  
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Chapter 5  
Large scale application  

In chapters 1 and 4, the TS-TVEC model is introduced and estimated with one-month long time 

series and its predictive performance is assessed with 48 hourly data from three locations in 

Fig.1.1. In order to further assess its predictive capability, effectiveness, robustness, and 

consistency, this chapter presents large scale applications of the methodology. The method is 

applied to a larger area that covers 35 sites of prediction on Highway 401, 400, and 404 in the 

Greater Toronto Area (GTA), Ontario, Canada, and exposed to more complex traffic situations 

with approximately 315 time series. Three TS-TVEC models are estimated for each site and one-

step-ahead rolling prediction is performed for each traffic variable by a selected model for 

consecutive 168 hours, i.e. 7 days.   

5.1 Highway network   

Traffic time series are collected from loop detectors deployed on the GTA 400 series of 

freeways. The data collection stations on the freeways are managed and maintained by the 

Ministry of Transportation Ontario (MTO), and the traffic data are provided to the ITS lab at 

University of Toronto for purposes of research. Fig.5.1 shows the sites of prediction and related 

upstream and downstream sites on Highway 401 expressway east and west bound, and Highway 

400 and 404 north and south bound. Fig.5.2 shows the sites of prediction and related upstream 

and downstream sites on Highway 401 collector east and west bound. In total, there are 35 sites 

of prediction denoted by red dots on the two maps that represent 35 highway segments. The 

locations of prediction selected on Highway 401 focus on core sections between Highway 400 

and 404 that assume heavy traffic volumes in, out, and passing through the City of Toronto on a 

daily basis. These chosen locations cover 12 stretches on the Highway 401expressway and 17 

stretches on the collector road. Four locations of prediction are selected on Highway 400 north 

and south bound between Highway 401 and 407. Two locations are selected on Highway 404 

north and south bound between Highway 401 and Finch Avenue. Table 5.1 lists the locations of 

prediction, loop detector ID, and road stretches.    
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Fig. 5.1 the GTA 400 series of Highways and data collecting stations (1)   
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Fig. 5.2 the GTA 400 series of Highways and data collecting stations (2)   



83 

 

Table 5.1 Locations of prediction   

 

 

Name
Location Index

 of Prediction
Detector ID Road Section

401.EB.Exp.1 401DW0030DEE Hwy400 - Basket Wave. 

401.EB.Exp.2 401DE0020DEE Basket Wave - Dufferin St.

401.EB.Exp.3 401DE0060DEE Allen Rd. @ Hwy401

401.EB.Exp.4 401DE0100DEE Allen Rd. - Yonge St.

401.EB.Exp.5 401DE0150DEE Yonge St. - Lesl ie St.

401.EB.Exp.6 401DE0210DEE Lesl ie St. - Hwy404

401.EB.Col.1 401DW0040DEC Hwy400 - Jane St.

401.EB.Col.2 401DW0010DEC Jane St. - Keele St.

401.EB.Col.3 401DE0040DEC Keele St. - Dufferin St.

401.EB.Col.4 401DE0090DEC Bathurst St. - Avenue Rd.

401.EB.Col.5 401DE0120DEC Avenue Rd. - Yonge St.

401.EB.Col.6 401DE0150DEC Yonge St. - Bayview Ave.

401.EB.Col.7 401DE0180DEC Bayview Ave. - Leslie St.

401.EB.Col.8 401DE0220DEC Lesl ie St. - Hwy404

401.WB.Exp.1 401DW0040DWE Hwy400 - Basket Wave. 

401.WB.Exp.2 401DE0020DWE Basket Wave - Dufferin St.

401.WB.Exp.3 401DE0060DWE Allen Rd. @ Hwy401

401.WB.Exp.4 401DE0090DWE Bathurst St. - Yonge St.

401.WB.Exp.5 401DE0140DWE Yonge St. - Bayview Ave.

401.WB.Exp.6 401DE0180DWE Bayview Ave. - Hwy404

401.WB.Col.1 401DW0040DWC Hwy400 - Jane St.

401.WB.Col.2 401DW0010DWC Jane St. - Keele St.

401.WB.Col.3 401DE0030DWC Keele St. - Dufferin St.

401.WB.Col.4 401DE0070DWC Allen Rd. - Bathurst St.

401.WB.Col.5 401DE0090DWC Bathurst St. - Avenue Rd.

401.WB.Col.6 401DE0120DWC Avenue Rd. - Yonge St.

401.WB.Col.7 401DE0140DWC Yonge St. - Bayview Ave.

401.WB.Col.8 401DE0170DWC Bayview Ave. - Leslie St.

401.WB.Col.9 401DE0200DWC Lesl ie St. - Hwy404

400.NB.1 400DN0040DNS Hwy401 - Finch Ave. W.

400.NB.2 400DN0080DNS Finch Ave. W. - Steeles Ave. W.

400.SB.1 400DN0040DSS Hwy401 - Finch Ave. W.

400.SB.2 400DN0080DSS Finch Ave. W. - Steeles Ave. W.

