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Abstract 

Vibrations of a nonlinear coupled parametrically and self-excited oscillators driven by an 

external harmonic force are presented in the paper. It is shown that if the force excites the 

system inside the principal parametric resonance then for a small excitation amplitude a 

resonance curve includes an internal loop. To find the analytical solutions the problem is 

reduced to one degree of freedom oscillators by applications of Nonlinear Normal Modes 

(NNMs). The NNMs are formulated on the basis of free vibrations of a nonlinear conservative 

system as functions of amplitude. The analytical results are validated by numerical 

simulations and an essential difference between linear and nonlinear modes is pointed out. 
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1. Introduction 

Self-excited systems are one of the most interesting and common in mechanical engineering 

theory and practice [ 1]. The response of this type of systems is represented by periodic limit 

cycles which can be stable, then the self-excitation is called soft, or unstable, called hard or 

catastrophic.   

Another, well known and intensively studied are parametric vibrations which are 

generated by periodically changing in time parameters. Dynamics of a parametrically excited 

system is observed by, so called, parametric resonances where vibration amplitudes increase 

reaching large values [ 2].  

Interesting dynamical phenomena can be observed when both of mentioned above 

vibrations meet together at the same time. Then interactions between two different types of 

vibration take place. Such a situation may arise in many mechanical engineering structures. 

As an example we can mention dynamics of a helicopter’s rotor blade, while during the 

rotation due to varying blade incidence angle, the stiffness of the blade is changing 

periodically. Under flutter conditions caused by air flow the interaction of both parametric 

and self-excitation takes place. Moreover, due to nonlinear coupling various vibration modes 

are coupled as well. 

Tondl [ 3] and co-authors [ 4], [ 5] considerably contributed in the analysis of 

interactions of parametric and self-excited vibrations. They studied dynamics of self-excited 

systems of van der Pol’s type driven by Mathieu parametric excitation. It has been found there 

that in wide intervals of excitation frequency the response of the system is quasi-periodic, and 

observed by quasi-periodic limit cycles on Poincaré maps. However, near the parametric 

resonances, self-excited frequency is quenched and the response of the system is periodic, 

represented by singular points on Poincaré maps. Those regions are sometimes called 

“frequency synchronisation regions”, due to the fact of the synchronisation of self- and 

parametric excitation frequencies. Extension of the works concerning parametric and self 

excited systems on bifurcation analysis and also chaotic or hyperchaotic dynamics can be 

found e.g. in [ 6]-[ 11].   

The behaviour of the parametrically and self-excited system can completely change if 

the system is additionally forced by external force. In many practical examples it can happen 

that frequency of the external force is equal to half of the parametric excitation frequency. As 
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an example we can mention a rotating shaft with a rectangular cross-section and unbalanced 

mass (Fig.1). During the rotation the stiffness of the system changes twice (parametric 

excitation) while the external inertia force once per revolution.     

 

Fig.1 Example of an externally and parametrically excited system with 1:2 frequencies ratio. 

 

Such a situation may appear also in other examples e.g. in sagged cable dynamics [ 12]-[ 14] or 

gear systems [ 15], vibrations of bars, beams and plates [ 16] as well as in micro-

electromechanical systems (MEMS) [ 17]. If the considered structure is additionally damped 

by a nonlinear force e.g. nonlinear friction or is placed in a fluid flow, which yield in flutter 

vibration, then we can find a system where also self-excited terms may appear. Differential 

equation of motion of one degree of freedom system with self-, parametric and external 

excitation can be written in form 

 ( ) ( )( )3
1 cos 2 cosx f x x x t q tγ µ ω ω+ + + − =ɺɺ ɺ  (1) 

In the considered model the external force excites the system exactly inside the principal 

parametric resonance, since in this region the response of the system is subharmonic with 

respect to the parametric excitation frequency. The dynamics of such a system was 

investigated in papers [ 18], [ 19]. The nonlinear damping was there assumed as the Rayleigh’s 

nonlinear function ( ) 3f x x xα β= − +ɺ ɺ ɺ . The results indicated very important quantitative 

changes in the principal parametric resonance regions. The resonance curves received by the 

multiple scale of time method for the system without external force ( 0q = ) and driven by 

external force ( 0q > ) are presented in Fig.2 (a) and (b), respectively.  

