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Nonlinear, Nonbinary Cyclic Group Codes 
G. Solomon' 

New cyclic group codes oflength 2"- 1 over (m - j)-bit symbols are introduced. 
These codes can be systematically encoded and decoded algebraically. The code 
rates are very close to Reed-Solomon (RS) codes and are much better than Bose- 
Chaudhuri-Hocquenghem (BCH) codes (a former alternative). The binary (m - j)- 
tuples are identified with a subgroup of the binary m-tuples which represent the 
field GF(2m). Encoding is systematic and involves a two-stage procedure consisting 
of the usual linear feedback register (using the division or check polynomial) and a 
small table lookup. For low rates, a second shift-register encoding operation may be 
invoked. Decoding uses the RS error-correctingprocedures for the m-tuple alphabet, 
i.e., the elements of the field GF(2m). Appendices A and B list (m - j)-tuple codes 
for m = 4, 5, and 6.  

1. Cyclic Group Codes of Length (2"'-1) Over (2) m even: ~r p' = o for o 5 i 5 m - 1 except for a 
Binary ( m  -1 )-tuples single odd integer p ,  p < m, and Tr p P  = 1. 

Group codes of lengths up to 2" over binary ( m  - 1)- 
tuples are introduced and are shown to be cyclic and sys- 
tematically encodable. These ( m  - 1)-tuples are identified 
with an additive subgroup of the field GF(2m). These 
codes are not linear; that is, a codeword does not admit 
multiplication by a GF(2m) field element t o  yield another 
codeword. 

Consider the field GF(2") along with a primitive ele- 
ment p, which generates the n = (2" - 1) roots of unity. 
In addition, ,8 is chosen with the following properties: 

(1) m odd: Tr p' = 0 for 1 5 i 5 m - 1, where Tr 
denotes the linear field operator "trace." Tr p = 

+ p2 + p4 + . . . + p2m-1; thus, Tr p E GF(2), 
Tr p2 = Tr p, and Tr cz2 = Tr fix, for c , z  E 
GF(2*). 

Independent consultant to the Communications Systems Research 
Section. 

The following are polynomials for p that satisfy the 
conditions (1) and (2) above for 3 < m 5 12. 

m Polynomial for ,B Explanation 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

3 1 0  
4 1 0  
5 3 0  

7 3 0  

9 5 0  
10 3 0 
11 9 0 

(23 + 2 + 1) 

6 1 0  (Tr p 5  = 1) 

8 4 3 2 0  (Tr p 5  = 1) 

(Tr p7 = 1) 

1 2 6 4 1 0  (Tr p" = 1) 
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Codes of length greater than 4096 are rarely invoked in 
present-day block-coding techniques. Do these properties 
extend beyond m = 12? 

An element c E GF(2'") may be represented by c = 
cip'.  One may identify Tr c by its binary represen- 

tation ( c i ) ;  0 5 i 5 m - 1, and single out co for m odd and 
c,, for m even. Thus, the binary value Tr c is determined 
by only the trace-one position (0 or p )  in its binary m-bit 
representation. 

Choose an (n ,  k ;  d )  Reed-Solomon (RS) code over 
GF(2'") so that the codewords are values of sets of poly- 
nomials P ( x )  with coefficients in GF(2'") of fixed highest 
degree ( n  - d )  or ( n  - d - 1). A codeword a = ( a j )  is 
represented by the values of a polynomial Pa(.) so that 
aj = Pa(pj), o 5 j 5 - 1. 

Restrict Pa(.) for all codewords a to an (m - 1) order 
subgroup of GF(2'") by stipulating that Tr P ( x )  = 0 for 
t E GF(2'"). Note that P ( z )  as written here is generic for 
all Pa(.). The codes thus generated are cyclic group codes 
over (m - 1)-bit symbols and are systematically encodable 
for codes meeting the conditions in the main theorem. 