404.NB.1 404DN0010DNS Sheppard Ave. E. - Finch Ave. E.

404.SB.1 404DN0010DSS Sheppard Ave. E. - Finch Ave. E.

HWY404

North & Southbound

HWY401 Expressway 

Eastbound

HWY401 Collector 

Eastbound

HWY401 Expressway 

Westbound

HWY401 Collector 

Westbound

HWY400

North & Southbound
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5.2 Time series data   

Fig. 5.3 shows typical two-month long hourly traffic time series including volume, speed, and 

occupancy from the Highway 401 collector road at Avenue Road. These plots represent most of 

traffic time series with some variations in the data set. Usually, a longer time series may present 

a larger variety of traffic situations including both recurring and non-recurring traffic incidents 

and congestion. Seasonality can be easily observed from the traffic volume and occupancy 

series. Non-stationary features and traffic state alternation can be identified from the traffic speed 

series.  

Four statistical tests are performed to verify the existence of cointegration and threshold effect 

among traffic variables. Table 5.2 shows the results of the Phillips-Ouliaris cointegration test. 

The null hypothesis of no cointegration is rejected at 5% significance. The existence of 

cointegration between traffic variables is further verified by results of Johansen cointegration test 

(Eigen) shown in Table 5.3. Hansen and Seo test results in Table 5.4 reject the null hypothesis of 

linear cointegration at 5% significance and favor the threshold cointegration effect. 

Correspondently, Fig. 5.4 shows the density bootstrap distribution of the test statistics of three 

Hansen and Seo tests respectively. All p -values are zero. The Zivot-Andrew unit root test is 

also performed to verify the structural break in the speed and occupancy time series. Fig. 5.5 and 

5.6 show that the null hypothesis of a unit root process with drift that excludes exogenous 

structural change is rejected at 5% significance.  

The results of those statistical tests indicate that the threshold cointegration effect exists among 

traffic volume, speed and occupancy. The necessity of the TS-TVEC model is justified. In 

addition, the spatial time series that is used as the exogenous term of the model are chosen from 

the upstream and downstream site where the traffic flow converges or diverges from the traffic 

flow at the site of prediction. Spatial time series from the upstream and downstream site should 

be physically related but not identical to the traffic flow at the location of prediction.   
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Fig. 5.3 typical traffic time series from the data set (401DE0100DEC, 02-03/2014)  
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Table 5.2 Phillips-Ouliaris cointegration test    

Pair of Traffic Variables Type Test Statistic p-value 
Critical Values 

10% 5% 1% 

Volume vs. Speed  
Pu 486.69 p < 1% 27.85 33.71 48.00 

Pz 515.47 p < 1% 47.59 55.22 71.93 

Volume vs. Occupancy  
Pu 660.25 p < 1% 27.85 33.71 48.00 

Pz 873.49 p < 1% 47.59 55.22 71.93 

Speed vs. Occupancy  
Pu 729.52 p < 1% 27.85 33.71 48.00 

Pz 568.67 p < 1% 47.59 55.22 71.93 

 

Table 5.3 Johansen cointegration test (eigenvalue)   

Pair of Traffic Variables Rank Test Statistic p-value 
Critical Values 

10% 5% 1% 

Volume vs. Speed  
r<=1 157.53 p < 1% 6.5 8.18 11.65 

r=0 211.21 p < 1% 12.91 14.9 19.19 

Volume vs. Occupancy  
r<=1 201.43 p < 1% 6.5 8.18 11.65 

r=0 235.00 p < 1% 12.91 14.9 19.19 

Speed vs. Occupancy  
r<=1 155.51 p < 1% 6.5 8.18 11.65 

r=0 169.20 p < 1% 12.91 14.9 19.19 

 

Table 5.4 Hansen and Seo threshold cointegration test   

Multivariate Test Statistic P-Value 
Bootstrap Critical Values 

0.90 0.95 0.99 

Volume vs. Speed 151.93 0.00 13.88 15.32 17.57 

Volume vs. Occupancy 126.19 0.00 10.39 12.00 15.11 

Speed vs. Occupancy 92.19 0.00 18.78 21.03 24.00 
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Fig. 5.4 Bootstrap density distribution of Hansen and Seo (2002) test  
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Fig. 5.5 Structural break test with 200 points of speed series  

 

Fig. 5.6 Structural break test with 200 points of occupancy series  
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concurrently takes into account the MSE, number of regimes, and lags. The cross validation 

method in conjunction with parsimonious principle is used for model selection. Statistical 

diagnostic tests are performed to examine the significance of the model coefficients, normality, 

and whiteness of noise in the process of model estimation. Results of model selection and 

specification for Highway 401 expressway and collector east and west bound, Highway 400 and 

404 north and south bound are shown in Tables 5.5, 5.6, 5.7, 5.8, and 5.9 respectively.   