            

Fig.2 Resonance curve of a self-excited system driven parametrically (a) and driven 

parametrically and externally (b); 0.01α = , 0.05β = , 0.1γ = , 0.1µ = , 0.05q =  
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The presented curves have been determined for the following parameters: nonlinear damping 

of Rayleigh’s type 0.01α = , 0.05β = , nonlinear stiffness 0.1γ = , parametric excitation 

0.1µ = , external force amplitude 0q =  (Fig.2a) or 0.05q = (Fig.2b). The response of the 

self-excited system driven parametrically is mainly quasi-periodic apart from, so called, 

frequency synchronisation regions where self-excited vibrations are quenched by parametric 

excitation and the single harmonic oscillations are observed. This phenomenon is visible near 

the parametric resonance regions. Fig.2(a). Nevertheless, if the self-excited system is driven 

parametrically and externally then its response changes quantitatively and qualitatively. We 

see in Fig.2(b) that inside this region the resonance curve possesses an internal loop (red 

colour). Near the frequency about 1.07 five possible solutions are possible. The stability 

analysis shows that only two upper among five are stable. Of course to get the stable solution 

it is necessary to put initial conditions inside their basins of attractions. Possible existence of 

five equilibria for one DOF parametric system with negative damping has been also presented 

in [ 20]. Similar phenomena has been observed in [ 17] for one DOF MEMS resonator 

modelled by a van der Pol-Duffing system driven by parametric and external excitation. The 

bifurcation analysis revealed regions of the five solutions appearance.  

The problem of existence of the additional solutions is more complicated for models 

with many degrees of freedom. For many DOF systems additional interactions between 

vibrating modes may appear (apart from that resulted from various vibrations types).  

The results for two DOF model [ 21] confirm existence of the internal loop inside the 

main parametric region. However, to get this result a classical linear normal modes approach 

has been applied there. It has been shown that there is an essential difference between 

numerical and analytical results. This linear decoupling, which is usually used for weakly 

nonlinear system, was not sufficient for the nonlinear system with parametric and self-

excitation. Therefore, for a proper decoupling of the system another technique is required. 

Application of nonlinear normal modes (NNMs) [ 22], [ 23] is the promising approach which 

allows for separation of the structure for single DOF oscillators. Such constructed oscillators 

should include all information related with the nonlinear system’s dynamics.  

Various techniques of NNM have been presented and discussed on serious of 

conferences directly devoted to this topic, the first conference organised by C.H.Lamarque 

[ 24], the second by A.Vakais [ 25] and the third by G.Rega [ 26]. Nonlinear Normal Modes of 

a strongly nonlinear autonomous system, conservative or damped, are formulated in [ 27]. This 



NODY9679_source.doc 

5 

 

formulation is based on the centre-manifold approach and it allows for model decoupling by 

taking into account, both, the displacement and velocity of a chosen set of coordinates, which 

are so called master coordinates while rest are slave coordinates constituted by modal 

surfaces. This methodology can be applied for nonlinear but autonomous systems. The centre 

manifold reduction has been successfully applied for coupled self-excited systems [ 28]. 

Complexity of NNM formulation increases if the system is non-autonomous. Then time has to 

be introduced as an additional coordinate. To get the modal equation it is necessary to apply a 

special numerical Galerkin-based technique taking into account a time coordinate [ 29]. This 

method allows for finding NNMs for every instant of time.  

Another proposal of NNM formulation, defined for the nonlinear systems with weak 

damping, around the resonance region is  presented in [ 30], [ 31]. The resonant normal modes 

were found as a function of amplitude for the stationary response instead of functions of 

displacement and velocity. This approach allows for the system reduction around of resonance 

zones. The response is represented by a single oscillator with modal mass and frequency, 

constrained by an amplitude dependent relationship. Similar formulation has been presented 

in [ 32] with application to undamped nonlinear and autonomous mechanical systems. The 

resonant periodic response has been defined by a single degree of freedom system with period 

of motion depending on the amplitude. The approach presented in [ 30]-[ 32], seems be also 

attractive for the nonlinear the self- and parametrically or/and externally excited system. The 

study of self- and parametrically excited system without external force influence has been 

published in [ 33]. 

This paper presents resonant nonlinear normal modes based on the approach formulated in 

[ 33]. The normal modes are constructed on the same basis of nonlinear natural oscillations. 

However, in the present case the analysis is extended to the system with two degrees of 

freedom which includes self-, parametric and external excitations. Such a system may exhibit 

a multi-solutions resonance curve comparing to those presented in [33] where only single 

classical resonances took place. This study is carried out for the purpose of proper reduction 

of the multi-degree of freedom model into set of separate single oscillators near the principal 

parametric resonance region. The separated nonlinear modes should exhibit appearance of the 

internal loop inside the parametric resonance, similar to whose described for that of one DOF.  
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2. Model of the system 

Let’s consider two coupled nonlinear oscillators (I) and (II) composed of mass, nonlinear 

spring of Duffing type and nonlinear damping which represents self-excitation (Fig.3). The 

oscillators are coupled parametrically by a spring with periodically changing stiffness. 

Besides, the first oscillator is driven by a harmonic force.  

 

Fig. 3 Model of coupled self-excited oscillators driven by parametric and external excitations 

Motion of the model presented in Fig.3 is described by a set of differential equations 

 
( ) ( )( )

( ) ( )( )

1

2

3

1 1 1 1 1 1 1 12 1 2

3

2 2 2 2 2 2 122 1 2

cos 2 cos

cos 2 0

d

d

m X X X X t X X q tf

fm X X X X t X X

δ γ δ µ ω

δ γ δ µ ω

+ + + − − = Ω

+

+

+ + − − − =

ɺɺ ɺ

ɺɺ ɺ
 (2) 

Nonlinear damping is represented by Rayleigh’s function
3

1 1 1 1 1d
f x xα β= − +ɺ ɺ  and 

3

2 2 2 2 2d
f x xα β= − +ɺ ɺ . The coupling stiffness is linear of Mathieu type with periodically varying 

term ( ) ( )12 12 1 2
cos2f t X Xδ µ ω= − − . In mechanical engineering systems this kind of 

periodically varied stiffness may appear e.g. in gear boxes due to changing of mesh stiffness 

during operation.  