Example 1. Take the RS code A of dimension 5 over 
GF(2m), a E A, a = ( a ; ) ,  and ai = Pa(P). The polyno- 
mials Pa(.) are of degree 4 with Tr Pa(.) = 0, for all x E 
GF(2m). For a general P(t) and dropping the subscript 
a, P ( x )  = A + B x  + C x 2  + Ox3 + E x 4 ;  A ,  B , C ,  D ,  E E 
GF(2'"). The condition Tr Pa(.) = 0 gives Tr A = 0, 
B4 + C2 + E = 0, and D = 0. This code has the binary 
dimension (m - 1) + 2m. 

For m = 3, one gets binary dimension 8 or dimension 
4 over 2-tuples; i.e., a (7, 4; 3) code over binary doubles. 
This is a reduction from the (7, 5; 3) RS code over binary 
triples! 

There exists no integer dimension over (m - 1)-tuples 
for rn > 3 since (m - 1) + 2m is not a multiple of (m - 1). 

Example 2. Take an RS code of dimension 11 over 
GF( 16) but choose as the Mattson-Solomon (M-S) set the 
polynomials P(t) of degree 11, and set the constant term 
equal to zero. P(t) = 11 titi; Tr P(t) = 0 leads to 

c': + c; + c: + C s  = 0 

c: + cg + cg = 0 

c5 + c; + c:o + = 0 

+ c7 = 0 

The number of binary dimensions is 12 + 8 + 6 + 4 = 
30, which is dimension 10 over binary triples. Thus, the 
(15, 11; 5) RS code over GF(16) is transformed into the 
nonsystematic (15, 10; 5) code over trace-zero elements of 
GF(16). 

Example 3. Similarly, the RS (15, 7; 9) code over 
GF( 16) using polynomials of degree 6 from 0 to 6, using 
analogous techniques, gives the relations 

T r c o = o  

c; + cg + c4 = 0 

c5 = 0 

The binary dimension count is 3 + 8 + 4 = 15, which 
yields a (15, 5; 9) code over triples. Compare this with 

(15, 5; 11) RS over btuples, 

(15, 5; 7) Bose-Chaudhuri-Hocquenghem (BCH) 
over GF(8) and GF(2), and 

(15, 4; 10) BCH over GF(4) (doubles). 

These nonsystematic codes are cyclic. Examine the 
conditions of the coefficients as in Example 2; for exam- 
ple, when a codeword P ( x )  is shifted r positions to the left, 
the new polynomial P ' ( x )  that describes this new cycled 
codeword becomes P(t) = P(p't). If P ( z )  = E c i x i ,  
then di = cipir and 

A. General Construction of These Cyclic Codes 

To construct integer dimension codes of lengths up to 
2'" over (m - 1)-tuples with distance d ,  start with an RS 
code characterized by polynomials with M coefficients in 
GF(2m). These polynomials are to  be of degree n - d or 
degree n-d+l (if the constant term = 0). The RS (n ,  k ; d )  
code has M = k, n = 2'" - 1, and k = n - d + 1. 
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8. Conjugate Classes 

Consider the map x + x2 and define the sets Mi for 
the odd integers i. Make them distinct: 

C. Alternate Construction 

Consider generator polynomial g(x) with roots as pow- 
ers of powers of /3 in either the set A = { 1,2,3,4,  . . . ,22} 
or B = ( O , l ,  2 ,3 , .  . . ,2t  - 1). Choose A for m odd and I3 
for m even. Examine the conjugate classes Mi that inter- 
sect A or B. Let Ni be the number of elements in these 
Mi,  and let Ai stand for the number in Mi n A or Mi n B. 
There are (Ni - Ai - 1) remaining independent constants 
for each i to be summed over the relevant i. Call this sum 
T: T = c ( N i  - Ai - 1). If T m  = S(m - 1) for S an inte- 
ger, then the dimension of the entire (m - 1)-tuple t-error 
correcting code is S + dim of t-error correcting BCH code 
over m-tuples. A or B is chosen so that Tm/(m - 1) is an 
integer. 