Table 5.5 Model selection, specification and prediction  Highway 401 Col WB   

 

 

vol~spd vol~occ spd~occ Lag Threshold MSE
Coefficient 

of Variation
MAPE

volume x 6 1 121677.10 0.1944 0.1304

speed x 2 1 227.37 0.1492 0.1162

occupancy x 2 1 11.29 0.3787 0.1999

volume x 1 2 57355.63 0.0625 0.0567

speed x 2 2 65.91 0.0791 0.0528

occupancy x 1 1 3.60 0.2924 0.1790

volume x 1 1 18864.70 0.4129 0.2303

speed x 1 1 40.93 0.1293 0.1069

occupancy x 1 1 1.06 0.6925 0.5801

volume x 7 1 47082.57 0.0721 0.0726

speed x 1 1 142.46 0.1266 0.0785

occupancy x 1 1 4.62 0.3845 0.1529

volume x 1 1 104457.10 0.0803 0.0750

speed x 1 1 16.14 0.0416 0.0310

occupancy x 4 1 0.40 0.1165 0.0924

volume x 10 1 57849.68 0.0771 0.0726

speed x 10 1 89.52 0.1113 0.0929

occupancy x 10 1 5.43 0.2480 0.2002

volume x 1 2 84243.81 0.1115 0.0722

speed x 1 2 284.64 0.1903 0.1597

occupancy x 1 2 6.49 0.4884 0.3897

volume x 2 1 128246.90 0.1257 0.0766

speed x 2 1 96.91 0.0990 0.0663

occupancy x 2 1 8.71 0.6790 0.2457

volume x 2 1 182919.50 0.0925 0.0864

speed x 5 1 265.11 0.1993 0.1658

occupancy x 5 1 14.03 0.4097 0.3142

Accuracy of Prediction

401.WB.Col.6

Avenue Rd. - Yonge St.

401DE0120DWC

401.WB.Col.7

Yonge St. - Bayview Ave.

401DE0140DWC

401.WB.Col.8

Bayview Ave. - Leslie St.

401DE0170DWC

401.WB.Col.9

Leslie St. - Hwy404

401DE0200DWC

Predictive 

Variable

Model Specification

Location

401.WB.Col.1

Hwy400 - Jane St.

401DW0040DWC

401.WB.Col.2

Jane St. - Keele St.

401DW0010DWC

401.WB.Col.3

Keele St. - Dufferin St.

401DE0030DWC

401.WB.Col.4

Allen Rd. - Bathurst St.

401DE0070DWC

401.WB.Col.5

Bathurst St. - Avenue Rd.

401DE0090DWC
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Table 5.6 Model selection, specification and prediction  Highway 401 Exp EB  

 

 

Table 5.7 Model selection, specification and prediction  Highway 401 Exp WB   

 

 

vol~spd vol~occ spd~occ Lag Threshold MSE
Coefficient 

of Variation
MAPE

volume x 3 1 163350.70 0.1180 0.0764

speed x 10 1 143.81 0.1234 0.1004

occupancy x 10 1 9.61 0.3123 0.1964

volume x 6 2 296926.80 0.1394 0.0949

speed x 3 1 93.34 0.1078 0.0958

occupancy x 3 1 5.79 0.2150 0.1306

volume x 4 1 235112.10 0.1279 0.0759

speed x 4 1 162.86 0.1304 0.1192

occupancy x 9 1 9.19 0.2949 0.1707

volume x 3 1 79108.83 0.0828 0.0533

speed x 8 1 151.49 0.1205 0.0949

occupancy x 3 1 7.61 0.2537 0.1441

volume x 1 1 193569.10 0.1045 0.0650

speed x 8 2 138.79 0.1139 0.0779

occupancy x 8 2 9.89 0.3978 0.1738

volume x 1 1 76487.54 0.1167 0.0667

speed x 1 1 89.54 0.1038 0.0852

occupancy x 1 1 6.05 0.3825 0.1563

Accuracy of Prediction
Predictive 

Variable

401.EB.Exp.1

Hwy400 - Basket Wave.

401DW0030DEE

Location

401.EB.Exp.3

Allen Rd. @ Hwy401

401DE0060DEE

401.EB.Exp.4

Allen Rd. - Yonge St. 

401DE0100DEE

401.EB.Exp.5

Yonge St. - Leslie St.

401DE0150DEE

401.EB.Exp.6

Leslie St. - Hwy404

401DE0210DEE

Model Specification

401.EB.Exp.2

Basket Wave - Dufferin St.

401DE0020DEE

vol~spd vol~occ spd~occ Lag Threshold MSE
Coefficient 

of Variation
MAPE

volume x 2 1 177438.50 0.0907 0.0633

speed x 2 1 258.22 0.1638 0.1284

occupancy x 2 1 8.33 0.3604 0.2072

volume x 1 1 145905.50 0.0901 0.0785

speed x 3 1 232.74 0.1563 0.1105

occupancy x 1 1 6.85 0.2718 0.1469

volume x 5 1 148765.10 0.0971 0.0803

speed x 2 2 140.96 0.1106 0.0828

occupancy x 5 1 8.54 0.4377 0.2168

volume x 1 2 233762.40 0.1343 0.0948

speed x 7 1 230.57 0.2043 0.1527

occupancy x 7 1 9.02 0.3109 0.2268

volume x 6 2 165100.50 0.0914 0.0706

speed x 5 2 213.77 0.1458 0.1077

occupancy x 2 2 12.73 0.3584 0.2133

volume x 3 1 107052.40 0.1312 0.0963

speed x 1 1 155.53 0.1417 0.1210

occupancy x 1 1 9.05 0.3434 0.2221

Accuracy of Prediction

401.WB.Exp.1

Hwy400 - Basket Wave.