The main feature of the considered model is that nonlinear damping produces self-

excitation represented by limit cycles on the phase plane and the parametric excitation of 

frequency 2ω  yields in instability regions so called parametric resonances. Near the principal 

parametric resonance the response of the system is subharmonic (1:2) with corresponding 

frequency ω . Such resonances appear when excitation frequency is close to one of the natural 

frequencies 
01

ω ω≈  or 
02

ω ω≈ . Because we want the system to be driven by external 

harmonic force exactly inside the principal parametric resonance, therefore frequency Ω  is 

taken as half of parametric excitation, ωΩ = . Physical justification of such a model is 

presented in the introduction. 

3. Nonlinear Normal Modes Formulation 

The nonlinear normal modes are formulated on the basis of the observation of the physical 

system response [ 21]. The interaction between parametric and self-excited vibration results 

mainly in quasi-periodic motion composed by influence of both vibration types. On the 
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Poincaré map this kind of motion is represented by quasi-periodic limit cycles. It means that 

the self-excitation dominates in those regions exhibiting its main features. However, 

approaching the parametric resonances, near their neighbourhood, after the second kind of 

Hopf bifurcation (Nejmark-Sacker bifurcation), the self-excitation is quenched, and the 

system response is periodic.  

To formulate the nonlinear normal modes we will concentrate only in the 

neighbourhood of the main parametric resonance region. Taking into account that the self-

excitation (nonlinear damping) is quenched we can assume that the vibration modes are close 

to the mode of nonlinear conservative system. Therefore, at first we will formulate nonlinear 

normal modes of a nonlinear conservative system and then we will extend them to the self-

excited model driven by parametric and external excitations. The equations of motion of the 

conservative nonlinear system takes form    

 
( )

( )

3

1 1 1 1 1 1 12 1 2

3

2 2 2 2 2 2 12 1 2

0

0

m X X X X X

m X X X X X

δ γ δ

δ γ δ

+ + + − =

+ + − − =

ɺɺ

ɺɺ
 (3) 

In contrast to the pure linear system we define the vibrations modes as functions of amplitude. 

One of the mode coefficients can be taken arbitrary and the second is expressed as a function 

of amplitude. Therefore, the coefficient 
1
u  is taken as a constant and for convenience is equal 

to one (
1
1u = ) in further analysis, while the second is a function of amplitude ( )2 2

u u a= . 

The solution of the set (3) is sought by the harmonics balance method (HBM). Only the first 

harmonic of the response is taken into account therefore the solution is assumed in form  

 
1 0

2 2 0

cos

( )cos

X ta

X au a t

ω

ω

=

=

 (4) 

where 
0
ω  is a natural vibration frequency of the nonlinear system. According to definitions 

introduced in papers related to NNMs the coordinate 
1

X  is called “master coordinate” while 

2
X  is so called “slave” coordinate (see e.g. [ 27], [ 23]).  

Substituting the solutions (4) into (3), putting and expanding trigonometric functions we get 

 

2 2 2

1 0 1 1 12 2 12 0 1 0

2 2 3 2 3

2 0 2 2 2 2 2 12 12 0 2 2 0

3 1
cos cos3 0

4 4

3 1
( ) cos cos3 0

4 4

m a u t a t

m u a u u t a u t

ω γ δ δ δ ω γ ω

ω γ δ δ δ ω γ ω

− + + + − + =
 
 
 

 
 

− + + + − + =



 (5) 
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Taking into account the first harmonic approximation, we neglect the terms with 
0

cos3 tω . 

We may note that this reduction does not reject nonlinear terms in total, only in the second 

order approximation. After such simplification we get 

 

( )

( )

2 2

1 0 1 12 1 2 12

2 2 3

12 2 2 0 2 12 2 2

3
0

4

3
0

4

m a u

u m a u

aω δ δ γ δ

δ ω δ δ γ

− + + − =

− + ++ +− =

+

 (6) 

 where coefficient ( )2 2
u u a≡  is a function of amplitude. Eliminating natural frequency 

0
ω  

from above equations we get  

 ( ) ( )( ) ( )2 3

2 2 1 1 2 2 2 1 2 2 12 2 2 1 1 2

3
1 0

4
a m u m u u m m u u m mγ γ δ δ δ+ − + −− + =  (7) 

Equation (7) is a modal equation which allows for determination the mode coefficients of the 

nonlinear conservative system. From (7) we can find two roots for 
2
u ,

 
( )21

u a  and ( )22
u a , for 

the first and the second mode respectively. However, because it is easier to determine inverse 

relation we find ( )2a u  which takes form 

 
( )( ) ( )