Mi = { i2J (mod 2m - 1) : j  = 0 , 1 , 2 , . - . , m  - 1) 

Each distinct set contains either m integers or some mi 
integers where mi I m. The Mi’s are ordered in in- 
creasing i .  For m = 4, the sets are M1 = (1,2,4,8); 
M3 = (3,6,9,12); Ms = (5,10}; and M7 = (7,11,13,14). 

The condition Tr P ( z )  = 0 translates into a condition 
on the integers in Mi that occurs as powers of x in the 
M-S polynomial. For each distinct set Mi there is a linear 
dependency. If all Mi have the same number of elements 
m, the effective k-dimension narrows down to deg P - r 
where r is the number of independent Mi’s that occur in 
the powers of x. To yield an integer dimension, m(deg P -  
r )  must be a multiple of (m - 1). Moreover, if deg P = 
n - d - 1, one gets an additional dimension in this case 
since the condition Tr (constant) = 0 gives another set of 
(rn - 1)-tuples. 

Example 4. In this example, m = 5 and codes are 
over 4-tuples. Start with (31, 27; 5) RS code over GF(32). 
The M-S polynomials here are of degree 26 and include the 
constant term. M I  = (1 2 4 8 16); M3 = (3 6 12 24 17); 
M:, = (5 10 20 9 18); M7 = (7 14 (28) 25 19); Mi1 = 
(11 22 13 26 21); and M15 = (15 (30 29 27) 23). In- 
tegers in parentheses indicate powers omitted in the M-S 
polynomials. 

With degree of P ( x )  = 26, code dimension k = 27, 
and r = 6. This is 
obtained as follows: 26 - 6 = 20 (5-tuples) and 20 x 5 = 
25 x 4 = 25 (4-tuples). Add the constant term to obtain 26 
4-tuples. Since deg P ( x )  = 26, the 4-tuple code obtained is 
the (31, 26; 5) code. This code is cyclic and nonsystematic 
when encoded via the coefficients of the polynomials P ( x ) .  
There are ways to encode systematically. 

Here one has a (31, 26; 5) code. 

Example 5. Using similar arguments, one obtains 

m r Code over 4tuples deg P ( x >  

22 23 6 (31, 21; 9) 
18 19 6 (31, 16; 13) 
13 13 5 (31, 10; 19) 

The full list of length-31 codes appears in Appendix A. 

Example6. L e t m = 4 a n d / 3 b e a r o o t o f x 4 + x + 1  = 
0. Let the generator polynomial contain A = {p’ : 0 5 i 5 

and M3 n A = (3). T = (4 - 2 - 1) + (4 - 1 - 1) = 3 
and S = 3 x 413 = 4. One therefore has a contribution of 
four dimensions over 3-tuples. Add this to the BCH code 
of dimension 6, which does the regular job, and obtain a 
(15, 10; 5 )  cyclic code over triples. 

3). Mi = (1 2 4 8); M3 = (3 6 9 12); M1 n A = {1,2}; 

Example 7. Let m = 7; A = (1,2,3,4,5,6);  j3 is a 
root of x 7 +  x3 + 1. Start by asking for a 3-error correcting 
code. 

M1 n A  = {1,2,4}; M1 = (1,2,4,8,16,32,64} 

M3 n A = (3,6}; M3 = {3,6,12,24,48,96,65) 

M5 n A = (5); M:, = (5,10,20,40,80,160,33,66) 

Therefore, one can have (3 of 7) + (4 of 7) + (5 of 7) lin- 
early independent binary dimensions = 12 x 7 = 14 x 6. 
Now consider the (127, 106; 7) BCH code over 6-tuples, 
which contain none of the elements of Mi;  i = 1,2,3.  
Thus, one has a total of 120 dimensions over 6-tuples, or a 
(127, 120; 7) code over binary 6-tuples. Compare this with 
the distance-7 RS code, which has dimension 121. Only 
one dimension has been lost in obtaining a cyclic group 
code over 6-tuples. 

D. Decoding 

RRceive the codeword in 6-tuples and decode for three 
errors. The decoding algebra is performed in GF(27) and 
the 6-tuples are read as trace-zero elements in their 7-tuple 
form. 
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E. Systematic Encoding 

An example is presented here, followed by a theorem 
for general construction. 

