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Recent progress in the area of nonlinear modal analysis for structural systems is reported.

Systematic methods are developed for generating minimally sized reduced-order mod-

els that accurately describe the vibrations of large-scale nonlinear engineering structures.

The general approach makes use of nonlinear normal modes that are defined in terms of

invariant manifolds in the phase space of the system model. An efficient Galerkin projec-

tion method is developed, which allows for the construction of nonlinear modes that are

accurate out to large amplitudes of vibration. This approach is successfully extended to

the generation of nonlinear modes for systems that are internally resonant and for sys-

tems subject to external excitation. The effectiveness of the Galerkin-based construction

of the nonlinear normal modes is also demonstrated for a realistic model of a rotating

beam.

Copyright © 2006 Christophe Pierre et al. This is an open access article distributed under

the Creative Commons Attribution License, which permits unrestricted use, distribution,

and reproduction in any medium, provided the original work is properly cited.

1. The nonlinear normal mode

In the design-analysis cycle of complex structural systems such as rotorcraft, aircraft, and

ground vehicles, it is necessary to thoroughly understand their vibratory response. If the

vibration of interest is restricted to small neighborhoods of the static equilibrium posi-

tions, then the assumption of a linear system can generally be made. The corresponding

analysis procedure is then greatly simplified, through the use of modern tools such as Fi-

nite Element Analysis and Modal Analysis. In contrast, when the amplitudes of oscillation

are large, beyond the scale of linearization, or when a system behaves inherently nonlin-

early with respect to its equilibrium configuration, then nonlinear equations of motion

must be used for the model.

In the area of nonlinear vibrations, much research work has been done for systems

with a few degrees of freedom (DOF), such as lumped-mass models, and models ob-

tained via a Galerkin discretization of the governing partial differential equations (PDE)
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Figure 1.1. A two-degree-of-freedom linear mass-spring-dashpot system.

for continuous systems. These low-order models are useful for understanding general be-

havior. However, many of the methods developed are applicable only to relatively simple

systems, and become unwieldy when used for systems modeled by complex PDEs or with

a large number of DOFs.

In order to obtain accurate reduced-order models for nonlinear systems, “nonlinear

modal analysis” has been proposed as an analog to its linear counterpart. The concept of

nonlinear normal modes (NNM) was first developed by Rosenberg [9] for conservative

systems with symmetric nonlinearities, essentially as an extension of the linear normal

mode idea. A detailed review is provided by Vakakis [11], which summarizes much of the

research in this area to date.

The research presented herein aims at the development and implementation of new

model reduction methods for nonlinear structural systems, based on an invariant mani-

fold approach proposed by Shaw and Pierre [10]. In order to illustrate the fundamental

concept of the invariant manifold-based reduced-order modeling approach, a linear sys-

tem is shown in Figure 1.1. The governing equation of motion is written in the state space

as follows:

ż = Az, (1.1)

where the state variable z = [ x1 y1 x2 y2 ]T , and velocities are yi = ẋi. The determination of

the state matrix A is trivial and it is not given here. To construct the invariant manifold,

the pair of state variables for the left mass is chosen as the master coordinates, (u,v) =

(x1, y1). The remaining state variables, (x2, y2), are denoted as the slave coordinates, and

are expressed as

x2 = X2(u,v), y2 = Y2(u,v). (1.2)

The invariant manifolds are determined by the constraint relationship in (1.2) and the

equations of motion. Two such manifolds result, one for each mode. The resulting geom-

etry of the invariant manifold for system (1.1) is shown in Figure 1.2. As can be seen, the

manifold is planar for this linear system. Consequently, the invariant manifold approach

reduces to the well-known linear mode results in the linearized case, although it offers a

formulation that is entirely different from the traditional one [10].
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Figure 1.2. A modal invariant manifold for the linear two-DOF mass-spring-dashpot system: (a) x2 =

X2(u,v); (b) y2 = Y2(u,v); where (u,v)= (x1, y1).

The invariant manifold approach can be conveniently extended to nonlinear vibratory

systems. For the two-DOF nonlinear system shown in Figure 1.3, the master coordinates

are chosen as (u,v) = (x1, y1), and the slave constraint relationships are defined in the

same way as in (1.2). The invariant manifold can be approximated using the asymptotic

method [10] and it is shown in Figure 2.1. As can be seen, the manifold for the nonlinear

system is a curved surface.