( )
2 1 2 2 12 2 2 1 1 2

2

2 2 1 1 2 2

1
2

3

u m m u u m m

a

u m m u

δ δ δ

γ γ

− + − −

=

−

 (8) 

Two real solutions for a  represent the nonlinear curves of ( )2a u  for the first and the second 

nonlinear normal modes, respectively. We have to bear in mind that natural frequency of 

nonlinear system 
0
ω  is also amplitude dependent. Eliminating in (6) vibration mode 

2
u , we 

can find  

 
6 4 2

3 0 2 0 1 0 0
0ω ω ωΓ + Γ + Γ + Γ =  (9) 

where 

3 3

1 2

3 3

12

3

4

ma γ

δ
Γ = − ,  

( )3 25 2

1 2 1 121 1 2 1 2

2 3 3

1212 12

927

16 4

a ma m am mγ δ δγ γ

δδ δ

+
Γ = + + , 
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( ) ( )( )

( ) ( )( )

23 2
57 2

2 1 12 1 2 1 12
1 1 2 1 121 1 2

1 3 3 3

12 12 12

2 1 12 1 2 12

12

3 32781

64 8 4

a m m
a ma m

a m m

γ δ γ δ δγ γ δ δγ γ

δ δ δ

δ δ δ δ

δ

+ ++
Γ = − − −

+ + +

−

 

( ) ( )

( ) ( )( ) ( )( )

27 2 59 3

1 2 1 12 1 2 1 121 2

3 3 3

12 12 12

33 2

2 1 12 1 12 2 12
2 12 1 2 12

3

121

0

2

81 2781

256 64 16

3

4

a aa

a a

γ γ δ δ γ γ δ δγ γ

δ δ δ

γ δ δ γ δ δ δ δ δ δ δ δ

δδ

+ +
+ +

+ + + + +
+

Γ

+

=

 

Equation (9) has three real roots for 
2

0
ω , however only two of them have physical meaning. 

The solutions which tend in a limit to frequencies of the linear model, 
2 2

0 01
0

lim
a

ω ω
→

= , and  

2 2

0 02
0

lim
a

ω ω
→

=  will be taken for the further consideration. Thus, we found the formulae for the 

natural frequencies ( )01 01
aω ω=  and  ( )02 02

aω ω=
 
as functions of amplitude. 

 Having the modal coefficient ( )2 j
u a , the modal solutions take form  

 
1

2 2
( )
j j

j
YX

X u a Y

=


=
 (10) 

 where 1, 2j =  corresponds to mode 1 and mode 2, respectively and  
0

cos
j j

Y a tω=  is a 

periodic function of time.   

The formulated above modes of the nonlinear conservative system will be applied to the 

system (2) for determination of the resonance curves. 

4. Vibrations of a driven parametrically and  externally coupled 

self-excited system 

To transform the system from generalized into normal coordinates we make an 

assumption that inside the principal parametric resonance the vibration modes are close to the 

nonlinear normal modes formulated in previous chapter for the nonlinear conservative system. 

Substituting (10) into a set of the original equations (2) and next multiplying the first equation 
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by 
1 j
u  (which in this case is equal to one) and the second by 

2 j
u  (j=1,2), then adding them, 

we get  

 
( ) ( ) ( )2 2 2 4 3

1 2 2 1 2 2 2 12 1 2 2
(1 ) , ,

j j j j j j j j j j
m m u Y u u Y u Y F Y Y tδ δ δ γ γ + + + + − + + = 

ɺɺ ɺ  (11) 

where ( ) ( ) ( )
2

2 4 3

2 1 2 2 1 2 2
1 cos 2 cos

j j j j j j j
F u Y t u Y u Y q tµ ω α α β β ω= − + + − + +

ɺ ɺ ,  j=1,2.  

Taking into account that for the conservative system ( ), , 0
j j j

F Y Y t =ɺ  and then substituting the 

periodic solution 
0

cos
j j

Y a tω=  into (11) we get relationship which represents natural 

frequency of the nonlinear system 

 ( ) ( )
2

2 2 2 4

0 1 12 2 2 2 1 2 22

1 2 2

1 3
1

4
j j j j

j

u u a u

m m u

ω δ δ δ γ γ
= + − + + + + 

 (12) 

This equation corresponds to the frequency found from (6),  therefore the equation of motion 

may be written in nonlinear normal coordinates as 

 ( ) ( )2

0
( ) ( ) , ,

jj j j j j j j
M a Y M a Y F Y Y taω+ =

ɺɺ ɺ  (13) 

where ( ) 2

1 2 2j j
M ma m u+=  is the modal mass of the system for the first and the second 

vibration mode for 1,2j = , respectively. Function ( ), ,

j j j
F Y Y tɺ  can also be expressed as 

 3
cos2 cos

j j j j j j j qj
F C Y t C Y C Y C tµ α βω ω= + − +

ɺ ɺ  (14) 

where  

 
( )