1. Construction of a Systematic Cyclic Group 
(15, 10; 5 )  Code Over  Binary Triples. Let g ( x )  be 
the generator polynomial of the (15, 11; 5) Rs code over 
GF( 16) with a a root of x4 + x + 1 = 0. 

3 

g ( x )  = rI (x + a’) = x4 + CPx3 + a 4 x 2  + ax + a6 
i = l  

Here the binary 4-tuple (a ,  6 ,  c, d) represents the field ele- 
ment u = a + ba + ca2  + da3 .  Binary triples ( a ,  b , c )  are 

treated as elements a + ba + c a 2  of GF(16). Note that 
in GF(16), Tr a = Tr 1 = 0, so the triples belong to  the 
subgroup with elements of trace zero. 

Place the 10 information symbols in the first 11 entries, 
omitting the eighth position for the Rs encoder. Now in- 
troduce a unique triple called 7 in the eighth position and 
run all 11 triples through the RS encoder to generate four 
parity symbols, which are elements of trace zero in GF( 16). 
What is this unique 7? 

The information triples correspond to the elements a’, 
for j = 0, 1, 2, 4, 5, 8, 10, and co, where aw denotes the 
zero additive identity of the field. Note the following set 
E of seven codewords (in powers of a)  of the RS code: 

This shows that the information set at the positions 0, 1, 
2, 3, 4, 5, 6, 8, 9, and 10 for the triple code consisting of 
the elements (0, 1,2,4,5,8,10, co} is complete, since only 
00 at position 7 gives a codeword of the (15, 10; 5) code 
over triples. 

2. Explanation. Note for an entry in the eighth po- 
sition, labeled here (a’) or “seventh” position (counting 
from 0 now), the trace-one elements occur in pairs in the 
parity positions. This is because the RS code has (z + 1) 
as a factor in its generator polynomial g ( c ) ,  and so the 
sums of all symbols add to zero. Note too that all the 
possible seven ways an even number of trace-one elements 
can occur do occur. One may take any information set of 
10 trace-zero symbols plus 00 in the “seventh” symbol as 
a set of information symbols for the RS code generated by 
g(x). One gets four parity symbols, which must contain 
an even number of trace-one elements. 

Now add a unique codeword 7 from the set E above 
to what was just generated. The codeword 7 is chosen to 
eliminate the trace-one elements if they exist in the par- 
ity section to obtain a codeword with entries only having 
trace zero. Note that it is not necessary to store all seven 
words. In the set E, the triples 0, 1, and 8 in the “seventh” 

position give rise to words with trace one in position pairs 
(1, 3), (1, 2), and (1, 4). One gets all pair combinations 
by taking sums of these. Therefore, it is a basis. One need 
only store three words of size (3 + 4 + 4 + 4 + 4) = 15 bits 
and set up an algorithm for usage. This is a full systematic 
encoding since the information symbols are transparent 
and accessible. The general construction will be presented 
later along with the general case for (rn - j)-tuple codes 
of length 2” - 1, j 2 2. 

The cyclic group codes defined above can be en- 
coded systematically. The encoding will be in two stages: 
one employing a linear feedback shift register (LFSR) 
encoder of the RS type and a ROM and perhaps even 
a second LFSR encoder. Start with an RS code of length 
n = 2” - 1 over GF(2’”) with distance d. The M-S polyno- 
mials for the code are either P ( z )  = xEil cjxi or &(I) = 

c i x i .  A cyclic group code of dimension k over (m-1)- 
tuples and distance d = n - M +  1 was defined by using the 
condition that Tr P ( x )  = 0 or Tr Q(z) = 0. Then M’ free 
rn-bit constants were obtained where M’rn = k(rn - 1) for 
Q(z) and (M’ - 1)k = (rn - l)(k - 1) for P(x ) .  In order 
to systematically encode either case, a theorem is needed 
for finding a particular set of independent coordinates. 