The definition of an invariant manifold is related to its inherent property: invariance.

The invariance of a manifold indicates that the motion initiated on the manifold remains
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Figure 1.3. A two-degree-of-freedom nonlinear mass-spring system (a nonlinear spring with cubic

nonlinearity is attached to mass one).

on that manifold for all time [10]. The nonlinear normal mode is defined on the invariant

manifold as follows: “A motion that takes place on a two-dimensional invariant mani-

fold in the system’s phase space” [10]. This manifold passes through the stable equilib-

rium point of interest and, at that point, is tangent to a two-dimensional (linear mode)

eigenspace of the linearized system about that equilibrium. On this manifold, the system

behaves like a single-degree-of-freedom system.

The invariant manifold approach can be used to define and construct nonlinear nor-

mal modes of motion for a wide class of nonlinear vibratory systems [2, 6, 10, 11]. The

following sections give an overview of the construction methods and the applications of

nonlinear normal modes.

2. The construction of the nonlinear normal mode: asymptotic approach

versus Galerkin method

A n-DOF vibratory system can be expressed in the following first-order form:

ẋ = y, ẏ = f (x, y), x, y ∈ℜN , (2.1)

where the n-dimensional vectors x and y are the system linear modal displacements and

linear modal velocities, respectively. The use of linear modal coordinates in (2.1) offers a

convenient standard form from which to construct the invariant manifold-based nonlin-

ear normal mode [7].

The asymptotic approach is outlined here for the construction of the invariant mani-

fold. First, multiple pairs of linear modal coordinates (displacement-velocity) are chosen

as the master coordinates, the “seeds” of the invariant manifold:

(

uk,vk
)

, k ∈ SM , (2.2)

where (uk,vk) denotes the kth linear modal displacement-velocity pair, and SM denotes

the set of the master coordinate indices. Then, all the remaining degrees of freedom

in (2.1) are constrained to the master coordinates and approximated in series form as
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Figure 2.1. A modal invariant manifold for the nonlinear two-DOF mass-spring system: (a) x2 =

X2(u,v); (b) y2 = Y2(u,v); where (u,v)= (x1, y1).

follows:

x j
(

uM ,vM
)

=

∑

k∈SM

ak1, juk + ak2, jvk

+
∑

k∈SM

∑

l∈SM

ak,l
3, jukul + ak,l

4, jukvl + ak,l
5, jvkvl + ···O(3),

y j
(

uM ,vM
)

=

∑

k∈SM

bk1, juk + bk2, jvk

+
∑

k∈SM

∑

l∈SM

bk,l
3, jukul + bk,l

4, jukvl + bk,l
5, jvkvl + ···O(3),

for j /∈ SM . (2.3)
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In (2.3), the constraint relationships for the slave coordinates are approximated using as-

ymptotic expansions, and the coefficients, the a’s and b’s, need to be determined. The so-

lution of these coefficients has been studied by Pesheck et al. [8]. The detailed derivation

is not repeated here, since the primary focus is on the more accurate Galerkin construc-

tion method.

The asymptotic approach has some inherent deficiencies: the constructed invariant

manifold is limited to the domain near the equilibrium position, and this domain can-

not be determined a priori; the accuracy of the manifold is constrained to the order of

the polynomial used in the expansion; and the approach cannot be extended to systems

with complex nonlinearities, especially for systems with nonsmooth nonlinearities such

as gaps. In order to solve for the invariant manifold accurately, a numerical Galerkin ap-

proach has been proposed [7].

For the nonlinear system defined in (2.1), the multiple pairs of master coordinates,

(uk,vk) in (2.2), are transformed to polar coordinate form, as follows:

uk = ak cosφk,

vk =−akωk sinφk,
k ∈ SM , (2.4)

where ωk is the kth linear modal frequency, and the multiple amplitude-phase pairs,

(ak,φk), are the new master coordinates. The slave coordinates are constrained to the

new master coordinates as follows:

xi = Pi
(

ak,φk
)

, yi =Qi

(

ak,φk
)

, i /∈ SM , (2.5)

where Pi and Qi are the slave constraint functions. The governing PDEs for the invariant

manifold are found [5] to be

Qi =

∑

k∈SM

[

∂Pi
∂ak

(

−
fk
ωk

sinφk

)

+
∂Pi
∂φk

(

ωk −
fk

ωkak
cosφk

)]

,

∑

k∈SM

[

∂Qi

∂ak

(

−
fk
ωk

sinφk

)

+
∂Qi

∂φk

(

ωk −
fk

ωkak
cosφk

)]

=−ω2
i Pi + fi,

for i /∈ SM , (2.6)

where fi denotes the nonlinear force on the ith linear modal coordinate.