2

2
1

j j
C u
µ
µ= − , 2

1 2 2j j
C uα α α= + , 4

1 2 2j j
C uβ β β= + , 

qj
C q=   (15) 

are modal coefficients representing parametric, self- and external excitation. The essential 

assumption made to transform the equations (3) into (13) is that the system’s response is 

periodic up to the first balanced harmonic. The modes are called resonant nonlinear normal 

modes because they can be used only for regions of a single frequency response. For a self-

exited system driven by parametric and external excitations they are used for the frequency 

locking zones ([ 3]-[ 5], [ 17]) characterized by  periodic solutions. The formulated modes in 

approximation decouple the system also if amplitude and phase of the solution are slow 

functions of time.  
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To get resonance solution it is necessary to solve a single equation (13) together with constrain 

equation (7).  

5. Analytical Solutions of Self, Parametrically and Externally Driven 

System 

Analytical solutions of Eq.(13) due to its nonlinear nature can be determined by application of 

approximation methods. The Multiple Scale of time method [ 1] is used to find the 

approximate solution. Introducing a formal  small parameter ε, equation (13) is written in the 

form  

 ( ) ( )2

0
( ) ( ) , ,

jj jj j j jj
aM a Y M a Y F Y Y tω ε+ =

ɺɺ ɶ ɺ  for j=1,2 (16) 

Function (14) is expressed by 
j j
F Fε= ɶ , and parameters:  µ εµ= ɶ ,  

1 1
α εα= ɶ , 

1 1
β εβ= ɶ , 

2 2
α εα= ɶ , 

2 2
β εβ= ɶ  and consequently 

j j
C C
µ µ

ε=
ɶ , 

j j
C C
α α

ε=
ɶ , 

j j
C Cβ βε=

ɶ , 
qj qj

C Cε= ɶ . 

According to the formulation presented in Chapter 4 it is assumed that the response of the 

system is periodic. However, assuming that amplitude and phase of the solution of (16) are 

slow functions of time i.e. if during one period of the fast scale there is a small change of 

amplitude (the slow scale) the presented approach can be used also in the neighbourhood of 

the resonance (frequency locking) zones.  

Solution of Eq.(16)  is sought in form of a series of the small parameter ε  

 
0 0 1 1 0 1

( , ) ( , ) ( , )
jj j

Y t Y T T Y T Tε ε= + +… (17) 

where ( )0 0 1
,

j
Y T T , ( )1 0 1

,

j
Y T T  are zero and first order functions of time. Time is also 

expressed by the series of the small parameter,  

 
0 1

t T Tε= + +…  (18) 
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where 
0
T  and 

1
T  are respectively fast and slow scale of time. Such time definitions results in 

the following formulae for the first and the second time derivatives 

 
2 2

0 1 2

0 1 2

d
...

d
D D D

t T T T
ε ε ε ε

∂ ∂ ∂
= + + = + +
∂ ∂ ∂

 (19) 

 
2

2 2 2

0 0 1 0 2 12

d
2 (2 )  ...

d
D D D D D D

t
µ ε= + + + +  (20) 

where 
m

m

n

n

D
T

∂
=
∂

 means m order  partial derivative with respect to n scale of time. 

As it has been assumed earlier we sought the solutions around the principal parametric 

resonance, where the self-excitation is quenched by dominating parametric vibrations, 

therefore, bearing in mind that parametric excitation frequency is equal to 2ω  and external 

excitation ω , we can write 

 2 2

0 j j
ω ω εσ= +  (21) 

where 
j
σ  is frequency detuning parameter around the first and the second natural frequency 

0 j
ω , j=1,2.  

Substituting solution (17) and taking into account the derivatives definitions (19), (20), after 

grouping terms with respect to ε order we get a set of differential equations in successive 

perturbation orders 

 0
ε  - order 

 2 2

0 0 0
0

j j
D Y Yω+ =  (22) 

1
ε  - order 
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2 2

0 1 1

3

0 0 1 0 0 1 0 0 1 0 0
2 ( ) cos2 cos /

j j

j j j j j j j j qjj j

D Y Y

Y D DY C D DY C D DY C Y t C t Mα β µ

ω

σ ω ω

+ =

 − + − + + 
ɶ ɶ ɶ ɶ

 (23) 

Solution of Eq.(22) is written in complex form  

 
0 0 1 1 1 0 1 1 0
( , ) ( ) exp( ) ( )exp( )

j j j
Y T T A T i T A T i Tω ω= + −  (24) 

where 1i = −  is an imaginary unit, 
1j

A , 
1j

A  is complex amplitude and  it’s conjugate. 