401DW0040DWE

401.WB.Exp.2

Basket Wave - Dufferin St.

401DE0020DWE

401.WB.Exp.3

Allen Rd. @ Hwy401

401DE0060DWE

401.WB.Exp.4

Bathurst St. - Yonge St.

401DE0090DWE

401.WB.Exp.5

Yonge St. - Bayview Ave.

401DE0140DWE

401.WB.Exp.6

Bayview Ave. - Hwy404

401DE0180DWE

Location
Predictive 

Variable

Model Specification
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Table 5.8 Model selection, specification and prediction  Highway 401 Col EB   

 

Table 5.9 Model selection, specification and prediction  Highway 400 and 404 NB & SB   

 

vol~spd vol~occ spd~occ Lag Threshold MSE
Coefficient 

of Variation
MAPE

volume x 1 1 72905.69 0.1271 0.0787

speed x 1 1 232.01 0.1669 0.1687

occupancy x 2 1 40.56 0.8089 0.4016

volume x 8 1 103069.60 0.0951 0.0713

speed x 13 1 195.34 0.1614 0.1376

occupancy x 13 1 15.67 0.4293 0.3149

volume x 4 2 185171.80 0.1268 0.1017

speed x 1 2 141.58 0.1331 0.0952

occupancy x 1 2 12.38 0.4365 0.2319

volume x 5 1 125111.40 0.1015 0.1413

speed x 5 1 155.59 0.1630 0.1219

occupancy x 7 1 41.89 0.5467 0.3162

volume x 3 2 146109.10 0.1343 0.0887

speed x 3 2 65.40 0.0832 0.0426

occupancy x 3 2 2.21 0.3391 0.2226

volume x 3 1 68916.99 0.0929 0.0966

speed x 1 1 261.25 0.1549 0.1058

occupancy x 1 1 20.98 0.9740 0.6263

volume x 1 1 51965.17 0.0745 0.0579

speed x 4 2 108.39 0.1154 0.0984

occupancy x 4 2 11.59 0.3540 0.2261

volume x 5 1 21101.93 0.0877 0.0700

speed x 2 2 56.03 0.0720 0.0426

occupancy x 2 2 2.36 0.4742 0.1711

Accuracy of PredictionModel Specification

401.EB.Col.6

Yonge St. - Bayview Ave.

401DE0150DEC

401.EB.Col.7

Bayview Ave. - Leslie St.

401DE0180DEC

401.EB.Col.8

Leslie St. - Hwy404

401DE0220DEC

Location
Predictive 

Variable

401.EB.Col.1

Hwy400 - Jane St.

401DW0040DEC

401.EB.Col.2

Jane St. - Keele St.

401DW0010DEC

401.EB.Col.3

Keele St. - Dufferin St.

401DE0040DEC

401.EB.Col.4

Bathurst St. - Avenue Rd.

401DE0090DEC

401.EB.Col.5

Avenue Rd. - Yonge St.

401DE0120DEC

vol~spd vol~occ spd~occ Lag Threshold MSE
Coefficient 

of Variation
MAPE

volume x 4 1 109632.30 0.0748 0.0671

speed x 4 1 106.54 0.0980 0.0763

occupancy x 2 1 7.04 0.4487 0.1963

volume x 4 1 127344.30 0.0783 0.0662

speed x 8 1 99.02 0.0946 0.0671

occupancy x 8 1 5.20 0.2988 0.1938

volume x 2 2 134720.30 0.0814 0.0612

speed x 2 2 204.12 0.1417 0.1259

occupancy x 1 1 21.46 0.5744 0.3001

volume x 3 1 109302.20 0.0765 0.0745

speed x 2 2 219.87 0.1431 0.0906

occupancy x 3 1 8.97 0.5002 0.2003

volume x 6 1 68148.23 0.0587 0.0466

speed x 1 1 52.47 0.0693 0.0538

occupancy x 1 1 6.19 0.3778 0.1962

volume x 3 1 79529.93 0.0743 0.0566

speed x 8 1 119.30 0.1430 0.1309

occupancy x 8 1 18.75 0.3632 0.4462

Accuracy of Prediction

400.NB.1

Hwy401 - Finch Ave. W.

400DN0040DNS

400.NB.2

Finch Ave. W. - Steeles Ave. W.

400DN0080DNS

400.SB.1

Hwy401 - Finch Ave. W.

400DN0040DSS

400.SB.2

Finch Ave. W. - Steeles Ave. W.

400DN0080DSS

404.NB.1

Sheppard Ave. E. - Finch Ave. E.

404DN0010DNS

404.SB.1

Sheppard Ave. E. - Finch Ave. E.