M 
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Theorem. Let A be a (2" - 1, k; d )  group cyclic 
code over binary (rn - 1)-tuples as defined above by a 
conditioned set on M' coefficients of M-S polynomials 
Q(3:) = c;c', where M'rn = (rn - 1)k. If there ex- 
ists a set of k coordinates with the property that the only 
codeword in A that is zero at these positions is the all-zero 
codeword, then these coordinates can serve as informa- 
tion symbol positions; i.e., all codewords may be generated 
from the coordinate values there. Furthermore, if these m 
points are contained in the first M consecutive positions, 
one may fill in the M - m missing positions with elements 
using a ROM and an algorithm and then encode all the n 
positions from the first M via the usual RS shift-register 
encoder. The proof is similar for the P ( z )  type. 

M '  

Proof: If one has such a set of k coordinates, each 
of the k"-' possible values taken at these coordinates 
generates a distinct codeword of A. Otherwise, there 
are at least two codewords of A that correspond to  some 
k-tuple. (Note that A has km-' codewords.) If two such 
codewords are added together, one obtains a nonzero code- 

0 0 2  4 1 8 0 0 2 4 1  
0 0 8 0 0 8 0 1 0 2 5 1  
0 0 0 0  0 1 8  0 5 5 4  

Note that 00 occurs in all pairs of positions and does not 
satisfy the hypothesis of the theorem. This code cannot 
be generated systematically from any two positions. 

II. Cyclic Group Codes of Length (2m-1) 
Over Binary (m-])-tuples, ]> 2 
Consider codes of length 2" - 1 over j-tuples, where 

j 5 rn - 2 and gcd(2J - 1,2" - 1) = 1. The extension 
requires no new ideas or theorems but actual definitions 
and calculations. Appendix B lists a set of these new codes 
for k = 5 and 6. Appendices C and D are constructions of 
two different codes over binary triples. 

To obtain new codes of length 2m - 1 over j-tuples, 
j < r n - 1 :  

(1) Represent the j-tuples as subgroups of the trace-zero 
elements of the field, with rn odd and rn even treated 
differently. 

(2) Characterize algebraically to  preserve cyclicity. 
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word in A with zeros at these rn positions, which contra- 
dicts the hypothesis of the theorem. If the k positions are 
in consecutive M positions of the codewords, there may be 
ways to fill something in and use the available RS encoder 
technology. CT 

A Caveat. If one starts from the polynomial construc- 
tion of these codes, one has no guarantee that such a set of 
h coordinates exists. Consider a cyclic code generated by 
the M-S polynomials P(3:); 3: = p' for 0 5 i 5 14. Then 
P ( z )  = c ~ z ~ + c ~ ~ ~ + c ~ ~ ~ ;  cg E GF(16), c5 E GF(4). This 
gives a code of dimension 2 over trace-zero elements (which 
are represented by triples). It is seen here that two coor- 
dinates do not define any triple codeword in a systematic 
manner. 

3. Construction of the (15, 2; 12) Code. List the 
field elements in powers of p where p is a root of x4 + 3: + 
1 = 0 (00 denotes the zero of the field). The triples are 
represented by (1,2,4,8,00,0,5,10). Listed here are 35 of 
the 64 codewords corresponding to  P(p ' )  for 0 5 i 5 14 

8 00 2 4 1 8 (5 shifts) 
00 0 4 10 2 10 (15 shifts) 
4 5 10 00 2 1 (15 shifts) 

(3) Systematically generate the codes by invoking the 

(4) Note that if j I rn, or 23'- 1 I 2"-1, these are no better 

theorem. 

than BCH codes. See the example in Appendix C. 

Case 1 (rn Odd). Find p primitive in the field GF(2m) 
such that Tr p' = 0, for 1 5 i 5 m - 1. To obtain a 
subgroup of (rn - 2)-tuples, stipulate that for aEGF(2m), 
Tr a=Tr ap-' = 0. To generate subgroups of order (m - 
j ) ,  continue adding Tr a/?-'+' =0, i 5 j to the previous 
conditions. 