Solution (24) is substituted into (23) and then, after grouping terms in proper exponential 

functions, we get  

 

0

0

132 2 3 3

0 1 1 1

13 2

1 1 1 1 1 1

2

1
2 3

2

1

2

j ji T

j j j j

j

j j qji T

j j j j j j j j

j

A C
D Y Y e i A C

M

C C
e i D A A i A C i A c

M

A
A C c

µω

β

µω

α β

ω ω

ω σ ω ω

 
+ = − − 

 
 

  
+ − − + − + +  

    

ɶ
ɶ

ɶ ɶ
ɶ ɶ

(25) 

where cc means complex conjugate functions to those written in the equation. To eliminate 

secular terms, the components near 
0

( )exp i Tω  must vanish, thus 

 
13 2

1 1 1 1 1 1

1
2 3 0

2 2

j j qj

j j j j j j j j

j

C C
i D A A i A C i A C

M

A
A

µ

α βω σ ω ω

 
− − + − + = 

 
 

ɶ ɶ
ɶ ɶ  (26) 

Expressing complex amplitude 
j

A  by the polar form 

 
1

ji

j j
A a e

φ
=  (27) 

and then separating real and imaginary parts of (26) we get modulation equations for 

amplitude aj and phase φj 

 

3 31 3 1 1
sin 2 sin

2 8 4 2

1 1 1
cos 2 cos

2 4 2

j j j j j j j j qj

j j j j j j j j j qj

M a C a C a C a C

M a M a C a C

α β µ

µ

ω ω ω φ φ

ω φ σ φ φ

= − − −

= − − −

ɶ ɶ ɶ ɶɺ

ɺ ɶ ɶ

 (28) 

In a steady state 0
j
a =ɺ , 0

j
φ =ɺ . Therefore, from equations (28) we can find the resonance 

curve around the principal parametric resonances 

  

 2 2 2 2 2

2
2 4 2 0

qj j j j qj qj j j j j
C a C C C a C

µ µ
λ− − Λ + + − Λ =  (29) 
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where 
2 3

1

3

4
j j j j j

a C a Cα βλ ω ω
 

= − 
 

, ( )2 2

2 0j j j
Mλ ω ω= − , and 

( ) ( )
2

2 2 2 2 2

2 1 2
2 4 2

j qj j j j j j j j qj j
C a C a C C C

µ µ µ
λ λ λΛ = − + +  

To get vibration amplitudes in the resonance regions it is necessary to solve equation (29) 

together with nonlinear modal forms of the considered system formulated by Eq.(7). 

Introducing the particular solution of (25) into (17) yields 

 ( ) ( ) ( )
2

cos cos 3 sin 3 3
16 2

j j

j j j j

j

a a
Y a t C t C t

M
µ βω φ ε ω φ ω ω φ

 
= + + − + + + 

  

ɶ ɶ  (30) 

where the amplitude a and the phase φ  are determined from modulation equations (28) or for 

a steady state from algebraic equation (29). 

6. Numerical Calculations 

Numerical calculations are carried out for the nonlinear conservative model data 

 
1 2 1 2 12 1 2

1, 2, 1, 1, 0.3, 0.1, 0.1m m δ δ δ γ γ= = = = = = =  (31) 

and for self-excitation parameters 

 
1 1 2 2

,0.01 0.05, 0.01, 0.05βα α β= = = =  (32) 

while amplitude of parametric and external excitation are  

 0.2µ = , 0 0.2q≤ ≤  (33) 

To evaluate results obtained by the proposed method the numerical calculations are also 

performed for linear normal modes. The physical coordinates X are transformed to normal 

coordinates Y by linear transformation 

 
0

X = u Y  (34) 

where 
0
u  is a linear modal matrix 

 
110 120

0

210 220

u u

u u

 
=  
 

u  (35) 

For the assumed data (31) coefficients of modal vectors takes values  
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110
1u = , 

210
2.3770u = , 

210
1u = , 

220
0.21035u = −  (36) 

with corresponding natural frequencies of the linear system 
01

0.766091ω = , 
02

1.16752ω = , 

where index 0 underlines the linear transformation.  

 

 

Fig. 4. Vibration modes versus amplitude; parameters given by (31)
 

 

Taking into account the derived Eq. (7), which constitutes relationship of the mode coefficient 

2
u  versus vibration amplitude, we can draw the nonlinear modal curves as functions of 

amplitude. The solid line on the right hand side of the Fig.4 presents the first vibration mode, 

while on the left hand side the second mode is plotted. Of course, for amplitude equal zero 

0a =  value of the vibration mode corresponds to linear mode coefficients 
210
u  or 

220
u  (36). 

The vertical dashed lines arising from these points represent linear modal lines which are 

amplitude independent. To solve the equation (16) apart from modal coefficients also natural 

frequencies of the nonlinear model have to be determined from Eq.(12).   

 

Fig. 5. Vibration natural frequencies versus amplitude; parameters given by (31)
 

 

Solid lines in Fig.5 presents course of frequency for free vibration of a nonlinear system with 

respect to amplitude, dashed line points out amplitude independent linear natural frequencies.   

To construct the response based on nonlinear normal modes and related with it 

nonlinear resonant curves we have to solve Eq.(29) together with modal relationships (7) and 

nonlinear frequencies (12). Instead of Eqs, (7), (12) the set of algebraic equations (6) may be 

taken for numerical convenience.  