404DN0010DSS

Location
Predictive 

Variable

Model Specification
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5.4 Forecasting   

The hourly interval one-step-ahead rolling prediction is performed with the selected TS-TVEC 

model for seven days in a row for each traffic variable. The prediction includes 168 points of 

time. Prediction accuracy is assessed by the MSE, Coefficient of Variation, and MAPE that are 

shown in Tables 5.5, 5.6, 5.7, 5.8, and 5.9 respectively. Exhibitions of model fitness and 168 

hourly predictions for each traffic variable from 8 representative sites are shown in Fig 5.7, 5.8, 

5.9, 5.10, 5.11, 5.12, 5.13 and 5.14 respectively. The complete list of exhibitions of model fitness 

and hourly predictions from 35 sites can be found in the Appendix A.   

5.5 Discussion 

There are 105 models that are estimated at 35 freeway locations. As the TS-TVEC model is a 

data driven model, its lag order p  is varying for different data sets at different locations. The 

value of p  reflects the best model selection given the data set at each location of prediction. The 

overall model specifications show that the 2-regime model prevails among data sets in contrast to 

the linear or 3-regime models. It indicates that traffic at most locations is inclined to two states. 

The 3-regime model specification may imply more complicated traffic situations at 

corresponding locations. Table 5.10 summarizes prediction accuracy shown in Tables 5.5, 5.6, 

5.7, 5.8, and 5.9.  

Table 5.10 Summary of model prediction accuracy at 35 locations  

 

The mean absolute percentage error (MAPE) in traffic volume prediction is between 4.66% and 

23.03% with median 7.45%, the coefficient of variation is between 5.87% and 41.29% with 

median 9.29%, and the standard deviation is between 137.35 and 544.91 with median 331.11.  

Similarly, the MAPE in traffic speed prediction is between 3.1% and 16.87% with median 

9.84%, the coefficient of variation is between 4.16% and 20.43% with median 12.93%, and the 

standard deviation is between 4.02 and 16.87 with median 11.94.  

MSE
Coefficient 

of Variation
MAPE

Std 

Deviation
MSE

Coefficient 

of Variation
MAPE

Std 

Deviation
MSE

Coefficient 

of Variation
MAPE

Std 

Deviation

min 18864.7 5.87% 4.66% 137.35 16.14 4.16% 3.10% 4.02 0.4 11.65% 9.24% 0.63

max 296926.8 41.29% 23.03% 544.91 284.64 20.43% 16.87% 16.87 41.89 97.40% 62.63% 6.47

median 109632.3 9.29% 7.45% 331.11 142.46 12.93% 9.84% 11.94 8.71 37.87% 20.72% 2.95

Volume Speed Occupancy

Statistics
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The MAPE in traffic occupancy prediction is between 9.24% and 62.63% with median 20.72%, 

the coefficient of variation is between 11.65% and 97.40% with median 37.87%, and the 

standard deviation is between 0.63 and 6.47 with median 2.95.  

In other words, prediction accuracy of TS-TVEC model is approximately 92.55% for traffic 

volume, 90.16% for speed, and 79.28% for occupancy at 35 locations of prediction.  
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Fig. 5.7 401.EB.Exp.1, Hwy400  Basket Wave, 401DW0030DEE  
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Fig. 5.8 401.EB.Col.7, Bayview Ave.  Leslie St., 401DE0180DEC 

0 200 400 600 800 1000

0
2
0
0
0

5
0
0
0

Hourly Interval

V
o
lu

m
e
 (

v
e
h
/h

r)

Legend

Observation
Fitted
Prediction

0 50 100 150 200

0
2
0
0
0

5
0
0
0

Hourly Interval

V
o
lu

m
e
 (

v
e
h
/h

r)

Legend

Observation
Prediction

0 200 400 600 800 1000

0
4
0

8
0

Hourly Interval

S
p
e
e
d
 (

k
m

/h
r)

Legend

Observation
Fitted
Prediction

0 50 100 150 200

2
0

6
0

1
0
0

Hourly Interval

S
p
e
e
d
 (

k
m

/h
r)

Legend

Observation
Prediction

0 200 400 600 800 1000

0
1
0

3
0

Hourly Interval

O
c
c
u
p
a
n
c
y
 (

%
)

Legend

Observation
Fitted
Prediction

0 50 100 150 200

0
1
0

2
0

3
0

Hourly Interval

O
c
c
u
p
a
n
c
y
 (

%
)

Legend

Observation
Prediction



96 

 

 

Fig. 5.9 401.WB.Exp.3, Allen Rd. @ Hwy401, 401DE0060DWE 
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Fig. 5.10 401.WB.Col.3, Keele St.  Dufferin St., 401DE0030DWC 
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Fig. 5.11 401.WB.Col.5, Bathurst St.  Avenue Rd., 401DE0090DWC 
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Fig. 5.12 400.NB.2, Finch Ave. W.  Steeles Ave. W., 400DN0080DNS  

0 200 400 600 800 1000

0
4
0
0
0

8
0
0
0

Hourly Interval

V
o
lu

m
e
 (

v
e
h
/h

r)