The invariant manifold is determined by the slave constraint functions, Pi’s and Qi’s

in (2.6), which must be solved for numerically. The system dynamics on the invariant

manifold are then governed by the master coordinates only. Hence, the original nonlin-

ear system is reduced to the master coordinates. The detailed derivation of the partial

differential equations governing the invariant manifold can be found in [5, 7], and is not

repeated here.

The Galerkin method has the following advantages over the asymptotic approach in

the construction of invariant manifolds: the range of validity of the manifold can be pre-

determined by setting the amplitude range of the master coordinates; the accuracy of

the manifold can be controlled by the expansion functions in the master coordinates,

the a’s and φ’s; and the Galerkin formulation is applicable to systems with complex
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Figure 2.2. A finite element beam with nonlinear torsional spring at the left end: length of the

beam L= 1 m, density ρ = 7860kg/m3, beam bending stiffness EI = 104 N.m2, linear spring stiffness

k = 108 N/m, nonlinear torsional force Gt = 5000u,x (0, t)2 + 20000u,x(0, t)3N (where u,x denotes the

partial derivative of u(x, t) with respect to x) [7].

nonlinearities [3] and nonlinear systems with external forcing [4]. Consequently, the

Galerkin method seamlessly interfaces with finite element models of engineering struc-

tures, and it allows the user to specify the vibration amplitude range and the accuracy of

the model over that range.

To illustrate the difference between the invariant manifolds constructed by the as-

ymptotic approach and the Galerkin method, the finite element beam model shown in

Figure 2.2 is considered [7]. The original beam model has 200 finite elements, and for

illustrative purposes the system is truncated to three linear modal coordinates. The sec-

ond nonlinear normal mode is examined. Specifically, the master coordinates are chosen

as (x2, y2) in the asymptotic approach and as (a2,φ2) in the Galerkin method. The slave

constraint for the first linear modal displacement, x1, is shown in Figure 2.3. As can be

seen, the manifold obtained from the asymptotic approach deviates dramatically from

the (more accurate) manifold obtained by the Galerkin method as the master coordi-

nates enter the strongly nonlinear region. For this three-DOF beam model, it should be

noted that there are four slave constraints, x1, y1, x3, and y3, which represent the full

invariant manifold for the second nonlinear normal mode.

3. The interaction between nonlinear normal modes: internal resonance

The nonlinear normal mode construction procedure presented in Section 2 can be uti-

lized to examine the nonlinear dynamics for the multiple modes involved in an internal

resonance. The rotating rotorcraft blade shown in Figure 3.1 is used to illustrate these

ideas; the blade model includes nonlinear bending-axial coupling and large-amplitude

motions [1, 5]. The weak formulation for the equation of motion of the blade is found

[1] to be

∫ t2

t1

∫ L

0

{

[

−mẅ−EIw,xxxx
]

δw−

[

EA

(

u,x +
1

2

(

w,x
)2
)

w,x

]

δw,x

+
[

−mü+mΩ
2(x+h+u) +EAu,xx

]

δu

−

[

EA
1

2

(

w,x
)2
]

δu,x

}

dxdt = 0, ∀t1 < t < t2,

(3.1)
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Figure 2.3. The asymptotic and Galerkin manifolds for the first linear modal coordinate contribution

to the second nonlinear normal mode: (a) x1 in terms of master coordinates (x2, y2); (b) x1 in terms

of master coordinates (a,φ) [7].

where w(x, t) and u(x, t) are the transverse and axial displacement respectively; (),x de-

notes a partial derivative with respective to the spatial variable x, and (·) represents a time

derivative; δ() denotes the variation of a quantity.