Case 2 (rn Even). Find p primitive such that Tr Pj = 
0, 0 5 j < p with p as close to  m - 1 as possible. To 
obtain a subgroup of (rn - 2)-tuples, stipulate that for 
a E GF(2"),Tr a = Tr ap = 0. To generate subgroups of 
order (rn - j ) ,  continue adding Tr a@-' = 0, i 5 j to the 
previous conditions. 

A. Cyclicity 

The above conditions ensure cyclicity. For rn odd and 
j = m - 2, Tr P ( z )  = Tr P(3:)p-' = 0 for the appropri- 



ately chosen p. For the polynomial P ( x )  = E c i x i ,  i = 1, 
2,  4,  and 8,  the above conditions lead to  the equations 

cy + c; + c: + CFj = 0 

p c y  + p - 4 4  + p - y  + p-'ca = 0 

Shift the P ( x )  codeword r positions to the left. The new 
set of coefficients for the shifted word is P'(z)  = C d i x i ,  
di = ci,@. A simple calculation verifies that the di's meet 
the conditions above. 

B. Systematic Encoding 

The theorem states that a set of k coordinates can serve 
as a basis for the group code if there are no nonzero code- 
words over j-tuples that are zero at these coordinates. Let 
these k coordinates be the information coordinates. Now 
if these k's happen to fall in any set of k' consecutive co- 
ordinates where k' is the degree of the M-S polynomial of 
the linear cyclic code over the full field, one may encode 

systematically by using the encoding shift register plus the 
small size ROM template that fills in the missing (k' - k) 
values plus the remaining parity symbols. The technique 
is similar to the (m - 1)-tuple case. 

1. Example of Construction of a (31, 25; 5) Code 
Over Binary Triples. Construct the field GF(32) by 
choosing p as a root of x5  + x3 + 1 = 0. The trace-zero 
elements are 1, 2, 4, 8 ,  16, 3, 6, 12, 24, 17, 15, 30, 29, 27, 
23, and 03 (the zero identity of the field). The trace-one 
elements are 0, 5, 10, 20, 9, 18, 11, 22, 13, 26, 21, 7, 14, 
28, 25, and 19. Take a set of elements a E GF(32) with 
Tr a = Tr ap-' = 0. There are eight elements here and 
they are (in powers of p) 2, 3, 4,  16, 17, 24, 30, and 03. 

Represent GF(32) by &tuples (a ,  b,  c ,  d,  e )  corresponding 
to a = a + b p  + cp2 + dp3 + ep4. The triples to encode 
are now ( O , O ,  c, d,  e )  in this representation. The generator 
polynomial for the (31, 27; 5) RS code over GF(32) is given 
by g(+) = n;,, ( x  + pj ) .  Explicitly, g ( x )  = x4 + pl1x3 + 
p2ox2 + p'4x + p6. 

Consider the RS codewords given by 

00 03 03 . . .  03 00 03 co 0 00 03 22 25 18 23 
co 00 00 . . .  00 00 co 0 00 00 03 13 27 22 28 

From the above, it can be shown that if the coordinates 
0-22, 25, and 26 (skipping 23 and 24) are chosen as infor- 
mation positions, they are a basis for group-code genera- 
tion. To see this, multiply both sequences by the eligible 
triples and verify that one does not obtain a codeword that 
contains all triples. 

2. Encode. Take any information sequence of triples, 
place 03 in positions 23 and 24, and generate a codeword 
of the full RS code. Examine the four parity symbols for 
nontriple elements and add the proper unique codeword of 
the form 

030303030303. . . abcococde f 

so that a and b are triples chosen such that c, d ,  e ,  and f 
have ones in same first two positions as the first codeword. 
That such a word exists is guaranteed below. First, count 
the dimension of the triple code. 