Legend

Observation
Fitted
Prediction

0 50 100 150 200

2
0
0
0

6
0
0
0

Hourly Interval

V
o
lu

m
e
 (

v
e
h
/h

r)

Legend

Observation
Prediction

0 200 400 600 800 1000

2
0

6
0

1
0
0

1
4
0

Hourly Interval

S
p
e
e
d
 (

k
m

/h
r)

Legend

Observation
Fitted
Prediction

0 50 100 150 200

2
0

6
0

1
0
0

Hourly Interval

S
p
e
e
d
 (

k
m

/h
r)

Legend

Observation
Prediction

0 200 400 600 800 1000

0
1
0

2
0

3
0

Hourly Interval

O
c
c
u
p
a
n
c
y
 (

%
)

Legend

Observation
Fitted
Prediction

0 50 100 150 200

0
1
0

2
0

3
0

Hourly Interval

O
c
c
u
p
a
n
c
y
 (

%
)

Legend

Observation
Prediction



100 

 

 

Fig. 5.13 404.NB.1, Sheppard Ave. E.  Finch Ave. E., 404DN0010DNS 
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Fig. 5.14 404.SB.1, Sheppard Ave. E.  Finch Ave. E., 404DN0010DSS   
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Chapter 6  
Summary, discussion and conclusion  

6.1 Summary  

Short term traffic state prediction is an important component of Intelligent Transportation 

Systems. It is an essential instrument for the implementation of Advanced Traffic Management 

System (ATMS) and Advanced Traveller Information System (ATIS) to effectively manage 

traffic flow and provide traveler’s route guidance.  

In the past few decades, many methods for traffic state prediction were proposed as well as many 

attempts were made to improve the accuracy of prediction. Some representatives include, but not 

limited to, macroscopic traffic flow models, Neural Network, Kalman Filter, statistical time 

series models, Support Vector Regression, and nonparametric regression, etc. Although those 

methods made great contributions in this domain, there are still many improvements needed and 

gaps to fill in.   

Based on our observation and study on a large amount of traffic time series data, the challenges 

that arise in traffic state prediction primarily are due to stochasticity and dynamics of traffic 

processes and their special statistical characteristics. Many of them have not been thoroughly and 

systematically taken into account in the existing approaches for traffic forecast.  

In this research, we employ advanced time series modelling technique and developed time-space 

threshold vector error correction (TS-TVEC) model. The TS-TVEC model is able to 

concurrently take into account all those issues including autonomous and interactive dynamics of 

traffic variables, multiple traffic states, autocorrelation and cross-correlation of multivariate time 

series over time and space, seasonality, non-stationarity, cointegration of multivariate traffic time 

series, and unknown structural change in the time series. Both empirical study and large scale 

experiments show that TS-TVEC model is able to provide accurate predictions. The empirical 

study in chapter 4 shows that the TS-TVEC model outperformed MLP Neural Network and 

Support Vector Regression in forecasting traffic volume with approximately 6% of improvement 

on average. In chapter 5, the larger scale applications are performed to 35 freeway locations with 

approximately 315 time series. The mean absolute percentage error (MAPE) in traffic volume 
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prediction is between 4.66% and 23.03% with median 7.45%, the coefficient of variation is 

between 5.87% and 41.29% with median 9.29%, and the mean square error is between 18864 

and 296926 with median 109632.   

6.2 Discussion  

In the context of data environment presented in Chapter 4, the results of comparison provide 

some evidence showing consistent effectiveness and robustness of the TS-TVEC model. 

However, we are not attempting to verify whether or not the TS-TVEC model will outperform 

and replace other families of models, such as Neural Network and Support Vector Regression, 

because these models are data oriented models such that their performance is closely associated 

with the data environment under study. Every family of models may exhibit their own 

advantages in specific circumstances. For instance, in an obvious linear data environment, 

according to the parsimony principle, a linear model will maintain its advantage. Nevertheless, it 

is our belief that TS-TVEC is a theoretically sound, powerful and competitive modelling method 

suitable for complex multivariate data environment where threshold cointegration effects are 

non-trivial. In the large scale application presented in Chapter 5, macroscopic traffic variables 

(i.e. volume, speed, and occupancy) are verified to be cointegrated with threshold effect. 

Therefore, the TS-TVEC model exhibits its advantages rendering its capacity to be fully used. It 

is potentially applicable to a wide variety of traffic circumstances and real time traffic state 

forecasting.   

The TS-TVEC model also shows its advantage in need of a modest data size for model 

estimation. For instance, one-month hourly data is adequate for a TS-TVEC model to be 

estimated. One-month hourly data prior to the prediction time is able to provide sufficient 

information on the most recent dynamics of traffic flow including daily and weekly cyclic 

patterns.   