For the blade in Figure 3.1(a), a nonlinear finite element model has been developed

that includes flapping motion and axial stretching [1]. In order to achieve adequate accu-

racy, 182 finite elements are needed. A linear modal analysis is carried out to construct the

reference model, and 18 linear modes (9 flapping modes and 9 axial stretching modes)

are retained in order to achieve sufficient modal convergence. Moreover, the blade model
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Figure 3.1. Schematic of the rotating blade model: (a) a blade with coupling between flapping and

axial extension motions; (b) finite element representation of a rotating beam with constant angular

velocity, Ω. The beam has the following material and geometrical parameters: Young’s modulus E,

cross-section area A, second moment of cross-section area I , length L, and mass per unit length m.

The hub radius is h [1].

is tuned with an internal resonance between the first and the second flapping modes [5]:

the modal frequency of the second flapping mode is approximately three times the first

flapping modal frequency, ω2 ≈ 3ω1.

By selecting the linear modal coordinates for the first and the second flapping modes

as the master coordinates, (a1,φ1) and (a2,φ2), all the remaining degrees-of-freedom

are slave coordinates, and the corresponding two-mode invariant manifold can be con-

structed using the Galerkin method [5]. A cross-sectional view of the invariant manifold

(mode shape) for the nonlinear two-mode model is shown in Figure 3.2(a), where a1 and

a2 denote the amplitude of the first and the second flapping linear modes, respectively,

and x3 denotes the linear modal displacement of the third flapping linear mode in terms

of the amplitudes a1 and a2. There is a total of 16 similar cross-sectional views of the

manifold, corresponding to all the slave constraint relationships that are constructed.

Once the nonlinear normal mode is constructed, the nonlinear dynamics on the in-

variant manifold are reduced to the master coordinates. The nonlinear mode-based

reduced-order model is described by two second-order equations. As a result, the sys-

tem motion can be very efficiently simulated, as shown in Figure 3.2(b). The nonlinear

mode simulation matches the reference result very well. Note that the reference solution
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requires the direct time simulation of 18 coupled second-order differential equations—

an expensive calculation. The result for the asymptotic-based reduced-order model is also

shown: the asymptotic result is only valid in the weakly nonlinear domain, and it leads

to qualitatively wrong results in the strongly nonlinear region. In these simulations, a

peak-to-peak tip deflection of nearly 0.4 meters is obtained for this 9-meter-long blade.

4. The nonlinear normal mode for systems with harmonic excitation

The invariant manifold-based nonlinear modal analysis approach developed in Section 2

is extended to systems that are subjected to periodic forces [4], thereby providing a useful

tool for attacking the important problem of obtaining the frequency response of nonlin-

ear structures.

In order to incorporate the external excitation into the vibratory system described by

(2.1), the system’s governing equation is expressed in the following augmented form:

ẋ = y, ẏ = f
(

x, y,φ f

)

, x, y ∈ℜN ,

φ̇ f = ω f ,
(4.1)

where φ f is the additional state phase variable for the external excitation, and ω f is the

frequency of harmonic excitation. To construct the invariant manifold, the master coor-

dinates are chosen as the linear modal coordinates in the polar form, (ak,φk) for k ∈ SM ,

and the excitation state variable, φ f . The slave constraints are then expressed in the space

spanned by the master coordinates as follows:

xi = Pi
(

ak,φk,φ f

)

, yi =Qi

(

ak,φk,φ f

)

, i /∈ SM . (4.2)

The derivation of the PDE’s governing the invariant manifold and the Galerkin-based

construction method for the nonlinear normal mode under external forcing are detailed

in reference [4]. Once the nonlinear mode is constructed, the system response on the

manifold can be reduced to the master coordinates, which include the system state vari-

ables and the forcing state variable.

An example beam system is shown in Figure 4.1 with harmonic external forcing. The

equation of motion governing the beam deflection, u(x, t), is given [4] in weak form as

follows:

∫ t2

t1

{
∫ L

0

(

− ρAüδu−EIu,xx δu,xx
)

dx− ku(L, t)δu(L, t)

− γtδu,x (0, t) + f0 cosω f tδu(L, t)

}

dt = 0, ∀t1 < t < t2.