3. Dimension Counting. The conjugate class of 1 2 
is 1 2 4 8 16. Since three dimensions are needed to get 
one, only one dimension is extracted from this class. Now 

consider the class containing three dimensions. There are 
four elements left, so two can be extracted, giving a total 
of 3 x 5 bits, which in symbols equals five (triples) in di- 
mension. There is a BCH code of dimension 20 that has 
d = 5, so the total triple dimension is 20 + 5 = 25. To ver- 
ify the encoding, first an even number of elements a with 
Tr a = 1 must occur in the four parity symbols. The RS 
encoder has (z + 1) in the generator polynomial. Secondly, 
an even number of Tr ap-' = 1 must occur for the same 
reason. There are at most 8 x 8 such combinations. Now 
the elements a and b in these positions give rise to 64 dif- 
ferent word possibilities and they must all yield different 
possible patterns, otherwise one would get a codeword of 
triples generated by 03030003co03 . . . abcococde f ,  which, 
as has been seen, is impossible by sheer calculation. 

C. Optimality of These Codes 

One wonders how efficient or optimal these codes are. 
One can compare them with RS codes having the same 
number of parity checks and see how they differ, or look 
at BCH codes that have the same number of parity checks. 
Then there is always the simple Hamming bound to fall 
back on. For a length n = 2k - 1, and field elements of 
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q = n + 1 elements, the t-error correcting code will have 
dimension r where 

where (I) = n!/ j ! (n  - j ) ! ,  which approximates roughly to 

or r 5 n - t - log, (i). It is known that for the RS codes, 
r = n - 2t.  Now for j-tuples, q = 2J and n = 2* - 1. An 
examination of the codes (15, 10; 5) over triples, (31,26; 5) 
over 4tuples, and (63, 56; 7) over 5-tuples shows that they 
are close to the Hamming bound. 



Appendix A 

Cyclic Codes of Length 2m -1 Over ( m  -1)-tuples 

Cyclic Group Codes of Length 15 Over Binary Triples: 

(15,5;9),(15,10;5),(15,7;7) 

Cyclic Group Codes of Length 31 Over Binary 4-tuples: 

(31 ,6;  23), (31,lO; 19), (31,16;  13), (31,21;9) ,  (31,26; 5) 

Cyclic Group Codes of Length 63 Over Binary 5-tuples: 

(63 ,7;  51), (63,12;45) ,  (63,19;  37), (63,24;  31), (63,28;  27),  (63,33;  25), 
(63,36;  21), (63,42; 17), (63,47; 13), (63,51;  9),  (63,56; 7) 
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Appendix B 

Cyclic Codes of Length 2 m  -1 over 1 -tuples, 1 1  m -2 

m = 5 ,  j = 3. Codes over binary triples: 

(31, 6; 21), (31, 10; 15), (31, 16; l l ) ,  (31, 21; 7), (31, 25; 5) 

m = 5 ,  j = 2. Codes over binary doubles: 

(31, 6; 15), (31, 11; 13), (31, 16; 9), (31, 20; 7) 

m = 6, j = 4. Codes over binary 4-tuples: 

(63, 7; 47), (63, 12; 39), (63, 18; 31), (63, 22; 27), (63, 28; 25), (63, 30; 21), 
(63, 35; 21), (63, 41; 15), (63, 47; l l ) ,  (63, 51; 9), (63, 57; 5) 
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Appendix C 

Construction of the (15, 7; 7) Group Cyclic Code Over Triples 

Let pbea roo to fz4+z+1 ,  withpaprimitivegenerator 
of GF(16). List the field elements as powers of p and let oo 
denote the additive 0 of the field. The trace-zero elements 
as integer powers of /3 are 03, 0, 1, 2, 4, 8, 5, and 10. 

f(z) = n (z + P j ) ;  j =0, 1, 2, 4, 8, 3, 6, 5, and 
f(z) = (z + l)(z4 + z + 1)(1 + @')(I + p6)(z + p5).  This 
polynomial written in ascending powers of I has coeffi- 
cients [14,0,7,oo,7,14,4,4,0]. 