In statistics, ergodicity refers to asymptotic independence and is a characteristic of a stochastic 

process. Loosely speaking, it means that the further apart two realizations of a time series are 

with respect to time, the closer to independence they become [Bernhard Pfaff 2008]. Hence, long 

time series is not necessarily helpful for improving model estimation and prediction.  
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The autocorrelograms and partial autocorrelograms show that traffic time series are short 

memory time series where observations separated by a long time span exhibit asymptotic 

independence. Therefore, one-month data is sufficient for the TS-TVEC model to identify the 

model structure. In practice, TS-TVEC model estimation should be a periodically rolling update 

process. The most recent one-month data prior to the prediction time should be always used for 

model estimation.   

The TS-TVEC model has improved prediction performance due to the error correction 

mechanism, and the regime switching structure enables it to model multiple traffic states with 

various piecewise linear models.  

In addition, in the study of numerous traffic time series, especially in traffic volume series, it is 

found that traffic seasonality is best represented in a weekly period. This finding is consistent 

with the specification of the seasonal ARIMA model proposed by Williams et al. (2003).  

Three pairs of macroscopic traffic variables can be used respectively to construct the TS-TVEC 

model such that each traffic variable may have two parallel TS-TVEC models available for 

prediction.   

6.3 Conclusion   

According to the analysis to the hundreds of traffic time series, the special features that often 

exhibit in the traffic time series are summarized. From a statistical perspective, the features 

include seasonality, time and spatial correlation, non-stationary, and unknown structural change, 

whereas, from a traffic perspective, the features include the fundamental dynamics between 

traffic variables, and multiple traffic states. All these features are concurrently taken into account 

in the design of the TS-TVEC model such that the model has the capacity and flexibility to deal 

with the complex data environment in traffic prediction.  

This research contributes in five aspects. It discovered the existence of cointegration effects 

among macroscopic traffic variables (i.e. volume, speed, and occupancy), introduced and 

adapted the error correction model to fit in traffic prediction, introduced the regime switching 

structure to reflect multi-states of traffic situation, incorporated spatially correlated information 
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into the TS-TVEC model, and revealed the inherent connection between error correction model 

and the transformed fundamental diagrams.   

The discovery of the cointegration effects among macroscopic traffic variables is beneficial to 

better understanding the mechanism of the traffic data generating process, thus improving the 

prediction accuracy.   

According to the Granger Representation Theorem, an error correction model must exist if the 

traffic variables are cointegrated, and vice versa. Hence, we are able to establish a vector error 

correction model between traffic variables due to their cointegration. Although the Granger 

Representation Theorem was proposed and proved since early 1980s in the economic sciences, to 

the best of our knowledge, this is the first time that the error correction model is introduced to 

and adapted for short term traffic prediction.   

The vector error correction model essentially is a vector autoregressive model that is established 

on first order differenced variables with an error correction mechanism. The difference between 

two adjacent lags reflects the change of the variable over a time interval. Using the difference as 

a term in the model enables us to see the dynamics between variables, i.e. the amount of change 

in one variable causes the change in other variables.  

Once traffic time series are mapped from the original level space to a difference space, the linear 

relationship between differenced traffic variables is revealed through transformed fundamental 

traffic diagrams. It justifies error correction model application for traffic prediction.   

The linear relationship in the difference space may consist of multiple linear segments. The gap 

between two linear segments may be caused by the change of traffic state from free flow to 

congestion or vice versa. Hence, a regime switching structure with piecewise linear models 

embedded into different regimes is introduced to deal with structural breaks or traffic state 

alternation in traffic time series.   

Spatially correlated information, i.e. traffic time series from upstream or/and downstream of the 

location of prediction, is incorporated into the model to enhance the accuracy of prediction. The 

TS-TVEC model provides flexible structure to enable any spatially correlated time series fused 

in the model. These spatial time series are presented in the form of difference in the model.  
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6.4 Future research  

Currently, the TS-TVEC model focuses on hourly interval prediction. The prediction for other 

time intervals may be attempted in future research.  

Missing data, or gaps, may appear in the traffic time series when a loop detector is 

malfunctioning for a certain period of time. Some demands exist for reconstructing the missing 

data or filling in the gaps. The methodology developed in this research may be adapted to serve 

this purpose.  

The cointegration effect among traffic variables changes over time. In order to reflect the 

dynamics of cointegration, the model may be designed to adopt changeable coefficients.   
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Appendix A 
Exhibitions of model fitness and hourly rolling predictions for 35 