At first, correctness of the nonlinear normal modes is demonstrated for a nonlinear 

conservative system without any excitations or damping. In Fig.6 we see free vibrations of 

coupled nonlinear oscillators in physical (generalised) and normal coordinates determined by 

linear transformation (34). Initial conditions have been selected to activate only the first 

normal coordinate. Therefore, for simulations, initial conditions have values: ( )1
X 0 10.0= , 
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( )1
0 0X =

ɺ , ( )2
X 0 23.7701= , ( )2

0 0X =
ɺ . These conditions correspond to normal 

coordinates ( )1
Y 0 10.0= , ( )1

Y 0 0=ɺ , ( )2
Y 0 0= , ( )2

Y 0 0=ɺ . We note that assumed values 

are high in the aim to expose the nonlinear effects (Fig.6a,b). For a linear system only the first 

mode is activated while the second is equal to zero. Application of the linear normal modes to 

the nonlinear model is acceptable only for relatively small amplitudes.  

     

Fig. 6. Free vibrations in physical coordinates X1, X2 and linear normal coordinates Y1, Y2; 

initial conditions ( )1
X 0 10.0= , ( )1

0 0X =
ɺ , ( )2

X 0 23.7701= , ( )2
0 0X =

ɺ ; initial values for 

normal coordinates  ( )1
Y 0 10.0= , ( )1

Y 0 0=ɺ , ( )2
Y 0 0= , ( )2

Y 0 0=ɺ ; parameters given by 

(31). 

 

For the considered example the linear transformation leads to large differences. 

Fig.6(c) presents amplitude of Y1 coordinate. The second coordinate Y2 should stay quiet 

(Y2=0). However, after a few seconds the coordinate increases and goes to very high values 

(Fig.6d). The linear transformation leads definitely to wrong results. Therefore, for large 

displacements the nonlinear transformation is required.   

The same analysis has been repeated but applying nonlinear transformation (10). It 

means that modal coefficient 
21
u  has been calculated taking into account vibration amplitude. 

Initial condition for physical coordinates take values  ( )1
X 0 10.0= , ( )1

0 0X =
ɺ , 

( )2
X 0 14.4413= , ( )2

0 0X =
ɺ , which result in nonlinear normal coordinates ( )1

Y 0 10.0= , 

( )1
Y 0 0=ɺ , ( )2

Y 0 0= , ( )2
Y 0 0=ɺ . Note that linear transformation gives different normal 

coordinates ( )1
Y 0 6.3945=  ( )1

Y 0 0=ɺ , ( )2
Y 0 3.6055= , ( )2

Y 0 0=ɺ .  

 

Fig. 7. Free vibrations in physical coordinates X1, X2 (a),(b) and nonlinear normal coordinates 

Y1, Y2 (c), (d); initial conditions ( )1
X 0 10.0= , ( )1

0 0X =
ɺ , ( )2

X 0 14.4413= , ( )2
0 0X =

ɺ ; 

initial values for nonlinear normal coordinates  ( )1
Y 0 10.0= , ( )1

Y 0 0=ɺ , ( )2
Y 0 0= , 

( )2
Y 0 0=ɺ , parameters given by (31). 
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Time histories of X1 and X2 generated for initial conditions ( )1
X 0 10.0= , ( )1

0 0X =
ɺ , 

( )2
X 0 14.4413= , ( )2

0 0X =
ɺ  are presented in Fig.7(a) and (b). After nonlinear 

transformation we get nonlinear normal coordinates Y1 and Y2 which are presented in Fig.7(c) 

and (d) respectively. Coordinates Y2 is very close to zero value, for comparison Y2 is plotted 

in Fig.7(c) in the same scale, too. This result demonstrates usefulness of the NNM 

formulation for nonlinear free vibrations.   

Presented above formulation is used for resonant curves determination of the self-, 

parametrically and externally excited system near the main parametric resonances. The 

solutions are received from (13) by using analytical solutions (29) assuming that in the 

resonance the vibrations modes are close to the mentioned above NNMs found for the 

nonlinear conservative system. Solving together (29) and Eq.(7) we get the resonance curve 

presented in Fig.8(a).  

 

 

Fig.8 Resonance curve with internal loop around the second principal parametric 

resonance (a), vibration mode coefficient (b), and the second natural frequency (c); nonlinear 

normal modes, 
1 1 2 2

,0.01 0.05, 0.01, 0.05βα α β= = = = , 0.2, 0.1qµ = =  

 

 

Fig.9 Resonance curve with internal loop around the second principal parametric resonance;   

linear normal modes, 
1 1 2 2

,0.01 0.05, 0.01, 0.05βα α β= = = = , 0.2, 0.1qµ = =  

 