Construct the M-S polynomials of degree 8,  which 
give rise to  the (15, 9; 7) RS code. Set the coefficient 
of x7 equal to zero and consider the check polynomial 

The following codewords illustrate that the information 
symbol coordinates can be chosen as 0, 1, 2, 3, 4, 5, and 
7. (See the theorem.) 

c o o o o o o o o o o o  0 oo 4 6 1 4 1 0  1 1 1  5 
o o o o o o o o o o o o  l o o  5 7 0 11 2 12 6 
o o o o o o o o o o o o 2 o o 6  8 1 1 2 3 1 3 7  
o o o o o o o o o o o o 4 o o 8 1 0 3 1 4 5  0 9 
o o o o o o o o c o ~ 5 ~ 9 1 1 4  0 6 1 1 0  
o o o o o o o o o o o o 8 o o 1 2 1 4 7  3 9 4 1 3  
o o o o o o o o o o o o l O o o 1 4  1 9  5 11 6 0 

One sees that 0, 1, 2, 3, 4, 5, 7 can serve as an in- 
formation set for the triples, since there does not exist a 
nonzero word that is zero a t  these positions. Still, an al- 
gorithm would be preferable so that the codewords can be 
systematically generated via the modified (15, 8; 7) RS 
code generated by f(x) .  For this, a means is needed of 
generating a triple value a t  position 6 that depends on the 
values at  positions 0, 1, 2, 3, 4, 5, and 7. This can be 
achieved by using a ROM indexed by position and triple 
value at that position. This would be a 9-bit ROM (3  bits 
for position, 3 bits for the triple at that position, and 3 bits 
for the triple to be placed in position six). To obtain this 
ROM requires calculation beforehand. 

The contents are listed with positions labeled from 0 to 
7 (omitting 6), and triples listed by values ( a ,  b ,  c) corre- 
sponding to a + bp + c p 2 .  In Table C-1 are shown only 
21 such listings at  the 0, 1, and 2 powers of ,B since these 

serve as a basis for the trace-zero elements. Thus, the 9-bit 
ROM generates for each triple at  each information posi- 
tion the values that are added to form an element placed 
in the sixth position of the encoding shift register. 

A second encoding technique arises from this calcula- 
tion and is guaranteed by the theorem. Place the infor- 
mation triples along with oo in the sixth position and gen- 
erate the remaining seven 4-tuples in GF(16). From the 
4-tuples, extract a 7-tuple corresponding to the trace-one 
coefficient of ,B3. Place this 7-bit element in a 7 x 3 ROM, 
which generates a triple to cancel the trace-one elements. 
Have this triple index a second ROM, which generates 
seven triples (see the table, which verifies the conditions 
of the theorem) to be added to  the seven-triple portion of 
parity that has been generated. 
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Table C1. Uetlngs at the 0,1, and 2 powers of p. 

Position Value Parity at 6 

0 0 5 
0 1 a3 

0 2 4 

1 0 0 
1 1 4 

1 2 0 
2 0 5 
2 1 0 
2 2 5 
3 0 0 
3 1 4 

3 2 0 
4 0 5 
4 1 0 
4 2 5 
5 0 10 
5 1 4 

5 2 1 
7 0 00 

7 1 0 
7 2 8 
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Appendix D 

(15, 12; 3) Cyclic Code Over Binary Doubles 

There are several ways to obtain this code. The standard method involves using the BCH code over GF(4). The 
generator polynomial has roots 1, P ,  and P4, where /3 is a root of z4 + x + 1 = 0. An alternative is t o  identify the binary 
doubles with the set of elements in GF(16) (a ,  b )  corresponding to a + b p .  The (15, 12; 3) code is then made up of the 
BCH (15, 10; 4) over GF(4) with generator polynomial z5 + x4 + x2 + 1. 

Add one of the 15 codewords generated by (z + ,f3')(x + P") (x  + P13) using the conditions coming from the above 
exposition. These words turn out to be any cyclic shift of 

Note that these binary doubles correspond to 00, 1, /3 and P4. It would be interesting to see if these codes are isomorphic 
once the two sets of binary doubles are identified. The BCH code has a simpler encoding. 
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