locations 
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Fig. A. 1  401.EB.Exp.1, Hwy400 - Basket Wave, 401DW0030DEE  
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Fig. A. 2  401.EB.Exp.2, Basket Wave - Dufferin St., 401DE0020DEE 
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Fig. A. 3  401.EB.Exp.3, Allen Rd. @ Hwy401, 401DE0060DEE 
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Fig. A. 4  401.EB.Exp.4, Allen Rd. - Yonge St., 401DE0100DEE 
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Fig. A. 5  401.EB.Exp.5, Yonge St. - Leslie St., 401DE0150DEE 
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Fig. A. 6  401.EB.Exp.6, Leslie St. - Hwy404, 401DE0210DEE 
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Fig. A. 7  401.EB.Col.1, Hwy400 - Jane St., 401DW0040DEC 
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Fig. A. 8  401.EB.Col.2, Jane St. - Keele St., 401DW0010DEC 
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Fig. A. 9  401.EB.Col.3, Keele St. - Dufferin St., 401DE0040DEC 
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Fig. A. 10  401.EB.Col.4, Bathurst St. - Avenue Rd., 401DE0090DEC 
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Fig. A. 11  401.EB.Col.5, Avenue Rd. - Yonge St., 401DE0120DEC 
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Fig. A. 12  401.EB.Col.6, Yonge St. - Bayview Ave., 401DE0150DEC 
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Fig. A. 13  401.EB.Col.7, Bayview Ave. - Leslie St., 401DE0180DEC 
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Fig. A. 14  401.EB.Col.8, Leslie St. - Hwy404, 401DE0220DEC 
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Fig. A. 15  401.WB.Exp.1, Hwy400 - Basket Wave, 401DW0040DWE 
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Fig. A. 16  401.WB.Exp.2, Basket Wave - Dufferin St., 401DE0020DWE 
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Fig. A. 17  401.WB.Exp.3, Allen Rd. @ Hwy401, 401DE0060DWE 
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Fig. A. 18  401.WB.Exp.4, Bathurst St. - Yonge St., 401DE0090DWE 
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Fig. A. 19  401.WB.Exp.5, Yonge St. - Bayview Ave., 401DE0140DWE 
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Fig. A. 20  401.WB.Exp.6, Bayview Ave. - Hwy404, 401DE0180DWE 
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Fig. A. 21  401.WB.Col.1, Hwy400 - Jane St., 401DW0040DWC 
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Fig. A. 22  401.WB.Col.2, Jane St. - Keele St., 401DW0010DWC 
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Fig. A. 23  401.WB.Col.3, Keele St. - Dufferin St., 401DE0030DWC 
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Fig. A. 24  401.WB.Col.4, Allen Rd. - Bathurst St., 401DE0070DWC 
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Fig. A. 25  401.WB.Col.5, Bathurst St. - Avenue Rd., 401DE0090DWC 
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Fig. A. 26  401.WB.Col.6, Avenue Rd. - Yonge St., 401DE0120DWC 
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Fig. A. 27  401.WB.Col.7, Yonge St. - Bayview Ave., 401DE0140DWC 
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Fig. A. 28  401.WB.Col.8, Bayview Ave. - Leslie St., 401DE0170DWC 
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Fig. A. 29  401.WB.Col.9, Leslie St. - Hwy404, 401DE0200DWC 
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Fig. A. 30  400.NB.1, Hwy401 - Finch Ave. W., 400DN0040DNS 

0 200 400 600 800 1000

0
4
0
0
0

8
0
0
0

Hourly Interval

V
o
lu

m
e
 (

v
e
h
/h

r)

Legend

Observation
Fitted
Prediction

0 50 100 150 200

2
0
0
0

6
0
0
0

Hourly Interval

V
o
lu

m
e
 (

v
e
h
/h

r)

Legend

Observation
Prediction

0 200 400 600 800 1000

0
5
0

1
0
0

1
5
0

Hourly Interval

S
p
e
e
d
 (

k
m

/h
r)

Legend

Observation
Fitted
Prediction

0 50 100 150 200

2
0

6
0

1
0
0

1
4
0

Hourly Interval

S
p
e
e
d
 (

k
m

/h
r)

Legend

Observation
Prediction

0 200 400 600 800 1000

0
1
0

3
0

Hourly Interval

O
c
c
u
p
a
n
c
y
 (

%
)

Legend

Observation
Fitted
Prediction

0 50 100 150 200

0
1
0

2
0

3
0

Hourly Interval

O
c
c
u
p
a
n
c
y
 (

%
)

Legend

Observation
Prediction



152 

 

 

Fig. A. 31  400.NB.2, Finch Ave. W. - Steeles Ave. W., 400DN0080DNS 
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Fig. A. 32  400.SB.1, Hwy401 - Finch Ave. W., 400DN0040DSS 
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Fig. A. 33  400.SB.2, Finch Ave. W. - Steeles Ave. W., 400DN0080DSS 
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Fig. A. 34  404.NB.1, Sheppard Ave. E. - Finch Ave. E., 404DN0010DNS 
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Fig. A. 35  404.SB.1, Sheppard Ave. E. - Finch Ave. E., 404DN0010DSS 
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Appendix B 
Fundamental Diagrams from location 1 and 2  

 

Fig. B. 1  3D scatter plot of traffic volume, speed and occupancy, location 1 

 

Fig. B. 2  3D scatter plot of differenced volume, speed, and occupancy, location 1 
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Fig. B. 3  Fundamental Diagrams, traffic data from location 1  
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Fig. B. 4  Fundamental relationships between differenced traffic variables, location 1 
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Fig. B. 5  3D scatter plot of traffic volume, speed and occupancy, location 2 

 

Fig. B. 6  3D scatter plot of differenced volume, speed, and occupancy, location 2 
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Fig. B. 7  Fundamental Diagrams, traffic data from location 2 
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Fig. B. 8  Fundamental relationships between differenced traffic variables, location 2 
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