This curve has been plotted for the principal parametric resonance region near the second 

natural frequency. The resonance is chosen because the nonlinear effects are very well 

demonstrated there. In the Fig. 8 we can see behaviour of the system similar to that of one 

degree of freedom model presented in the introduction and papers [ 17], [ 19]. External force 

acting together with parametric and self-excitation changes classical resonance curve of the 

considered model. We see that in the main parametric resonance additional internal loop 

arises. In the frequency region, near 1.25ω = , five solutions are possible. However, 

numerical check up shows that only two upper solutions are stable, while three lower are 
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unstable. It is worth to mention that apart from steady state response, the sixth quasi-periodic 

motion also takes place. This solution is not presented in the figure because it has not been 

determined by the proposed analytical approach. The quasi-periodic motion requires a special 

treatment. The curves presented in Fig.8(a) have been found by the nonlinear normal mode 

transformation. Therefore, each amplitude has been determined together with modal and 

frequency dependencies presented in Fig.8(b) and (c) respectively. For amplitude equal to 

zero the modal coefficient takes values equal to the linear modes, however for 0a >  the 

modes is a nonlinear function (Fig.8b).  

The equivalent resonance curve got by linear normal modes approach is shown in 

Fig.9 for comparison. We see that solutions differ essentially. The internal loop is located on 

the left hand side of the main resonance branch and is much larger than that got by nonlinear 

normal mode formulation.  

 

Fig.10 Bifurcation diagram of the physical coordinate X1 versus excitation frequency; 

1 1 2 2
,0.01 0.05, 0.01, 0.05βα α β= = = = , 0.2, 0.1qµ = =  

 

To validate the received results the original Eqs.(2) have been solved directly by numerical 

methods. The bifurcation diagram of the physical coordinate 
1

X  versus excitation frequency 

is presented in Fig.10. The phenomenon of internal loop appearance is clearly visible near the 

principal parametric resonance around the second natural frequency for ( )1.1, 1.3ω∈ . The 

frequency intervals of the main branch of the resonance curve as well as internal loop fit very 

well to the resonance regions obtained by nonlinear normal modes approach. 

5. Conclusions 

 The paper presents a technique for resonant nonlinear normal modes formulation with 

application to a self- and parametrically excited system. It is shown that NNMs defined on the 

basis of free vibrations of a nonlinear system give results which are much closer to direct 

numerical simulation, comparing with classical LNMs. A width of synchronisation regions, 

near the principal parametric resonance fits very well to the regions found by numerical 

simulations, presented in the bifurcation diagram. Resonance curves, obtained by nonlinear 

and linear normal modes are essentially different. Correctness of the applied technique is 
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confirmed by time histories analysis for various set of parameters. An effort of numerical 

solving of a set of nonlinear algebraic equations is a cost which is paid for the accuracy 

increase. Out of the synchronisation regions, due to strong influence of self-excitation, 

another method for NNMs formulation is required. The method should take into account also 

influence of velocity on the vibration modes. 
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Figures Caption 
 

Fig.1 Example of an externally and parametrically excited system with 1:2 frequencies ratio. 

Fig.2 Resonance curve of a self-excited system driven parametrically (a) and driven 

parametrically and externally (b); 0.01α = , 0.05β = , 0.1γ = , 0.1µ = , 0.05q =  

Fig. 3 Model of coupled self-excited oscillators driven by parametric and external excitations 

Fig. 4. Vibration modes versus amplitude; parameters given by (31)
 

 

Fig. 5. Vibration natural frequencies versus amplitude; parameters given by (31)
 

 

Fig. 6. Free vibrations in physical coordinates X1, X2 and linear normal coordinates Y1, Y2; 

initial conditions ( )1
X 0 10.0= , ( )1

0 0X =
ɺ , ( )2

X 0 23.7701= , ( )2
0 0X =

ɺ ; initial values for 

normal coordinates  ( )1
Y 0 10.0= , ( )1

Y 0 0=ɺ , ( )2
Y 0 0= , ( )2

Y 0 0=ɺ ; parameters given by 

(31). 

 

Fig. 7. Free vibrations in physical coordinates X1, X2 (a),(b) and nonlinear normal coordinates 

Y1, Y2 (c), (d); initial conditions ( )1
X 0 10.0= , ( )1

0 0X =
ɺ , ( )2

X 0 14.4413= , ( )2
0 0X =

ɺ ; 

initial values for nonlinear normal coordinates  ( )1
Y 0 10.0= , ( )1

Y 0 0=ɺ , ( )2
Y 0 0= , 

( )2
Y 0 0=ɺ ; parameters given by (13). 

 

Fig.8 Resonance curve with internal loop around the second principal parametric 

resonance (a), vibration mode coefficient (b), and the second natural frequency (c); nonlinear 

normal modes, 
1 1 2 2

,0.01 0.05, 0.01, 0.05βα α β= = = = , 0.2, 0.1qµ = = . 

 

Fig.9 Resonance curve with internal loop around the second principal parametric resonance;   

linear normal modes, 
1 1 2 2

,0.01 0.05, 0.01, 0.05βα α β= = = = , 0.2, 0.1qµ = =  

 

Fig.10 Bifurcation diagram of the physical coordinate X1 versus excitation frequency; 

1 1 2 2
,0.01 0.05, 0.01, 0.05βα α β= = = = , 0.2, 0.1qµ = =  
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