(4.3)

For simplicity, the finite element beam model is truncated to 12 linear modes for the in-

vestigation of the primary resonance near the first linear modal frequency, ω1 =

222.4 rad/s. The first linear modal coordinates are chosen as the master coordinates,

(a1,φ1). The invariant manifold is constructed corresponding to the excitation frequency
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Figure 3.2. The invariant manifold and the time response on the manifold: (a) a cross-sectional view

of the invariant (modal) manifold for the four-dimensional nonlinear normal mode; X3(a1,a2) at

φ1 = φ2 = 0; (b) time response for the blade tip displacement in the constructed four-dimensional

nonlinear mode: the blue solid line refers to the 18-DOF reference model solution, the red dashed

line represents the two-DOF reduced-order model, and the green dashed line denotes the result from

the asymptotic-based reduced-order model [5].

ω f [4]. Once the nonlinear normal mode is constructed, the system dynamics near the

first primary resonance can be investigated in the reduced-order model governing the

master coordinates only. The steady-state response and the transient responses are shown

in Figures 4.2–4.4.
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Figure 4.1. An Euler-Bernoulli beam with a nonlinear torsional spring, γt , at the left end, and a har-

monic external excitation at the right end. The beam has the same material and geometrical properties

as the beam in Figure 2.2. The amplitude of the force, f0, is 3,000,000 N. The excitation frequency,

ω f , is swept from 220 rad/s to 260 rad/s for the investigation of the first primary resonance [4].
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Figure 4.2. The amplitude of the steady-state response of the first linear modal coordinate (master

coordinate), η1(t), versus the excitation frequency, ω f . The solid line refers to the stable steady-state

response obtained from the original system model; the dashed line refers to the unstable steady-state

response from the original system model; and the circle refers to the steady-state response from the

Galerkin-based reduced-order model [4].

The steady-state response of master coordinate η1 is shown in Figure 4.2. As can be

seen, both the stable branches and the unstable branch of the response are accurately

captured by the simulation based on the nonlinear mode-based reduced-order model.

Note that at the excitation frequency ω f = 242 rad/s, the amplitude of η1 reaches its peak

at 1.0, which is physically equivalent to a 0.3 m displacement near the middle point of

the one-meter-long beam. The example clearly demonstrates the capability of accurately

capturing the forced response over a strongly nonlinear amplitude range.

The transient response at the excitation frequency, ω f = 242 rad/s, is also shown in

Figures 4.3 and 4.4 for two different initial conditions, each leading to a different steady-

state response. As can be seen, the response from the reduced-order model matches very
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Figure 4.3. Comparison of the transient-forced response of the modal coordinates, η1(t) and η2(t),

with initial conditions a(0)= 1.79, ȧ(0)= 0.0. the solid line refers to the response obtained from the

original 12-DOF system model; the dashed line refers to the response from the reduced-order model

[4].

closely that from the original system for a range of initial conditions. This demonstrates

that the dynamics near the primary resonance can be very accurately captured by the

invariant manifold approach. Similar results can be obtained for other resonances, by

choosing master modes accordingly.
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Figure 4.4. Comparison of the transient-forced response of the modal coordinates, η1(t) and η2(t),

with initial conditions a(0)= 0.1 and ȧ(0)= 0.0. The solid line refers to the response obtained from

the original 12-DOF system model; the dashed line refers to the response from the reduced-order

model [4].

5. Conclusions

The essence of nonlinear modal analysis is to generate a minimal reduced-order model

that accurately captures the dynamics of the original system. An effective normal mode-

based model order reduction methodology must satisfy two basic criteria. First, the
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method must be systematic, which means it can deal with various kinds of nonlinear

forces and handle various structural models, such as finite element models. Second, the

construction of the nonlinear normal modes must be numerically efficient, in the sense

that the solution can be obtained from a computer code in a reasonable time, regardless

of the size of the actual nonlinear system. The results obtained in this paper demonstrate

that the invariant manifold-based approach is general enough to account for various

types of nonlinear forces, including conventional quadratic and cubic nonlinear forces,

and complex intrinsic nonlinear effects such as those in the model of a rotating rotorcraft

blade. Also, the Galerkin-based solution technique developed has been shown to allow

for the efficient generation of the invariant manifolds, for large nonlinear systems and up

to large amplitudes. Therefore, this approach allows for the practical application of the

invariant manifold formulation for a wide variety of engineering structures.
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